I'm having a difficult time understanding how to synchronise an ArrayList over two threads. Basically, I want one thread appending objects to the list and the other one reading from that list at the same time.
Here is the class that deploys the threads:
public class Main {
public static ArrayList<Good> goodList = new ArrayList();
public static void main(String[] args) {
Thread thread1 = new Thread(new GoodCreator());
Thread thread2 = new Thread(new WeightCounter());
thread1.start();
thread2.start();
}
}
Then the two Runnable classes:
This one reads lines of two values from a text file and appends new objects.
public class GoodCreator implements Runnable{
private ArrayList<Good> goodList = Main.goodList;
private static Scanner scan;
#Override
public void run() {
System.out.println("Thread 1 started");
int objCount = 0;
try {
scan = new Scanner(new File(System.getProperty("user.home") + "//Goods.txt"));
} catch (FileNotFoundException e) {
System.out.println("File not found!");
e.printStackTrace();
}
while(scan.hasNextLine()){
String line = scan.nextLine();
String[] words = line.split("\\s+");
synchronized(goodList){
goodList.add(new Good(Integer.parseInt(words[0]), Integer.parseInt(words[1])));
objCount++;
}
if(objCount % 200 == 0) System.out.println("created " + objCount + " objects");
}
}
}
This iterates over the arraylist and is supposed to sum up one of the fields.
public class WeightCounter implements Runnable{
private ArrayList<Good> goodList = Main.goodList;
#Override
public void run() {
System.out.println("Thread 2 started");
int weightSum = 0;
synchronized(goodList){
for(Good g : goodList){
weightSum += g.getWeight();
}
}
System.out.println(weightSum);
}
}
No matter the input, weightSum never gets incremented and stays 0
Thread 1 started
Thread 2 started
0
Any help is much appreciated
You are running two independently running threads. These thread can run in any order and if one stop e.g. to read from a file, the other thread doesn't assume it has to wait for it.
In short, your second thread completes before the first thread has added anything to the list.
There is no good fix as this is not a good example of why you would use multiple threads, however to get an outcome what you can do is this.
public class WeightCounter implements Runnable{
private ArrayList<Good> goodList = Main.goodList;
#Override
public void run() {
System.out.println("Thread 2 started");
for(int i = 0; i < 10; i++) {
try {
Thread.sleep(100);
} catch (InterruptedException ie) {
throw AssertionError(ie);
}
int weightSum = 0;
synchronized(goodList){
for (Good g : goodList)
weightSum += g.getWeight();
}
System.out.println(weightSum);
}
}
}
This will print the sum 10 times, 0.1 seconds apart. Depending on how long your file takes to load you will be able to see the sum for what has loaded so far.
This is something called a producer-consumer task. You can do it with arraylist, but it's honestly just not the right way to approach this problem.
Luckily, Java provides us with some collections, the BlockingQueue collections, which are designed specifically for this reason;
//the collection with the stuff in it
static BlockingQueue<Object> items = new BlockingQueue<Object>();
//(there are a few different types of blocking queues, check javadocs.
//you would want Linked or Array blocking queue
//what happens on the reader thread
public void producer()
{
//read the data into the collection
for (all the data in the file)
{
//add the next item
items.put(/* next item from file or w/e */);
//stop if necessary
if (atEndOfFile) stillReadingData = false;
//etc
}
}
Now you need to read the data out of the queue - luckily this is easy enough;
//what happens on the other threads
public void consumer()
{
//keep this thread alive so long as there is data to process
//or so long as there might be more data to process
while (stillReadingData || !items.isEmpty())
{
//get the next item from the list
//while the list is empty, we basically sleep for "timeout" timeunits,
//then the while-loop would repeat, and so on
Object o = items.poll(long timeout, int units);
if (o != null) //process it
}
}
In this way, you can continuously add items to the queue with the producer thread, and the items will be processed as soon as a consumer thread is free (this approach scales well with lots of consumer threads). If you still need a collection for the items, then you should make a second collection and add them to that after they have been processed.
As a side note, you may still need to synchronize oprations which occur while processing the items. For example, you would need to synchronize increments on "weightSum" (or alternately use AtomicInteger).
