Abstract classes and Multiple Inheritance - java

We can achieve the same functionality as interfaces by using abstract classes, So why java doesn't allow the following code?
abstract class Animals
{
public abstract void run();
}
abstract class Animals1
{
public abstract void run1();
}
class Dog extends Animals,Animals1
{
public void run() {System.out.println("Run method");}
public void run1() {System.out.println("Run1 method");}
}
I know that multiple inheritance can be achieved by using only interfaces but the above code does the same thing as the interfaces would have done it.

This is not allowed because you can do more than this with abstract classes. It wouldn't make sense to allow multiple inheritance, provided you only used an abstract class when you could have used an interface.
It is simpler to only use abstract classes for things you can't do with an interface, in which case you wouldn't be able to use two abstract parent classes.
Note: with Java 8 there is less you can't do with an interface, you can have public instance and static methods with implementations.
In Java 9 you will be able to have private methods in interfaces ;)

This is because abstract classes are still classes, and inheritance is different than implementing an interface. Please see the differences between abstract class and interface. Also please see differences between inplementing an interface and extending a class in Java.
This both questions covers all the information you need to know to understand why you can't have multiple inheritance of abstract classes.
Also let me give you an example why this should not be allowed: Suppose you have the both Animals and Animals1 implementing the same interface IAnimals:
interface IAnimals
{
public string eat();
}
abstract class Animals implements IAnimals
{
public abstract void run();
public string eat(){ return "Animals eating"; }
}
abstract class Animals1 implements IAnimals
{
public abstract void run1();
public string eat(){ return "Animals1 eating"; }
}
If you now define your Dog class as you did:
class Dog extends Animals,Animals1
{
public void run() {System.out.println("Run method");}
public void run1() {System.out.println("Run1 method");}
}
It will have the method eat() too, which is not abstract so it can use it directly. What would be the return of this method for a dog? Which string will be returned, the one with Animals, or the one with Animals1?
This is called the diamond problem, and it is a reason why in some programming languages it is not allowed multiple inheritance.

Java does not support multiple Inheritance. -" One reason why the Java programming language does not permit you to extend more than one class is to avoid the issues of multiple inheritance of state, which is the ability to inherit fields from multiple classes. " Source https://docs.oracle.com/javase/tutorial/java/IandI/multipleinheritance.html
You may find this link useful.

I agree with you(if i understood about what you are talking :) )this is no need of such specific naming conventions.
interface pet
{
public abstract void pet();
}
interface pet1
{
public abstract void pet1();
}
class TestTt implements pet,pet1
{
public void pet()
{
System.out.println("this is method of pet interface");
}
public void pet1() {
System.out.println("this is method of pet1 interface");
}
public static void main(String a[])
{
pet obj=new TestTt();
pet1 obj1=new TestTt();
obj.pet();
obj1.pet1();
}
}
Now, Here if abstract class allows me to create object .then, i can create 2 different references for 2 abstract classes as in interface i can do.
If so, do i need Interfaces...?

In ABSTRACT class,we can't extends multiple abstract classes at a time.
but
In INTERFACE, we can implements multiple interfaces at time.
Therefore , interfaces are used to achieve multiple inheritance in java.

Related

Methods of collection frameword [duplicate]

