I'm wondering if there is a way to Auto Cast an Object to some type by storing the Class type along with the object? I thought this was possible with Java, but maybe not.
For example:
class StorageItem
{
private int itemcount;
StorageItem(int itemcount)
{
this.itemcount = itemcount;
}
int getItemCount()
{
return itemcount;
}
}
class Storage
{
private Class clazz;
private Object value;
public Storage(Class clazz, Object value)
{
this.clazz = clazz;
this.value = value;
}
//Is there a way such a call can be created to automatically cast
//the object to the class type and return that cast type in a
//generic way. The idea being that Storage knows what it should
//already be cast to. Is this possible?
public T getValue()
{
return clazz.cast(value);
}
}
A usage example:
public static void main(String[] args)
{
//Create storage item
Storage storage = new Storage(StorageItem.class, new StorageItem(1234));
//The call to getValue() will automatically cast to the Class passed
//into Storage.
int itemcount = storage.getValue().getItemCount(); //returns 1234
}
Obviously the getValue() call in Storage is a pseudocode call, but it's just there to provide the idea as to what I would like to do.
Is there anyway to have a getValue() call that will Auto cast to the Class typed stored in the Storage class. Again, the idea is that the Storage class knows what it should be cast to. Or is there anyway this can be done at all?
StorageItem is just one simple example. Here, it just stores an int for discussion purposes. However, it could be more complex.
Another usage example, would be storing the Storage object in a list.
List<Storage> row = new ArrayList<Storage>();
row.add(new Storage(StorageItem.class, 1234));
row.add(new Storage(String.class, "Jason"));
row.add(new Storage(Integer.class, 30));
row.add(new Storage(Double.class, 12.7));
Then, these can be accessed in the following way.
//calls StorageItem's getItemCount() method
row.get(0).getValue().getItemCount(); //returns 1234
//calls String's length() method
row.get(1).getValue().length(); //returns 5
//calls Integer's intValue() method
row.get(2).getValue().intValue();
//calls Integer's doubleValue() method
row.get(3).getValue().doubleValue();
If getValue() only ever returned an Object, I would have to always cast to the specific Object manually. Instead, if I can store the cast class inside the Storage object, then Storage has enough information to know what to automatically cast the Object to on the getValue() call.
If this is doable in Java is the answer to the question I'm seeking. And if so, how?
Would this do the trick? Much less hacking is required:
class Storage<T> {
private T value;
public Storage(T value) {
this.value = value;
}
public T getValue() {
return value;
}
}
I don't really see the problem that you're trying to solve here. #bali182's answer does give you a "generic" way to store a reference - but storing the reference itself is just easier.
Consider what happens if you put two Storage instances, containing differently-typed references, into a collection:
List<Storage<SOMETHING>> storages = new ArrayList<>();
storages.add(new Storage<String>("Hello"));
storages.add(new Storage<Integer>(1));
So: what is SOMETHING? Well, it has to be ?, since that is the only type which satisfies both elements.
Now, when you iterate through the list to retrieve them, you have to deal with them as Object:
for (Storage<?> storage : storages) {
Object object = storage.getValue();
// ...
}
because you don't, in general, know what the type of the stored reference is for any given element. The concrete type of object will be the concrete type of the element - String and Integer, for the list above - but you can't make use of these different types without using some means to detect that type (e.g. if (object instanceof String)).
It would just have been easier if the references were stored directly in the list:
List<Object> objects = new ArrayList<>();
storages.add("Hello");
storages.add(1;
for (Object object : objects) {
// ...
}
You still would have to do something to detect the concrete type of object; you're just doing it without the extra layer of indirection.
Although the above example is for unrelated types, it's still easier to do it with the direct references if they are the same type:
List<String> objects = Arrays.asList("Hello", "World");
for (String object : objects) {
// ...
}
Now you don't need to do anything to know the concrete type (you might, if the elements were of a non-final class, and you wanted to handle some subclasses specially), but you've still avoided needing to dereference Storage.getValue() to get at a value that you could have directly instead.