Try this change in the WeightCounter class.
public class WeightCounter implements Runnable{
private ArrayList<Good> goodList = Main.goodList;
#Override
public void run() {
System.out.println("Thread 2 started");
int weightSum = 0;
while(goodList.isEmpty()) {
Thread.sleep(1000);
}
synchronized(goodList){
for(Good g : goodList){
weightSum += g.getWeight();
}
}
System.out.println(weightSum);
}
}
This change will cause the WeightCounter thread to wait for the other thread to finish populating the goodList with data before attempting to read from it.
Related
I am new to concurrent programming and I am facing few issues with the below code using Java threads.
Status Class (this class tracks the position availability):
public class Status {
private static Map<String, Boolean> positions = new HashMap<>();
static {
//Initially all positions are free (so set to true)
positions.put("A", true);
positions.put("B", true);
}
public synchronized void occupyOrClear(String position,
boolean status) {
positions.put(position, status);
}
public boolean isClear(String position) {
return positions.get(position);
}
}
MyThread Class:
public class MyThread implements Runnable {
private String[] positions;
private String customer;
public MyThread(String customer, String[] positions) {
this.positions = positions;
this.customer = customer;
}
private Status status = new Status();
public void run() {
for (int i = 0; i < positions.length;) {
String position = positions[i];
if (status.isClear(position)) {
// position occupied now
status.occupyOrClear(position, false);
System.out.println(position + " occupied by :"+customer);
try {
//my real application logic goes below (instead of sleep)
Thread.sleep(2000);
} catch (InterruptedException inteExe) {
System.out.println(" Thread interrupted ");
}
// Now clear the position
status.occupyOrClear(position, true);
System.out.println(position + " finished & cleared by:"+customer);
i++;
} else {
try {
Thread.sleep(1000);
} catch (InterruptedException inteExe) {
System.out.println(" Thread interrupted ");
}
}
}
}
}
ThreadTest Class:
public class ThreadTest {
public static void main(String[] args) {
String[] positions = { "A", "B"};
Status status = new Status();
Thread customerThread1 = new Thread(new MyThread(status, "customer1", positions));
Thread customerThread2 = new Thread(new MyThread(status, "customer2", positions));
Thread customerThread3 = new Thread(new MyThread(status, "customer3", positions));
customerThread1.start();
customerThread2.start();
customerThread3.start();
}
}
Even though I have used 'synchronized' I could notice that some times Thread3 is picking up prior to Thread2 and could you please help me to resolve this issue and to acheive the following results ?
(1) Always customerThread1 should take the positions first and then
followed by customerThread2 and then customerThread3 (etc...)
(2) As soon as the A's position is freed by customerThread1, the
position should be immediately picked up by customerThread2 (rather
than customerThread2 and customerThread3 waiting till all positions
are done by customerThread1).And as soon as customerThread2 finishes
position 'A', then customerThread3 should pick it up, etc..
(3) As soon as the position (A, B, etc..) is freed/available, the next
customerThread should pick it up immediately.
(4) The solution should avoid all race conditions
There are several fundamental problems.
You have broken code and already noticed that it doesn’t work. But instead of asking how to fix that broken code, you are asking for alternatives with higher performance. You will never manage to write working programs with that attitude.
Apparently, you have no idea, what synchronized does. It acquires a lock on a particular object instance which can be held by one thread only. Therefore, all code fragments synchronizing on the same object are enforced to be executed ordered, with the necessary memory visibility. So your code fails for two reasons:
You are creating multiple instances of Status accessing the same objects referenced by a static variable. Since all threads use different locks, this access is entirely unsafe.
Your occupyOrClear is declared synchronized, but your method isClear is not. So even if all threads were using the same lock instance for occupyOrClear, the result of isClear remained unpredictable due to its unsafe access to the map.
You have code of the form
if(status.isClear(position)) { status.occupyOrClear(position, false); …
which matches the check-then-act anti-pattern. Even if each of these two method calls were thread-safe, this sequence still remained unsafe, because between these two invocations, everything can happen, most notably, the condition, the thread just checked, may change without the thread noticing. So two or more threads could invoke isClear, receiving true and then proceed with occupyOrClear.
