This question already has answers here:
What is the "default" implementation of method defined in an Interface?
(3 answers)
Closed 6 years ago.
I was studying lambada and there was a point which states that in java 8 we can declare a method with definition in interfaces like
interface Test {
default String method(){
return "string";
}
}
and as per specification we can use two methods with same signature but depends on programmer how he wants to use it?
Now the question is same task can be if achieved by using definition not declaration then what's the point of using default method?
like they behave same as regular method definition and programmer need to declare body and rest part?
what is the actual point as it seems a bit hard to grasp
thanks #ElliottFrisch and #kagemusha for hint after searching i got the answer
Why default methods?
List<?> list = …
list.forEach(…); // lambda code goes here
The forEach isn’t declared by java.util.List nor the java.util.Collection interface yet. One obvious solution would be to just add the new method to the existing interface and provide the implementation where required in the JDK. However, once published, it is impossible to add methods to an interface without breaking the existing implementation.
So it’d be really frustrating if we have lambdas in Java 8 but couldn’t use those with the standard collections library since backwards compatibility can’t be sacrificed.
Due to the problem described above a new concept was introduced. Virtual extension methods, or, as they are often called, defender methods, can now be added to interfaces providing a default implementation of the declared behavior.
Simply speaking, interfaces in Java can now implement methods. The benefit that default methods bring is that now it’s possible to add a new default method to the interface and it doesn’t break the implementations.
It doesn’t seem to be the language feature that would be appropriate to use every day, but it seems to be essential for Java Collections API update to be able to use lambdas naturally.
Related
Java 8 has included a new feature called Defender methods which allows creation of default method implementation in interface.
Now first of all this is a huge paradigm shift for all condensed programmers in Java. I viewed a JavaOne 13 presentation given by Brian Goetz where he was discussing about the new stream() and parallelStream() implementations in Collections library.
For adding new methods in Collection interface, they could not have just added a new method without breaking the previous versions. So he told that for catering this a new feature of Default methods was added.
public interface SimpleInterface {
public void doSomeWork();
//A default method in the interface created using "default" keyword
default public void doSomeOtherWork(){
System.out.println("DoSomeOtherWork implementation in the interface");
}
}
Now my question is basically that are default methods just helpful when needed to add new methods to interface without breaking client code? Or are there some other uses to it too?
Besides having the possibility of adding methods to the interface in future versions, there is the important point of allowing an interface to stay a functional interface even if it has more than one method.
A functional interface has only one non-default abstract method which can be implemented via a lambda expression. One example is the Predicate interface which has only one abstract method (test) while providing default methods for negating a Predicate or combining it with another Predicate. Without default methods these methods had to be provided in another utility class like the pre-Java 8 Collections class (as you don’t want to give up the possibility of lambda implementations for such an interface).
As you said, the main motivation was allowing the evolution of existing interfaces.
However there are reasons why you'd want to use them in brand new interfaces as well:
One such reason is methods that can easily be implemented using the other (non-default) methods of the interface. Using default methods for this reduces the need for Foo-interface/AbstractFoo-base-implementation combinations (see AbstractList for example).
While this does not create an entirely new field, it means that you can have end-user-friendly interfaces (with lots of useful methods), still keeping it simple to implement.
There was a problem with interfaces that they were not open to extension, which means if there was a need to add new method to an interface it would have broken the existing implementation of these interfaces. Thus it was imperative that all the classes implementing that interface had to provide implementation for the newly added method, even if the method was not needed. Thus interfaces were not easy to evolve.
One example that comes to mind is Java MapReduce API for Hadoop, which was changed in 0.20.0 release to favour abstract classes over interfaces, since they are easier to evolve. Which means, a new method can be added to abstract class (with default implementation), with out breaking old implementations of the class.
With the release of Java 8, it is now possible to add default method in interfaces also, thus making them easier to evolve too. With the addition of default method to an interface, addition of new method, to even an interface will not break the pre-existing code.
For adding new methods in Collection interface, they could not have
just added a new method without breaking the previous versions.
Yes they could have done this but Let's think from API designer perspective for e.g. Collection Library is used by some libraries like apache-commons, guava etc and which instead are used by many java projects. Now imagine just by adding one new method in Collection interface will break entire chain of projects.
Now my question is basically that are default methods just helpful
when needed to add new methods to interface without breaking client
code? Or are there some other uses to it too?
Motivation/Need for Default Methods
API Evolution in compatible way
The initial purpose of introducing default methods was to make collections library backward compatible. This library was modelled as a deep hierarchy of interfaces, including prominent members such as Collection, List, Map, and Set. They needed to be enriched to make lambdas truly useful for everyday programming.