Related
I am trying to implement a copy constructor in java. I am facing a problem with non primitive type fields of the class. While creating a new copy, it is sharing the members. For Example
public class Bad implements Cloneable {
private ArrayList<Integer> a;
private Object c;
public static void main(String[] args) {
Bad b1 = new Bad();
b1.a.add(10);
System.out.println(b1.a);
Bad b2 = b1.clone();
b2.a.add(12);
System.out.println(b1.a);
}
Bad() {
a = new ArrayList<>();
c = null;
}
Bad(Bad b) {
a = b.a;
c = b.c;
}
public Bad clone() {
return new Bad(this);
}
}
And the result is :
[10]
[10, 12]
I don't want this to happen. Take this as an example. My original problem consists of even more fields that are user defined.
Or are there any libraries which do the work for me? Thanks in advance.
Simple rules for a copy constructor:
primitive values may be copied as-is; they are just values without a separate identity
references to immutable types (eg. String, Integer, any enum class constant) may also be copied as-is; although the original and the copied objects will share the same reference, the referred object is immutable and will never change
references to mutable types (eg. Date, ArrayList, any array) must be copied to a new instance of the type; otherwise the original and the copied object will share a reference to the same mutable field object (which is not what you want)
Making a copy of an object that contains only fields with primitive and immutable values is easy mode.
Copying an object whose fields contain mutable objects can make the process arduous and expensive depending on how complex the mutable object is (imagine an ArrayList that contains a Map whose values are also Maps). Making a new copy of the mutable field is, however, essential if you wish to have a safe copy.
Integer is immutable but you need to create a totally new ArrayList, and I mean here :
Bad(Bad b) {
a = b.a;
c = b.c;
}
do instead
Bad(Bad b) {
a = new ArrayList<>(b.a);
c = // this here must be copy constructed too
}
and then you will get
[10]
[10]
The correct way would be creating a new instance of the list instead of passing a reference to the original list.
Bad(Bad b) {
a = new ArrayList<>(b.a);
c = b.c; // this should call clone or something similar as well
}
Also note that if you would have some non-primitive type within the list of b.a, then you would have to copy/clone all the sub-elements as well (it is not needed now as you have Integer in it which is not mutable).
For a project I am working on, I have to retrieve some entries from a NoSQL database. The values may either be Strings or Doubles, however, at the time of calling the method that retrieves these values, I do not know what type of value the field contains.
For the sake of argument here is a minimal working example, which is of course oversimplified:
public class ReturnType {
public static void main(String[] args) {
String s = "This is a string.";
double d = 23.5;
getValue(s);
getValue(d);
}
private static Object getValue(Object obj) {
return obj;
}
}
I have thought about checking the class of the object that is returned by the function and casting the returned object to that class:
if (getValue(s).getClass() == String.class){
String result = s;
} else if (getValue(s).getClass() == double.class)
{
Double result = d;
}
However, I do not like this solution at all, as I have to hardcode every possible return type into an if or case statement.
I have also thought about creating an additional method that checks the class before calling the method retrieving the value and using different methods with different return types, depending on the result of that. But this seems just like the same approach, albeit implemented differently.
What would be a best practice solution to this problem?
I am new to java and I was writing some code to practice, but there is something that I am confused about. I have the following code:
public class test {
public static void main(String[]args) {
int n = 0;
ArrayList<String> fruits = new ArrayList();
setList(fruits);
n =setInt(9);
// get the values from fruits
for (String value: fruits) {
print(value);
}
}
public static void setList( ArrayList list) {
list.add("pear");
list.add("apple");
list.add("pear");
}
public static int setInt(int number) {
number = 3;
return number;
}
}
My question is why in order to set my Arraylist() there is no need to return the any value, but in order to set my int I need to return something.If run this code it prints all the values in my list, but I expected not to print anything because In my method setList I do not return any value. If I did not return any value with my setInt, the value of n would not change, and that makes sense to me.
Thank you.
There are different ways to that params get passed in functions. The usuall way that most beginners start with is pass by value. The other way is pass by reference. In passing by reference, the object itself is pass in, not a copy as is with pass by value. That means any changes will affect the param and remain, even after it is called. All objects in java are passed by reference, only primitives are passed by value. Thus, is why you don't have to return when using arraylist object.
Edit: Actually, I've made an error. What is actually occuring is that a copy of the reference itself is being passed by value. Take a look at this.
Everything in Java is Pass by Value.
I know this issue has been addressed many times - but my Java/C++ knowledge is so weak I can barely understand the answers :-( ... what I'd really like is just a super simple example.
In C++ I could write the following:
void func()
{
int x = 3;
add_one(x);
// now x is 4.
}
void add_one(int &var)
{
var++;
}
What I'd like to see now is the simplest way to achieve the same effect with java.