Just as a counterpoint to this question: what is an interface in Java?
An interface is a special form of an abstract class which does not implement any methods. In Java, you create an interface like this:
interface Interface
{
void interfaceMethod();
}
Since the interface can't implement any methods, it's implied that the entire thing, including all the methods, are both public and abstract (abstract in Java terms means "not implemented by this class"). So the interface above is identical to the interface below:
public interface Interface
{
abstract public void interfaceMethod();
}
To use this interface, you simply need to implement the interface. Many classes can implement an interface, and a class can implement many interfaces:
interface InterfaceA
{
void interfaceMethodA();
}
interface InterfaceB
{
void interfaceMethodB();
}
public class ImplementingClassA
implements InterfaceA, InterfaceB
{
public void interfaceMethodA()
{
System.out.println("interfaceA, interfaceMethodA, implementation A");
}
public void interfaceMethodB()
{
System.out.println("interfaceB, interfaceMethodB, implementation A");
}
}
public class ImplementingClassB
implements InterfaceA, InterfaceB
{
public void interfaceMethodA()
{
System.out.println("interfaceA, interfaceMethodA, implementation B");
}
public void interfaceMethodB()
{
System.out.println("interfaceB, interfaceMethodB, implementation B");
}
}
Now if you wanted you could write a method like this:
public void testInterfaces()
{
ImplementingClassA u = new ImplementingClassA();
ImplementingClassB v = new ImplementingClassB();
InterfaceA w = new ImplementingClassA();
InterfaceA x = new ImplementingClassB();
InterfaceB y = new ImplementingClassA();
InterfaceB z = new ImplementingClassB();
u.interfaceMethodA();
// prints "interfaceA, interfaceMethodA, implementation A"
u.interfaceMethodB();
// prints "interfaceB, interfaceMethodB, implementation A"
v.interfaceMethodA();
// prints "interfaceA, interfaceMethodA, implementation B"
v.interfaceMethodB();
// prints "interfaceB, interfaceMethodB, implementation B"
w.interfaceMethodA();
// prints "interfaceA, interfaceMethodA, implementation A"
x.interfaceMethodA();
// prints "interfaceA, interfaceMethodA, implementation B"
y.interfaceMethodB();
// prints "interfaceB, interfaceMethodB, implementation A"
z.interfaceMethodB();
// prints "interfaceB, interfaceMethodB, implementation B"
}
However, you could never do the following:
public void testInterfaces()
{
InterfaceA y = new ImplementingClassA();
InterfaceB z = new ImplementingClassB();
y.interfaceMethodB(); // ERROR!
z.interfaceMethodA(); // ERROR!
}
The reason you can't do this is that y is of type interfaceA, and there is no interfaceMethodB() in interfaceA. Likewise, z is of type interfaceB and there is no interfaceMethodA() in interfaceB.
I mentioned earlier that interfaces are just a special form of an abstract class. To illustrate that point, look at the following code.
interface Interface
{
void abstractMethod();
}
abstract public class AbstractClass
{
abstract public void abstractMethod();
}
You would inherit from these classes almost exactly the same way:
public class InheritsFromInterface
implements Interface
{
public void abstractMethod() { System.out.println("abstractMethod()"); }
}
public class InteritsFromAbstractClass
extends AbstractClass
{
public void abstractMethod() { System.out.println("abstractMethod()"); }
}
In fact, you could even change the interface and the abstract class like this:
interface Interface
{
void abstractMethod();
}
abstract public class AbstractClass
implements Interface
{
abstract public void abstractMethod();
}
public class InheritsFromInterfaceAndAbstractClass
extends AbstractClass implements Interface
{
public void abstractMethod() { System.out.println("abstractMethod()"); }
}
However, there are two differences between interfaces and abstract classes.
The first difference is that interfaces cannot implement methods.
interface Interface
{
public void implementedMethod()
{
System.out.println("implementedMethod()");
}
}
The interface above generates a compiler error because it has an implementation for implementedMethod(). If you wanted to implement the method but not be able to instantiate the class, you would have to do it like this:
abstract public class AbstractClass
{
public void implementedMethod()
{
System.out.println("implementedMethod()");
}
}
That's not much of an abstract class because none of its members are abstract, but it is legal Java.
The other difference between interfaces and abstract classes is that a class can inherit from multiple interfaces, but can only inherit from one abstract class.
abstract public class AbstractClassA { }
abstract public class AbstractClassB { }
public class InheritsFromTwoAbstractClasses
extends AbstractClassA, AbstractClassB
{ }
The code above generates a compiler error, not because the classes are all empty, but because InheritsFromTwoAbstractClasses is trying to inherit from two abstract classes, which is illegal. The following is perfectly legal.
interface InterfaceA { }
interface InterfaceB { }
public class InheritsFromTwoInterfaces
implements InterfaceA, InterfaceB
{ }
The first difference between interfaces and abstract classes is the reason for the second difference. Take a look at the following code.
interface InterfaceA
{
void method();
}
interface InterfaceB
{
void method();
}
public class InheritsFromTwoInterfaces
implements InterfaceA, InterfaceB
{
void method() { System.out.println("method()"); }
}
There's no problem with the code above because InterfaceA and InterfaceB don't have anything to hide. It's easy to tell that a call to method will print "method()".
Now look at the following code:
abstract public class AbstractClassA
{
void method() { System.out.println("Hello"); }
}
abstract public class AbstractClassB
{
void method() { System.out.println("Goodbye"); }
}