To make Collections library lambda rich, java architects could have
refactored them to support lambda but it was a far from a good
solution as it will break all the all existing Java deployments and
countless 3rd party libraries extending the Collections hierarchy
Instead java architects thought to introduce default methods capabilities for backward compatibility.
Use cases of Default Methods
One important use case is to aid functional thinking in java. A functional interface with default methods is a pure behaviour-only construct. It cannot hold state. This aligns your thinking with functional programming and allows you to take advantage of what the programming model has to offer
Optional Methods : There are classes in java that implement an interface but leave empty method implementations for e.g. Iterator interface. It defines hasNext and next but also the remove method. Prior to Java8 remove was ignored because the user didn't want to use that capablity. Therefore many classes implementing Iterator interface would have empty implementation of for remove which is unnecessary boiler plate code. With default methods we can provide a default implementation for such methods, so concrete classes don't need to explicitly provide an empty implementation.
Default methods helps in resolving Multiple inheritance of behaviour in java. Before Java8, there was support for Multiple inheritance of Type only and now with the help of default methods we can have multiple inheritance of behaviour.
For e.g.
Java 8 has three rules for resolving conflicts brought upon by
multiple inheritance when ambiguous:
First, an explicit method declaration in the class or a superclass takes priority over any default method declaration.
Otherwise, the method with the same signature in the most specific default providing interface is selected.
Finally, if there is still conflict, you have to explicitly override the default methods and choose which one your class should choose.
In Conclusion Default methods offer a brand new way to design objects.
References :
Java8 In Action
Functional Java: A Guide to Lambdas and Functional Programming in Java 8
default methods made possible the functional programming concept. For functional programming type code we need only one abstract method .
Also adding an method in interface will not made it compulsory for all the classes implementing an interface. Simplified the coding practise
This question already has answers here:
Do Java 8 default methods break source compatibility?
(5 answers)
Closed 6 years ago.
So as far as I know, the main idea behind the new interface default methods of Java 8 is to support Interface Evolution, i.e. extend an interface without braking existing implementations.
But what just occurred to me is that actually all these new default interface methods in the API hava a potential to break existing code. Namely, my implementation breaks if in a class I am implementing an interface X, and that interface X now has a new default method, which has the same signature than some private instance method of my class that already existed! Because in this case the compiler thinks I'm overriding the interface method while reducing its visibility, which is not allowed. So what if I have some implementation of Iterable and came up with some private forEach utility method? No when I update to Java 8 I can no longer compile.
Is it just me that is a bit shocked that Oracle actually released a not fully downwards-compatible API update? Has something like this ever happened in the past, that upgrading to a new compilation version can make some of your code no longer compile? Because if so I'm not aware of it. And what are your opinions of this?
edit: Oh, wait, what I said might have a flaw.. I mentioned the example with the Iterable#forEach method, but actually, this method takes some parameter that is also only introduced with Java 8. So there is no way that I could have defined such a method previously. Now, my next question: Could it be that ALL new default methods take some new type to guarantee they cannot collide with any pre-Java-8 existing instance method?
Cheers
Oracle had to choose between letting the language and APIs stagnate, or risk some backward incompatibilities. Yes, default methods can cause problems with existing extending interfaces and implementations. That's well known.
Has that already happened in the past? Yes: the JDBC interfaces have several times had new methods. assert was not a keyword but is one since Java 1.4, etc. enum was not a keyword before 1.5, etc.
EDIT
Examples of backward incompatibilities:
If you have an interface MyCollection extending Collection and having a method stream(), it will conflict with the new default stream() method, because it has the same signature but a different return type.
If you have an interface or class extending/implementing List<E> and having a method void sort(Comparator<E> c), it will conflict with the new default method void sort(Comparator<? super E>).
So what if I have some implementation of Iterable and came up with some private forEach utility method?
This isn't a problem because this would only overload the method. You can't have a forEach(Consumer) as this interface didn't exist before.
Is it just me that is a bit shocked that Oracle actually released a not fully downwards-compatible API update?
In each major version there is changes which could break backward compatibility, In Java 1.4, the keyword enum was added which meant if you have a variable called enum it would break.
Has something like this ever happened in the past, that upgrading to a new compilation version can make some of your code no longer compile?
Some APIs have changed, one of the oldest changes was a fix to String.hashCode() in Java 1.2.
In my opinion this Default method stuff should not be used by us Java developers. This was probably the only way to extend Existing Code without breaking the backward compatibilty.