You are using Thread.sleep.
You can try with the following pseudocode:
main() {
//some concurrent queues, eg ConcurrentLinkedQueue
Queue t1Tasks = new Queue("A","B","C");
Queue t2Tasks = new Queue();
Queue t3Tasks = new Queue();
Thread t1 = new PThread(t1Tasks,t2Tasks,"customer1");
Thread t2 = new PThread(t2Tasks,t3Tasks,"customer2");
Thread t3 = new PThread(t3Tasks,null,"customer3");
}
PThread {
Queue q1,q2;
PThread(Queue q1, Queue q2,...){}
run() {
while (item = q1.get()) {
//process item
q2.put(item); //to be processed by next thread
}
}
}
There is one ArrayList with 1 million element and we are using two threads to read from this ArrayList. The first thread will read first half of the list and second thread will read the second half of list and I am using two threads to achieve this, but I don't see any difference in performance between using one thread and two threads.
I have written below program to achieve this, but I am not sure If this is the right way to implement and achieve this.
Can someone check if my code is correct or how I can fix the multithreading?
import java.util.ArrayList;
import java.util.List;
public class ThreadTask {
public static void main(String[] args) throws InterruptedException {
// TODO Auto-generated method stub
List<Integer> list = new ArrayList<>();
for(int i = 0; i <=1000000; i++){
list.add(i);
}
Thread t1 = new Thread(new PrintList(list));
Thread t2 = new Thread(new PrintList(list));
t1.setName("thread1");
t2.setName("thread2");
long starttime = System.currentTimeMillis();
System.out.println(starttime);
t1.start();
t2.start();
t1.join();
t2.join();
long endtime = System.currentTimeMillis();
System.out.println(endtime);
System.out.println("Total time "+(endtime - starttime));
}
}
class PrintList implements Runnable{
private List list = new ArrayList();
public PrintList(List list){
this.list = list;
}
#Override
public void run() {
if(Thread.currentThread().getName() != null && Thread.currentThread().getName().equalsIgnoreCase("thread1")){
for(int i = 0; i< list.size()/2;i++){
// System.out.println("Thread 1 "+list.get(i));
}
}else if(Thread.currentThread().getName() != null && Thread.currentThread().getName().equalsIgnoreCase("thread2")){
for(int i = list.size()/2; i<list.size(); i++){
//System.out.println("Thread 2 "+list.get(i));
}
}
}
}
Also, If someone can help me on how can we implement it to make it generic to use more then to thread.
System.out.println is synchronized internally (in order that you don't get mixing between the messages printed by multiple threads), so only one thread is actually printing at once.
Basically, it behaves like a single thread.
Even if in reality System.out is synchronized, still you dont want to have manually initialized threads reading from your ArrayList. Plus I doubt that your end goal is the System.out. You should use a higher abstraction. Such abstraction can easily be present either through Java8 Stream API either by ExecutorServices.
Here is one example of paralelism with Java 8 api.
Arraylist toprint;
toPrint.parallelstream().forEach(DoSometing);
This will work in parallel threads.
If you use ExecutorService You can slice your Arraylist and pass each slice to a Callable to perform the work for you in a separate thread.
class Task implements Callable {
List sublist;
public Task(List sublist) {
this.sublist = sublist;
}
public void call() {
// do something
}
}
ArrayList listToSlice;
List<List> slicedList;
ExecutorService executor = Executors.newFixedThreadPool(2);
for (List sublist:slicedList) {
Future<Integer> future = executor.submit(new Task(sublist));
......