public class InheritsFromTwoAbstractClasses
extends AbstractClassA, AbstractClassB
{ }
This is exactly the same as our other example, except that because we're allowed to implement methods in abstract classes, we did, and because we don't have to implement already-implemented methods in an inheriting class, we didn't. But you may have noticed, there's a problem. What happens when we call new InheritsFromTwoAbstractClasses().method()? Does it print "Hello" or "Goodbye"? You probably don't know, and neither does the Java compiler. Another language, C++ allowed this kind of inheritance and they resolved these issues in ways that were often very complicated. To avoid this kind of trouble, Java decided to make this "multiple inheritance" illegal.
The downside to Java's solution that the following can't be done:
abstract public class AbstractClassA
{
void hi() { System.out.println("Hello"); }
}
abstract public class AbstractClassB
{
void bye() { System.out.println("Goodbye"); }
}
public class InheritsFromTwoAbstractClasses
extends AbstractClassA, AbstractClassB
{ }
AbstractClassA and AbstractClassB are "mixins" or classes that aren't intended to be instantiated but add functionality to the classes that they are "mixed into" through inheritance. There's obviously no problem figuring out what happens if you call new InheritsFromTwoAbstractClasses().hi() or new InheritsFromTwoAbstractClasses().bye(), but you can't do that because Java doesn't allow it.
(I know this is a long post, so if there are any mistakes in it please let me know and I will correct them.)
Interface is a contract. A simple example is a Tenant and Landlord which are the two parties and the contract is the Rent Agreement. Rent Agreement contains various clause which Tenants have to follow. Likewise Interface is a contact which contains various method (Declaration) which the Party has to implement (provide method bodies).Here party one is the class which implement the interface and second party is Client and the way to use and interface is having “Reference of Interface” and “Object of Implementing class”: below are 3 components:(Explained with help of example)
Component 1] Interface : The Contract
interface myInterface{
public void myMethod();
}
Component 2] Implementing Class : Party number 1
class myClass implements myInterface {
#Override
public void myMethod() {
System.out.println("in MyMethod");
}
}
Component 3] Client code : Party number 2
Client.java
public class Client {
public static void main(String[] args) {
myInterface mi = new myClass();
// Reference of Interface = Object of Implementing Class
mi.myMethod(); // this will print in MyMethod
}
}
An interface in java is a blueprint of a class. It has static constants and abstract methods only.The interface in java is a mechanism to achieve fully abstraction. There can be only abstract methods in the java interface not method body. It is used to achieve fully abstraction and multiple inheritance in Java. An interface is a collection of abstract methods. A class implements an interface, thereby inheriting the abstract methods of the interface.
An interface is not a class. Writing an interface is similar to writing a class, but they are two different concepts. A class describes the attributes and behaviors of an object. An interface contains behaviors(Abstract Methods) that a class implements.
Unless the class that implements the interface is abstract, all the methods of the interface need to be defined in the class.Since multiple inheritance is not allowed in java so interface is only way to implement multiple inheritance.
Here is an example for understanding interface
interface Printable{
void print();
}
interface Showable{
void print();
}
class testinterface1 implements Printable,Showable{
public void print(){System.out.println("Hello");}
public static void main(String args[]){
testinterface1 obj = new testinterface1();
obj.print();
}
}
Interface : System requirement service.
Description : Suppose a client needed some functionality "i.e. JDBC API" interface and some other server Apache , Jetty , WebServer they all provide implements of this.
So it bounded requirement document which service provider provided to the user who uses data-connection with these server Apache , Jetty , WebServer .
Interface is the blueprint of an class.
There is one oop's concept called Data abstraction under that there are two categories one is abstract class and other one is interface.
Abstract class achieves only partial abstraction but interface achieves full abstraction.
In interface there is only abstract methods and final variables..you can extends any number of interface and you can implement any number of classes.
If any class is implementing the interface then the class must implements the abstract methods too
Interface cannot be instantiated.
interface A() {
void print()
}
This question is 6 years old and lot of things have changed the definition of interface over the years.
From oracle documentation page ( post Java 8 release) :
In the Java programming language, an interface is a reference type, similar to a class, that can contain only constants, method signatures, default methods, static methods, and nested types. Method bodies exist only for default methods and static methods. Interfaces cannot be instantiated—they can only be implemented by classes or extended by other interfaces.
Have a look at related SE questions for better explanation:
Is there more to an interface than having the correct methods
What is the difference between an interface and abstract class?
What it is
An interface is a reference type, just like a class is. These are the two main reference types in Java.
What it contains
An interface can contain a subset of what a normal class can contain. This includes everything that is static, both methods and variables, and non-static method declarations. It is not allowed to have non-static variables.