But this is just my opinion.
This question already has answers here:
When to use: Java 8+ interface default method, vs. abstract method
(16 answers)
Closed 7 years ago.
Why We need Defender methods in interfaces in java 8 as we already have abstract classes.I found various answers on internet like:
To add external functionality
But Abstract class is for partial Abstraction where as our interface is actually a pure abstract class so why their is a default method inside an interface?
The problem with sharing functionality by placing it in an abstract base class is that a class can derive from exactly one base class. This is a limitation in cases when you would like to inherit functionality from more than one base.
Sharing functionality through an abstract base class may also become a problem when you need to implement an interface from a class that already has a base class. In this case you cannot derive your new class at all, because you must pick one of the two bases, when presumably you want both.
Default methods solve this problem with elegance: placing your common implementation into the default method allows you to share the code without limitations.
You can think of the main difference between default methods and inheriting an abstract class as the difference between sharing functionality horizontally across siblings that implement the same interface, or vertically among children that inherit from the same base class.
Here is an examoke: consider an interface that looks like ResultSet of JDBC, which has two ways of accessing the same column - by name and by index. The interface could be coded up like this:
interface ResultSet2 {
int findColumn(String columnLabel);
String getString(int index);
long getLong(int index);
default long getLong(String columnLabel) {
return getLong(findColumn(columnLabel));
}
default String getString(String columnLabel) {
return getString(findColumn(columnLabel));
}
}
Anyone implementing ResultSet2 would have to implement three methods, and get the remaining two for free. They would have an option to provide an alternative implementation, but that would be optional.
The main reason behind defender methods is to be able to extend long-existing interfaces with new functionality, without breaking the existing code. Particulary with Java 8 lamba expressions they introduced a lot of new methods on collection interfaces, like Iterable.forEach. With providing default methods, existing classes implementing the Iterable interface dont have to be altered to use in Java 8 environment.
The original intent was to compete with C#'s extension methods. Given core methods of an interface, e.g. get(), set() in List, extention methods (e.g. sort()) can be defined and implemented.
Java guys argued that it would be better to declare such methods on the interface itself, rather than in external places; so that the methods could be overridden by subtypes, providing optimal implementations per subtype. (They also argued that such methods should be controlled by the interface authors; this is rather a soft point)
While default methods can be added to existing interfaces, it is very risky of breaking existing 3rd party subtypes, particularly for very old types like List with lots of subtypes in the wild. Therefore very few default methods were added to existing core Java APIs. See this question.
For new interfaces, default method is a very valuable tool for API designers. You can add a lot of convenience methods to an interface, for example, Function.compose(). Subtypes only need to implement abstract/core methods, not default methods (but they can if they want to).
I disagree with the idea that default methods can "evolve" interfaces. They do not change the core semantics of an interface, they are just convenience methods (in the form of instance method).
And default methods should be carefully designed up-front when the interface is designed; as said, it is very risky to add default methods afterwards.
C#'s extension method allows 3rd party to add convenience methods; this is very nice, and there is no reason why Java couldn't introduce something similar in future.
Java 8 has included a new feature called Defender methods which allows creation of default method implementation in interface.
Now first of all this is a huge paradigm shift for all condensed programmers in Java. I viewed a JavaOne 13 presentation given by Brian Goetz where he was discussing about the new stream() and parallelStream() implementations in Collections library.
For adding new methods in Collection interface, they could not have just added a new method without breaking the previous versions. So he told that for catering this a new feature of Default methods was added.
public interface SimpleInterface {
public void doSomeWork();
//A default method in the interface created using "default" keyword
default public void doSomeOtherWork(){
System.out.println("DoSomeOtherWork implementation in the interface");
}
}
Now my question is basically that are default methods just helpful when needed to add new methods to interface without breaking client code? Or are there some other uses to it too?
Besides having the possibility of adding methods to the interface in future versions, there is the important point of allowing an interface to stay a functional interface even if it has more than one method.
A functional interface has only one non-default abstract method which can be implemented via a lambda expression. One example is the Predicate interface which has only one abstract method (test) while providing default methods for negating a Predicate or combining it with another Predicate. Without default methods these methods had to be provided in another utility class like the pre-Java 8 Collections class (as you don’t want to give up the possibility of lambda implementations for such an interface).
As you said, the main motivation was allowing the evolution of existing interfaces.
However there are reasons why you'd want to use them in brand new interfaces as well:
One such reason is methods that can easily be implemented using the other (non-default) methods of the interface. Using default methods for this reduces the need for Foo-interface/AbstractFoo-base-implementation combinations (see AbstractList for example).