.......s on
}
In my app there are 2 phases, one download some big data, and the other manipulates it.
so i created 2 classes which implements runnable: ImageDownloader and ImageManipulator, and they share a downloadedBlockingQueue:
public class ImageDownloader implements Runnable {
private ArrayBlockingQueue<ImageBean> downloadedImagesBlockingQueue;
private ArrayBlockingQueue<String> imgUrlsBlockingQueue;
public ImageDownloader(ArrayBlockingQueue<String> imgUrlsBlockingQueue, ArrayBlockingQueue<ImageBean> downloadedImagesBlockingQueue) {
this.downloadedImagesBlockingQueue = downloadedImagesBlockingQueue;
this.imgUrlsBlockingQueue = imgUrlsBlockingQueue;
}
#Override
public void run() {
while (!this.imgUrlsBlockingQueue.isEmpty()) {
try {
String imgUrl = this.imgUrlsBlockingQueue.take();
ImageBean imageBean = doYourThing(imgUrl);
this.downloadedImagesBlockingQueue.add(imageBean);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
public class ImageManipulator implements Runnable {
private ArrayBlockingQueue<ImageBean> downloadedImagesBlockingQueue;
private AtomicInteger capacity;
public ImageManipulator(ArrayBlockingQueue<ImageBean> downloadedImagesBlockingQueue,
AtomicInteger capacity) {
this.downloadedImagesBlockingQueue = downloadedImagesBlockingQueue;
this.capacity = capacity;
}
#Override
public void run() {
while (capacity.get() > 0) {
try {
ImageBean imageBean = downloadedImagesBlockingQueue.take(); // <- HERE I GET THE DEADLOCK
capacity.decrementAndGet();
} catch (InterruptedException e) {
e.printStackTrace();
}
// ....
}
}
}
public class Main {
public static void main(String[] args) {
String[] imageUrls = new String[]{"url1", "url2"};
int capacity = imageUrls.length;
ArrayBlockingQueue<String> imgUrlsBlockingQueue = initImgUrlsBlockingQueue(imageUrls, capacity);
ArrayBlockingQueue<ImageBean> downloadedImagesBlockingQueue = new ArrayBlockingQueue<>(capacity);
ExecutorService downloaderExecutor = Executors.newFixedThreadPool(3);
for (int i = 0; i < 3; i++) {
Runnable worker = new ImageDownloader(imgUrlsBlockingQueue, downloadedImagesBlockingQueue);
downloaderExecutor.execute(worker);
}
downloaderExecutor.shutdown();
ExecutorService manipulatorExecutor = Executors.newFixedThreadPool(3);
AtomicInteger manipulatorCapacity = new AtomicInteger(capacity);
for (int i = 0; i < 3; i++) {
Runnable worker = new ImageManipulator(downloadedImagesBlockingQueue, manipulatorCapacity);
manipulatorExecutor.execute(worker);
}
manipulatorExecutor.shutdown();
while (!downloaderExecutor.isTerminated() && !manipulatorExecutor.isTerminated()) {
}
}
}
The deadlock happens because this scenario:
t1 checks capacity its 1.
t2 checks its 1.
t3 checks its 1.
t2 takes, sets capacity to 0, continue with flow and eventually exits.
t1 and t3 now on deadlock, cause there will be no adding to the downloadedImagesBlockingQueue.
Eventually i want something like that: when the capacity is reached && the queue is empty = break the "while" loop, and terminate gracefully.
to set "is queue empty" as only condition won't work, cause in the start it is empty, until some ImageDownloader puts a imageBean into the queue.
There area a couple of things you can do to prevent deadlock:
Use a LinkedBlockingQueue which has a capacity
Use offer to add to the queue which does not block
Use drainTo or poll to take items from the queue which are not blocking
There are also some tips you might want to consider:
Use a ThreadPool:
final ExecutorService executorService = Executors.newFixedThreadPool(4);
If you use a fixed size ThreadPool you can add "poison pill"s when you finished adding data to the queue corresponding to the size of your ThreadPool and check it when you poll
Using a ThreadPool is as simple as this:
final ExecutorService executorService = Executors.newFixedThreadPool(4);
final Future<?> result = executorService.submit(new Runnable() {
#Override
public void run() {
}
});
There is also the less known ExecutorCompletionService which abstracts this whole process. More info here.
You don't need the capacity in your consumer. It's now read and updated in multiple threads, which cause the synchronization issue.
initImgUrlsBlockingQueue creates the url blocking queue with capacity number of URL items. (Right?)
ImageDownloader consumes the imgUrlsBlockingQueue and produce images, it terminates when all the URLs are downloaded, or, if capacity means number of images that should be downloaded because there may be some failure, it terminates when it added capacity number of images.