A declaration of a method differs from a normal method in several things; here is one as an example:
[public] [abstract] ReturnType methodName();
These declarations can be marked as public and abstract, as represented with [optional braces]. It is not necessary to do so, as it is the default. private, protected, package-private (aka. nothing) and the final modifier are not allowed and marked as a compiler error. They have not implementation, so there is a semicolon instead of curly braces.
As of Java 8, they can hold non-static methods with an implementation, these have to be marked with the default modifier. However, the same restrictions as to the other modifiers apply (adding that strictfp is now valid and abstract is no more).
What it's useful for
One of its uses is for it to be used as a face for a service. When two parties work together to form a service-requester & service-provider kind of relationship, the service provider provides the face of the service (as to what the service looks like) in the form of an interface.
One of the OOP concept is "Abstraction" which means to hide away complex working of the systems and show only what is necessary to understand the system. This helps in visualizing the working of a complex system.
This can be achieved through interface where in each module is visualized (and also implemented) to work through interface of another module
An interface is a class-like construct that contains only constants and abstract methods (Introduction to java programming, n.d.). Moreover, it can extend more than one interface for example a Superclass. Java allows only single inheritance for class extension but allows multiple extensions for
interfaces(Introduction to Java programming, n.d.) For example,
public class NewClass extends BaseClass
implements Interface1, ..., InterfaceN {
...
}
Secondly, interfaces can be used to specify the behavior of objects in a class. However, they cannot contain abstract methods. Also, an interface can inherit other interfaces using the extends keyword.
public interface NewInterface extends Interface1, ... , InterfaceN {
}
Reference
Introduction to Java Programming. Interfaces and Abstract classes (n.d). Retrieved March 10, 2017 from https://viewer.gcu.edu/7NNUKW
In general, we prefer interfaces when there are two are more implementations we have. Where Interface is acts as protocol.
Coding to interface, not implementations Coding to interface makes loosely couple.
An interface is a reference type in Java. It is similar to class. It is a collection of abstract methods. A class implements an interface, thereby inheriting the abstract methods of the interface. Along with abstract methods, an interface may also contain constants, default methods, static methods, and nested types. for more details
From the latest definition by Oracle, Interface is:
There are a number of situations in software engineering when it is
important for disparate groups of programmers to agree to a "contract"
that spells out how their software interacts. Each group should be
able to write their code without any knowledge of how the other
group's code is written. Generally speaking, interfaces are such
contracts.
For example, imagine a futuristic society where computer-controlled
robotic cars transport passengers through city streets without a human
operator. Automobile manufacturers write software (Java, of course)
that operates the automobile—stop, start, accelerate, turn left, and
so forth. Another industrial group, electronic guidance instrument
manufacturers, make computer systems that receive GPS (Global
Positioning System) position data and wireless transmission of traffic
conditions and use that information to drive the car.
The auto manufacturers must publish an industry-standard interface
that spells out in detail what methods can be invoked to make the car
move (any car, from any manufacturer). The guidance manufacturers can
then write software that invokes the methods described in the
interface to command the car. Neither industrial group needs to know
how the other group's software is implemented. In fact, each group
considers its software highly proprietary and reserves the right to
modify it at any time, as long as it continues to adhere to the
published interface.
[...] An interface is a reference type, similar to a class, that can
contain only constants, method signatures, default methods, static
methods, and nested types. Method bodies exist only for default
methods and static methods. Interfaces cannot be instantiated—they
can only be implemented by classes or extended by other interfaces.
The most popular usage of interfaces is as APIs (Application Programming Interface) which are common in commercial software products. Typically, a company sells a software package that contains complex methods that another company wants to use in its own software product.
An example could be a package of digital image processing methods that are sold to companies making end-user graphics programs.
The image processing company writes its classes to implement an interface, which it makes public to its customers. The graphics company then invokes the image processing methods using the signatures and return types defined in the interface. While the image processing company's API is made public (to its customers), its implementation of the API is kept as a closely guarded secret—in fact, it may revise the implementation at a later date as long as it continues to implement the original interface that its customers have relied on.
Check out to learn more about interfaces.
In addition to what others have mentioned and by illogical comparison
it's a frame work for wrapping methods so they can be stored in
variables.