While this does not create an entirely new field, it means that you can have end-user-friendly interfaces (with lots of useful methods), still keeping it simple to implement.
There was a problem with interfaces that they were not open to extension, which means if there was a need to add new method to an interface it would have broken the existing implementation of these interfaces. Thus it was imperative that all the classes implementing that interface had to provide implementation for the newly added method, even if the method was not needed. Thus interfaces were not easy to evolve.
One example that comes to mind is Java MapReduce API for Hadoop, which was changed in 0.20.0 release to favour abstract classes over interfaces, since they are easier to evolve. Which means, a new method can be added to abstract class (with default implementation), with out breaking old implementations of the class.
With the release of Java 8, it is now possible to add default method in interfaces also, thus making them easier to evolve too. With the addition of default method to an interface, addition of new method, to even an interface will not break the pre-existing code.
For adding new methods in Collection interface, they could not have
just added a new method without breaking the previous versions.
Yes they could have done this but Let's think from API designer perspective for e.g. Collection Library is used by some libraries like apache-commons, guava etc and which instead are used by many java projects. Now imagine just by adding one new method in Collection interface will break entire chain of projects.
Now my question is basically that are default methods just helpful
when needed to add new methods to interface without breaking client
code? Or are there some other uses to it too?
Motivation/Need for Default Methods
API Evolution in compatible way
The initial purpose of introducing default methods was to make collections library backward compatible. This library was modelled as a deep hierarchy of interfaces, including prominent members such as Collection, List, Map, and Set. They needed to be enriched to make lambdas truly useful for everyday programming.
To make Collections library lambda rich, java architects could have
refactored them to support lambda but it was a far from a good
solution as it will break all the all existing Java deployments and
countless 3rd party libraries extending the Collections hierarchy
Instead java architects thought to introduce default methods capabilities for backward compatibility.
Use cases of Default Methods
One important use case is to aid functional thinking in java. A functional interface with default methods is a pure behaviour-only construct. It cannot hold state. This aligns your thinking with functional programming and allows you to take advantage of what the programming model has to offer
Optional Methods : There are classes in java that implement an interface but leave empty method implementations for e.g. Iterator interface. It defines hasNext and next but also the remove method. Prior to Java8 remove was ignored because the user didn't want to use that capablity. Therefore many classes implementing Iterator interface would have empty implementation of for remove which is unnecessary boiler plate code. With default methods we can provide a default implementation for such methods, so concrete classes don't need to explicitly provide an empty implementation.
Default methods helps in resolving Multiple inheritance of behaviour in java. Before Java8, there was support for Multiple inheritance of Type only and now with the help of default methods we can have multiple inheritance of behaviour.
For e.g.
Java 8 has three rules for resolving conflicts brought upon by
multiple inheritance when ambiguous:
First, an explicit method declaration in the class or a superclass takes priority over any default method declaration.
Otherwise, the method with the same signature in the most specific default providing interface is selected.
Finally, if there is still conflict, you have to explicitly override the default methods and choose which one your class should choose.
In Conclusion Default methods offer a brand new way to design objects.
References :
Java8 In Action
Functional Java: A Guide to Lambdas and Functional Programming in Java 8
default methods made possible the functional programming concept. For functional programming type code we need only one abstract method .
Also adding an method in interface will not made it compulsory for all the classes implementing an interface. Simplified the coding practise
This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
Why are variables declared with their interface name in Java?
How should lists be cast to their conrecte implementations?
Example:
Map<Integer, Integer> map = new HashMap<Integer, Integer>();
Thanks.
This is usually so that you can swap in another implementation later and still have the code operate the same. For example, if you then decided to use a TreeMap instead of a HashMap, you could just change the instantiation step, and the rest of your code would still work just fine.
It a programming practice called programming to an interface.
You could switch implementations (e.g. in your example switch to a TreeMap) without affecting the rest of the code, since it will use the base class i.e. Map.
It decouples your code and is considered a good programming practice to code against an interface instead of a concrete implementation
Design by Contract or "Programming to an Interface" are principles that ensure that your code only uses the properties/methods exposed by the interface, and more importantly, one primary interface at any given time. If you're using multiple interfaces at a time, that is generally a sign of tighter coupling.
In general, you should not instantiate objects directly in your code either. You should delegate that job to an external entity so that any changes of the implementation used, can be done in a single place.
There was a Dr Dobb's Journal article that the 'new' keyword should be forbidden (exact title was something like 'new is verboten') but I can't find a link to it right now.