Before ImageDownloader terminates, it add a marker in to the downloadedImagesBlockingQueue, for example, a null element, a static final ImageBean static final ImageBean marker = new ImageBean().
All ImageManipulator drains the queue use the following construct, and when it sees the null element, it add it to the queue again and terminate.
// use identity comparison
while ((imageBean = downloadedImagesBlockingQueue.take()) != marker) {
// process image
}
downloadedImagesBlockingQueue.add(marker);
Note that the BlockingQueue promises its method call it atomic, however, if you check it's capacity first, and consume an element according to the capacity, the action group won't be atomic.
Well i used some of the features suggested, but this is the complete solution for me, the one which does not busy waiting and wait until the Downloader notify it.
public ImageManipulator(LinkedBlockingQueue<ImageBean> downloadedImagesBlockingQueue,
LinkedBlockingQueue<ImageBean> manipulatedImagesBlockingQueue,
AtomicInteger capacity,
ManipulatedData manipulatedData,
ReentrantLock downloaderReentrantLock,
ReentrantLock manipulatorReentrantLock,
Condition downloaderNotFull,
Condition manipulatorNotFull) {
this.downloadedImagesBlockingQueue = downloadedImagesBlockingQueue;
this.manipulatedImagesBlockingQueue = manipulatedImagesBlockingQueue;
this.capacity = capacity;
this.downloaderReentrantLock = downloaderReentrantLock;
this.manipulatorReentrantLock = manipulatorReentrantLock;
this.downloaderNotFull = downloaderNotFull;
this.manipulatorNotFull = manipulatorNotFull;
this.manipulatedData = manipulatedData;
}
#Override
public void run() {
while (capacity.get() > 0) {
downloaderReentrantLock.lock();
if (capacity.get() > 0) { //checks if the value is updated.
ImageBean imageBean = downloadedImagesBlockingQueue.poll();
if (imageBean != null) { // will be null if no downloader finished is work (successfully downloaded or not)
capacity.decrementAndGet();
if (capacity.get() == 0) { //signal all the manipulators to wake up and stop waiting for downloaded images.
downloaderNotFull.signalAll();
}
downloaderReentrantLock.unlock();
if (imageBean.getOriginalImage() != null) { // the downloader will set it null iff it failes to download it.
// business logic
}
manipulatedImagesBlockingQueue.add(imageBean);
signalAllPersisters(); // signal the persisters (which has the same lock/unlock as this manipulator.
} else {
try {
downloaderNotFull.await(); //manipulator will wait for downloaded image - downloader will signalAllManipulators (same as signalAllPersisters() here) when an imageBean will be inserted to queue.
downloaderReentrantLock.unlock();
} catch (InterruptedException e) {
logger.log(Level.ERROR, e.getMessage(), e);
}
}
}
}
logger.log(Level.INFO, "Manipulator: " + Thread.currentThread().getId() + " Ended Gracefully");
}
private void signalAllPersisters() {
manipulatorReentrantLock.lock();
manipulatorNotFull.signalAll();
manipulatorReentrantLock.unlock();
}
For full flow you can check this project on my github: https://github.com/roy-key/image-service/
Your issue is that you are trying to use a counter to track queue elements and aren't composing operations that need to be atomic. You are doing check, take, decrement. This allows the queue size and counter to desynchronize and your threads block forever. It would be better to write a synchronization primitive that is 'closeable' so that you don't have to keep an associated counter. However, a quick fix would be to change it so you are get and decrementing the counter atomically:
while (capacity.getAndDecrement() > 0) {
try {
ImageBean imageBean = downloadedImagesBlockingQueue.take();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
In this case if there are 3 threads and only one element left in the queue then only one thread will atomically decrement the counter and see that it can take without blocking. Both other threads will see 0 or <0 and break out of the loop.
You also need to make all of your class instance variables final so that they have the correct memory visibility. You should also determine how you are going to handle interrupts rather than relying on the default print trace template.