Thus on the fly you can equate the interface variable to be equal to any method or collection of methods atleast in this sense, a good reason you would usually want to do that is to escape repetitive logic that will definitely be an enemy of progress within the half life of your code at any decaying rate, be careful with the scenario below user discretion is advised.
SCENARIO
You have a game with a drawSillyThings() method in a SoulAvenger class, that has to draw some frames or sprites. Now drawSillyThings() has a list of other methods it needs to call in other to draw a metamorphed glorified-soul-ranger after user kills the grim-reaper in level 5k, i.e. drawSillyThings() needs to call either of inviteTheGrimReaper(), drawUpperCut(), drawTotalKO(), drawVictoryAndGlorifiedRanger(), drawDefeatAndMockery(), drawFightRecap() and drawGameOver() whenever the right situations arise during the gaming experience but all these would result in unwanted logic in drawSillyThings() which might slow the game i.e.
public static class SoulAvenger{
public SoulAvenger(){
//constructor logic
}
private void loadLevel5k(){...}
private void dontAllowUserWinOnTime(){...}
private void loadGrimReaperFight(){...}
private void drawSillyThings(){
... //unaccounted game logic
while(fighting_in_level_5k){
while(soul_ranger_has_enough_lives){
if(game_state=fight)inviteTheGrimReaper();
else if(game_state=medium_blows)drawUpperCut();
else if(game_state=heavy_blows)drawTotalKO();
else if(game_state=lost)drawDefeatAndMockery();
else if(game_state=won)drawVictoryAndGlorifiedRanger();
else if(game_state=end)drawFightRecap();
}else drawGameOver();
}
}
}
The problem here is the loop-nested boolean checks that have to be performed each time while the soul-ranger is still alive where as you could just have an alternative class which makes sure drawSillyThings() doesn’t need a game_state to be checked each time in order to call the right method but to do that you ‘ld need to kinda store the right method in a variable so that subsequently you can kinda variable = new method and also kinda variable.invoke(). If that wasn’t something have a look
public static class InterfaceTest{
public interface Method{
public void invoke();
}
public static void main(String[] args){
//lets create and store a method in a variable shall we
Method method_variable=new Method(){
#Override
public void invoke(){
//do something
}
};
//lets call or invoke the method from the variable in order to do something
method_variable.invoke();
//lets change the method to do something else
method_variable=new Method(){
#Override
public void invoke(){
//do something else
}
};
//lets do something else
method_variable.invoke();
}
}
This was probably what the guys at oracle had discovered was missing from Java several years before rumors of some developers planning a massive protest surfaced on the web but back to the SoulAvenger, as the gameplay occurs you would definitely just want to kinda have a variable be equated to give the right method to be invoked in drawSillyThings() in order to run things in a silly manner therefore
public static class SoulAvenger{
private interface SillyRunner{
public void run_things();
}
...//soul avenging variables
private SillyRunner silly_runner;
public SoulAvenger(int game_state){
//logic check is performed once instead of multiple times in a nested loop
if(game_state=medium_blows){
silly_runner=new SillyRunner(){
#Override
public void run_things(){
drawUpperCut();
}
};
}else if(game_state=heavy_blows){
silly_runner=new SillyRunner(){
#Override
public void run_things(){
drawTotalKO();
}
};
}else if(game_state=lost){
silly_runner=new SillyRunner(){
#Override
public void run_things(){
drawDefeatAndMockery();
}
};
}else if(game_state=won){
silly_runner=new SillyRunner(){
#Override
public void run_things(){
drawVictoryAndGlorifiedRanger();
}
};
}else if(game_state=fight){
silly_runner=new SillyRunner(){
#Override
public void run_things(){
drawFightRecap();
}
};
}
}
private void loadLevel5k(){
//an event triggered method to change how you run things to load level 5k
silly_runner=new SillyRunner(){
#Override
public void run_things(){
//level 5k logic
}
};
}
private void dontAllowUserWinOnTime(){
//an event triggered method to help user get annoyed and addicted to the game
silly_runner=new SillyRunner(){
#Override
public void run_things(){
drawDefeatAndMockery();
}
};
}
private void loadGrimReaperFight(){
//an event triggered method to send an invitation to the nearest grim-reaper
silly_runner=new SillyRunner(){
#Override
public void run_things(){
inviteTheGrimReaper();
}
};
}
private void drawSillyThings(){
...//unaccounted game logic
while(fighting_in_level_5k){
while(soul_ranger_has_enough_lives){
silly_runner.run_things();
}
}
}
}
Now the drawSillyThings() doesn’t need to perform any if logic while drawing because as the right events gets triggered the silly_runner gets equated to have its run_things() method invoke a different method thus using a variable to store and invoke a method kinda-ish although in the real gaming world(I actually mean in a console) several threads will work asynchronously to change interface variables to run different piece of code with the same call.
An interface in java is a special type of Abstract class, the Interface provided the 100% Abstraction but since the java introduce new features in java 8 the meaning of whole Interface is change. Interfaces are used to tell what should be done. But due to new features now we give implementations of methods in Interface, that changed the meaning of Interface.
In Interface the method is public abstract by default
interface Bird{
void sound();
void eat();
}
Java doesn't provide the multiple inheritances feature mean a class doesn't have two parents, but we extend multiple Interfaces in java.
An interface is a contract between the system and the external environment. More specifically to Java - a contract for a class (for a specific behavior), implemented in a form that resembles a pure abstract class.