You can't directly. The closest you can get is to put the value in an object, and pass the reference (by value, so the reference gets copied) into the method.
void func()
{
int x = 3;
int[] holder = [x];
add_one(holder);
// now holder[0] is 4. x is still 3.
}
// container here is a copy of the reference holder in the calling scope.
// both container and holder point to the same underlying array object
void add_one(int[] container)
{
container[0]++;
}
Here I use an array, but the wrapper can be any object.
In java method arguments are pass-by-value, and can't be changed in the function. You must wrap the int - or any other primitive type - in an Object or an array. Passing an Object or an array as a method argument passes a reference which can be used to modify the object.
Java already has Object based wrappers for primitive types, e.g. Integer, but these are immutable by design. Some libraries provide mutable versions of these wrappers; you can also create your own:
public class MutableInt
{
private int val;
public MutableInt(int val)
{
this.val = val;
}
public void setValue(int newVal)
{
this.val = newVal;
}
public int getValue()
{
return this.val;
}
}
void func()
{
int x = 3;
MutableInt wrapper = new MutableInt(x);
add_one(wrapper);
}
void add_one(MutableInt arg)
{
arg.setValue(arg.getValue() + 1);
}
You cannot do this. Java is only pass by value. Primitives are obvious, but the thing that's passed for objects is a reference, not the object itself.
As you can see from the other answers, Java is purely pass by value. Objects are passed by what some call "value-reference". Since an object in java is simply a pointer reference, you can think of the "value" as the address where the object lives on the heap. So when you make a method call, you're copying the "value", aka address, to the method parameter:
Object x = new Object();
foo(x);
During object creation
Heap --> allocate Object (5000)
Variable Declaration
Stack --> allocate local variable (1000)
Variable Assignment
Stack address 1000 set to 5000 (to point to object instance)
So you can see that there are two separate memory allocations here. The "value" of the variable is considered to be it's address on the heap.
Method Call
Stack --> allocate method parameter 8000
Stack address 8000 set to same value as passed parameter 5000
This is why if you reassign an object instance in a method, it does not propagate back to the caller. You would have changed the heap location at stack location 8000. And the calling method's stack location 1000 still has the value 5000 (the original object instance).
Think of it like this in C:
void method(myobject * obj);
You can certainly change fields of "obj", and you can do this locally:
obj = new myobject();
But the caller will still see the original value it passed.
Java has no analog to the & reference operator.
And there are built in classes which can be used for the your purposes. AtomicInteger, AtomicLong, etc... are mutable, though you may suffer a performance hit due to synchronization involved.
I would recommend a generic ValueHolder class to account for all situations where you want to simulate pass by reference:
public class ValueHolder<T> {
private T value;
// getter/setter/constructor
}
Java allows copy by reference for objects and copy by vlaue for primitive types (int,float,etc..). This is so by default and is not subject to change. If you need to change the value of an int inside a function, then you can use the class Integer for example
public int getOneMore(int val) {
return val + 1;
}
With a third party API I observed the following.
Instead of using,
public static string getString(){
return "Hello World";
}
it uses something like
public static void getString(String output){
}
and I am getting the "output" string assigned.
I am curious about the reason of implementing such functionality. What are the advantages of using such output parameters?
Something isn't right in your example.
class Foo {
public static void main(String[] args) {
String x = "foo";
getString(x);
System.out.println(x);
}
public static void getString(String output){
output = "Hello World"
}
}
In the above program, the string "foo" will be output, not "Hello World".
Some types are mutable, in which case you can modify an object passed into a function. For immutable types (such as String), you would have to build some sort of wrapper class that you can pass around instead:
class Holder<T> {
public Holder(T value) {
this.value = value;
}
public T value;
}
Then you can instead pass around the holder:
public static void main(String[] args) {
String x = "foo";
Holder<String> h = new Holder(x);
getString(h);
System.out.println(h.value);
}
public static void getString(Holder<String> output){
output.value = "Hello World"
}
That example is wrong, Java does not have output parameters.
One thing you could do to emulate this behaviour is:
public void doSomething(String[] output) {
output[0] = "Hello World!";
}
But IMHO this sucks on multiple levels. :)
If you want a method to return something, make it return it. If you need to return multiple objects, create a container class to put these objects into and return that.
I disagree with Jasper: "In my opinion, this is a really ugly and bad way to return more than one result".