I am trying to synchronize three threads to print 012012012012.... but it is not working correctly. Each thread is assigned a number which it prints when it receives a signal from main thread. There is something wrong with the following program which I am not able to catch.
public class Application {
public static void main(String[] args) {
int totalThreads = 3;
Thread[] threads = new Thread[totalThreads];
for (int i = 0; i < threads.length; i++) {
threads[i] = new MyThread(i);
threads[i].start();
}
int threadIndex = 0;
while (true) {
synchronized(threads[threadIndex]) {
threads[threadIndex].notify();
}
threadIndex++;
if (threadIndex == totalThreads) {
threadIndex = 0;
}
}
}
}
class MyThread extends Thread {
private int i;
public MyThread(int i) {
this.i = i;
}
#Override
public void run() {
while (true) {
synchronized(this) {
waitForSignal();
System.out.println(i);
}
}
}
private void waitForSignal() {
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
You need more coordination. the notify call does not immediately wake up the thread and force it to proceed. Instead, think of notify as sending an email to the thread to let it know that it can proceed. Imagine if you wanted your 3 friends to call you in order. You sent friend 1 an email to call you, waited one second, sent an email to friend 2, waited a second, and sent an email to friend 3. do you think you'd get called in that exact order?
one way to add more coordination would be to have some shared state which indicates whose turn it is. if all your friends could see your house, you could put a number on the outside of the house indicating whose turn it was to call. each friend would wait until they saw their number, and then call.
Here's your problem:
int threadIndex = 0;
while (true) {
synchronized(threads[threadIndex]) {
threads[threadIndex].notify();
}
threadIndex++;
if (threadIndex == totalThreads) {
threadIndex = 0;
}
}
The main thread notifies all threads in the right order. However, your threads are working independently. They may or may not get scheduled at a specific point in time. So the end result may be, that thread 2 is reaching the wait/print lock before thread 1 before thread 0. The final order is not determined by you sending the notifications, but (in essence) by the scheduler.
The solution is to change it this way:
the main thread notifies exactly one thread: thread 0
every thread does his work and when done, notifies the next thread in line
obviously the last thread has to notify thread 0 again.
Another possible solution: In the main thread, you can wait immediately after having notified a thread (in the same synchronized block), like this:
synchronized (threads[threadIndex])
{
threads[threadIndex].notify();
threads[threadIndex].wait(); // try/catch here
}
And in the run method of the thread, you can use notifyAll to wake up the main thread after the thread finished its work:
synchronized (this)
{
waitForSignal();
System.out.println(i);
notifyAll();
}
More sophisticated solutions would involve classes from the java.util.concurrent.locks package.
package threads;
import java.util.concurrent.Semaphore;
public class ZeroEvenOddPrinter {
class Runner extends Thread{
Semaphore prev;
Semaphore next;
int num = 0;
public Runner(Semaphore prev,Semaphore next,int num){
this.prev = prev;
this.next = next;
this.num = num;
}
#Override
public void run(){
while (true) {
try {
Thread.sleep(100);
prev.acquire();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
if (num == 0)
System.out.println(0);
else {
System.out.println(num);
num = num + 2;
}
next.release();
}
}
}
static public void main(String args[]) throws InterruptedException{
Semaphore sem1 = new Semaphore(1);
Semaphore sem2 = new Semaphore(1);
Semaphore sem3 = new Semaphore(1);
ZeroEvenOddPrinter zeo = new ZeroEvenOddPrinter();
Runner t1 = zeo.new Runner(sem1,sem2,0);
Runner t2 = zeo.new Runner(sem2,sem3,1);
Runner t3 = zeo.new Runner(sem3,sem1,2);
sem1.acquire();
sem2.acquire();
sem3.acquire();
t1.start();
t2.start();
t3.start();
sem1.release();
}
}
Here i am using semaphores as triggers for all the three threads. Initially all threads will be blocked on sem1,sem2,sem3. Then i will release the sem1 and first thread will execute then it will release the second thread and so on... The best part is you extend this logic to n number of threads. Good Luck!!!
I posted yesterday about this but my code was messy. What I'm looking to do is count the number of lines of two separate files and print the line number in a separate thread for each file.