Usings abstract class to add a method to an interface

I want to add a method to an interface, but i do not want to rewrite all the implementations (i only need to use it in one or two implementation). I read that i can achive this with the use abstract classes, but i cant quite figure out how its done?
Inteface:
public interface Animal {
public void doSound();
}
Classes:
public class Cat implements Animal {
#Override
public void doSound() {
System.out.print("meow");
}
}
public class Dog implements Animal{
#Override
public void doSound() {
System.out.print("bark");
}
}
What i want is to be able to call
animal.doSomethingElse()
but i dont want to add this method to every implementation. Can this be done?
EDIT:
Should have mentioned this before, i am not using java 8.
You could change Animal into an abstract class. This will enable you to selectively implement methods:
public abstract class Animal {
public abstract void doSound();
public void doSomethingElse() {
}
}
It is possible in Java 8 with help of default method in interface.
public interface Animal {
void doSound();
default void doSomethingElse(){
// do something
}
}
In case of default methods, your implemented classes from Animal doesn't have to override them.
prior to java 8, you have to make your Animal class abstract and add method implementation there.
It is not possible with Java including versions to 7.
You can define interface Animal as abstract class and implement new method within it. Sample code as follows:
public abstract class Animal {
public abstract void doSound();
public void doSomethingElse() {}
}
However if you are using Java 8 you have mechanism which is called default methods. Example below
public interface Sample {
public abstract void doSound();
public default void doSomethingElse() {};
}
default methods do not have to be implemented by classes. Mechanism is very useful when it comes to interfaces with large number of classes implementing certain interface. You can extend it without changing all classes
Unfortunately, no: you cannot add a method to an interface without having to recompile all implementations of the interface.
You can add a method to the abstract class, and change all references to the interface with references to your abstract class. That, however, defeats the purpose of having the interface in the first place.
Finally, in Java 8 you can address this problem by providing a default implementation of a method in an interface. If Java 8 is an option, I would definitely recommend this route.
If you would like to avoid problems like this in the future, you could follow the interface + adapter pattern that Java designers have been following in the AWT framewrok (among other places). They would provide a pair of an interface and its default, do-nothing implementation. Everyone would be encouraged to program to the interface, and base their implementations of the interface on its default implementation counterpart (the adapter). This way Swing designers were free to add more methods to their interface without breaking existing implementations.
For reference, see MouseListener interface and MouseAdapter class.
You can extend Animal as a separate interface or an abstract class.
public interface Pet extends Animal {
public void fetch();
}
or
public abstract class Pet implements Animal {
public abstract void fetch();
}