In .NET there is a interesting construct that utilize the output parameters:
bool IDictionary.TryGet(key, out value);
I find it very usefull and elegant. And it is the most convenient way to aks if an item is in collection and return it at the same time. With it you may write:
object obj;
if (myList.TryGet(theKey, out obj))
{
... work with the obj;
}
I constantly scold my developers if I see old-style code like:
if (myList.Contains(theKey))
{
obj = myList.Get(theKey);
}
You see, it cuts the performance in half. In Java there is no way to differentiate null value of an existing item from non-existance of an item in a Map in one call. Sometimes this is necessary.
This functionality has one big disadvantage - it doesn't work. Function parameters are local to function and assigning to them doesn't have any impact outside the function.
On the other hand
void getString(StringBuilder builder) {
builder.delete(0, builder.length());
builder.append("hello world");
}
will work, but I see no advantages of doing this (except when you need to return more than one value).
Sometimes this mechanism can avoid creation of a new object.
Example:
If an appropriate object exists anyhow, it is faster to pass it to the method and get some field changed.
This is more efficient than creating a new object inside the called method, and returning and assigning its reference (producing garbage that needs to be collected sometime).
String are immutable, you cannot use Java's pseudo output parameters with immutable objects.
Also, the scope of output is limited to the getString method. If you change the output variable, the caller won't see a thing.
What you can do, however, is change the state of the parameter. Consider the following example:
void handle(Request r) {
doStuff(r.getContent());
r.changeState("foobar");
r.setHandled();
}
If you have a manager calling multiple handles with a single Request, you can change the state of the Request to allow further processing (by other handlers) on a modified content. The manager could also decide to stop processing.
Advantages:
You don't need to return a special object containing the new content and whether the processing should stop. That object would only be used once and creating the object waste memory and processing power.
You don't have to create another Request object and let the garbage collector get rid of the now obsolete old reference.
In some cases, you can't create a new object. For example, because that object was created using a factory, and you don't have access to it, or because the object had listeners and you don't know how to tell the objects that were listening to the old Request that they should instead listen to the new Request.
Actually, it is impossible to have out parameters in java but you can make a work around making the method take on a de-reference for the immutable String and primitives by either writing a generic class where the immutable is the generic with the value and setter and getter or by using an array where element 0 (1 in length) is the value provided it is instantiate first because there are situations where you need to return more than one value where having to write a class just to return them where the class is only used there is just a waste of text and not really re-usable.
Now being a C/C++ and also .Net (mono or MS), it urges me that java does not support at least a de-reference for primitives; so, I resort to the array instead.
Here is an example. Let's say you need to create a function (method) to check whether the index is valid in the array but you also want to return the remainding length after the index is validated. Let's call it in c as 'bool validate_index(int index, int arr_len, int&rem)'. A way to do this in java would be 'Boolean validate_index(int index, int arr_len, int[] rem1)'. rem1 just means the array hold 1 element.
public static Boolean validate_index(int index, int arr_len, int[] rem1)
{
if (index < 0 || arr_len <= 0) return false;
Boolean retVal = (index >= 0 && index < arr_len);
if (retVal && rem1 != null) rem1[0] = (arr_len - (index + 1));
return retVal;
}
Now if we use this we can get both the Boolean return and the remainder.
public static void main(String[] args)
{
int[] ints = int[]{1, 2, 3, 4, 5, 6};
int[] aRem = int[]{-1};
//because we can only scapegoat the de-ref we need to instantiate it first.
Boolean result = validate_index(3, ints.length, aRem);
System.out.println("Validation = " + result.toString());
System.out.println("Remainding elements equals " + aRem[0].toString());
}
puts: Validation = True
puts: Remainding elements equals 2
Array elements always either point to the object on the stack or the address of the object on the heap. So using it as a de-references is absolutely possible even for arrays by making it a double array instantiating it as myArrayPointer = new Class[1][] then passing it in because sometimes you don't know what the length of the array will until the call going through an algorithm like 'Boolean tryToGetArray(SomeObject o, T[][] ppArray)' which would be the same as in c/c++ as 'template bool tryToGetArray (SomeObject* p, T** ppArray)' or C# 'bool tryToGetArray(SomeObject o, ref T[] array)'.
It works and it works well as long as the [][] or [] is instantiate in memory first with at least one element.
in my opinion, this is useful when you have more than one result in a function.