This is what i have:
import java.io.File;
import java.util.Scanner;
public class fileReader implements Runnable
{
static int count = 0;
static int count1 = 0;
public void run()
{
try
{
Scanner file1 = new Scanner(new File("filetest1.txt"));
Scanner file2 = new Scanner(new File("filetest2.txt"));
while (file1.hasNextLine())
{
count++;
file1.nextLine();
}
while (file2.hasNextLine())
{
count1++;
file2.nextLine();
}
}
catch(Exception e)
{
count = -1;
count1 = -1;
}
}
public static void main(String[] args)
{
(new Thread(new fileReader())).start();
System.out.println("File one has " + count + " lines");
System.out.println("File two has " + count1 + " lines");
}
}
The problem is that it does not work. Can someone point me in the right direction? Thanks.
You are on the right track using Runnable. You have a couple problems right now:
You currently create 1 fileReader with 1 thread for both files, but your intent is to have a separate thread for each.
You are trying to communicate between threads using some static variables, but you're not waiting for the worker thread to be done before printing the variables.
To solve your first problem, you need to create a new Runnable and a new thread for each file. (I'm going to rename your fileReader class to LineCounter to avoid confusion with the similarly named FileReader from the standard library).
class LineCounter implements Runnable {
private final File file;
public LineCounter(File file) {
this.file = file;
}
public void run() {
// Count lines in file.
}
}
Now you can create 2 separate LineCounter objects, one to count the lines in each file.
Thread thread1 = new Thread(new LineCounter(new File("filetest1.txt")));
Thread thread2 = new Thread(new LineCounter(new File("filetest2.txt")));
thread1.start();
thread2.start();
As for your second problem, your main thread must (the one that spawned off these two other threads) needs to wait for them to complete before reading the variables holding the number of lines in each file. You can instruct your main thread to wait for the another thread to complete by using join()
thread1.join();
thread2.join();
// Print your variables.
That being said, communicating between threads with static variables is dubious at best:
To really do this right, you'd have to either synchronize access to those variables, or else declare them as volatile.
When programming with threads, it's preferable to share as little state (variables) as possible with other threads.
Further, there exists the very convenient Executor framework which presents a nicer API for dealing with threads. One big win is that is allows you to easily return a value from a thread, which you could use to return the number of lines read.
The big changes are:
Your class implements Callable<Integer> instead of Runnable. The <Integer> part here means you want your thread to return an Integer (i.e. the number of lines in the file)
Instead of void run(), you define Integer call(), which returns the number of lines in the file.
Instead of creating Threads directly, you submit tasks to be done to an Executor.
Instead of join()ing threads together, simply get() the return value of a thread from a Future.
Converted to Executor style, the solution is something like
class LineCounter implements Callable<Integer> {
private final File file;
public LineCounter(File file) {
this.file = file;
}
public Integer call() {
// Count number of lines in file.
return numLines;
}
}
And in your main thread:
ExecutorService executor = Executors.newFixedThreadPool(2);
Future<Integer> future1 = executor.submit(new LineCounter(new File("file1.txt")));
Future<Integer> future2 = executor.submit(new LineCounter(new File("file2.txt")));
Integer file1Lines = future1.get();
Integer file2Lines = future2.get();
You need to wait for the thread to finish its job.
You print your resault too early.
thr.join() blocks your program until thr finishes.
public static void main(String args[]) {
try {
Thread thr = new Thread(new fileReader());
thr.start();
thr.join();
System.out.println("File one has " + count + " lines");
System.out.println("File two has " + count1 + " lines");
} catch (InterruptedException ex) {
Logger.getLogger(fileReader.class.getName()).log(Level.SEVERE, null, ex);
}
}
public class fileReader1 implements Runnable
{
static int count = 0;
public void run()
{
try
{
Scanner file1 = new Scanner(new File("filetest1.txt"));
............
............
............
}
}
public class fileReader2 implements Runnable
{
static int count = 0;
public void run()
{
try
{
Scanner file1 = new Scanner(new File("filetest2.txt"));
............
............
............
}
}
Now you can start two threads and start reading the files simultaneously:
Thread t1=new Thread(new fileReader1());
Thread t2=new Thread(new fileReader2());
t1.start();
t2.start();