Abstract class implements interface, can implementation of interface method determine subclass extending abstract super class?

Given an interface:
public interface GoAlgorithm
{
public void go();
}
A class which implements the interface:
public class GoByFlyingFast implements GoAlgorithm
{
public void go()
{
System.out.println("Now I'm flying FAAAAST. Woo-hoo!");
}
}
An abstract class
public abstract class Vehicle
{
private GoAlgorithm goAlgorithm;
public Vehicle()
{
System.out.printf("A new vehicle has entered the race! \n");
}
public void setGoAlgorithm(GoAlgorithm algorithm)
{
this.goAlgorithm = algorithm;
}
public void go()
{
this.goAlgorithm.go();
}
}
A class extending the abstract class:
public class Tomcat extends Vehicle
{
public Tomcat()
{
setGoAlgorithm(new GoByFlyingFast());
}
}
(Code examples from Design Patterns for Dummies)
Is there a way, within the abstract class's implementation of the interface's method, to determine the subclass of the object invoking the method of the interface?
Can go() determine if a Tomcat object is invoking the go() method as defined by the Vehicle class?
Apologies if this question has already been posed. As evidenced by this question's title, I'm struggling to word my question concisely.
Thank you!
EDIT: Pure curiosity question
Theoretically yes. You can get the current stack trace with Thread.getStackTrace(), analyze it and look at the dynamic class of your caller. However, this would be VERY bad design.
Alternatively you can have your subclasses implement a getName() function, which returns their classname, so you could access that in your superclass.
In any case, it is good design if your (abstract) classes do not change their behavior based on which class is subclassing them. So there should not be a need for obtaining such information.

Java Multiple Inheritance

In an attempt to fully understand how to solve Java's multiple inheritance problems I have a classic question that I need clarified.
Lets say I have class Animal this has sub classes Bird and Horse and I need to make a class Pegasus that extends from Bird and Horse since Pegasus is both a bird and a horse.
I think this is the classic diamond problem. From what I can understand the classic way to solve this is to make the Animal, Bird and Horse classes interfaces and implement Pegasus from them.
I was wondering if there was another way to solve the problem in which I can still create objects for birds and horses. If there was a way to be able to create animals also that would be great but not necessary.
You could create interfaces for animal classes (class in the biological meaning), such as public interface Equidae for horses and public interface Avialae for birds (I'm no biologist, so the terms may be wrong).
Then you can still create a
public class Bird implements Avialae {
}
and
public class Horse implements Equidae {}
and also
public class Pegasus implements Avialae, Equidae {}
Adding from the comments:
In order to reduce duplicate code, you could create an abstract class that contains most of the common code of the animals you want to implement.
public abstract class AbstractHorse implements Equidae {}
public class Horse extends AbstractHorse {}
public class Pegasus extends AbstractHorse implements Avialae {}
Update
I'd like to add one more detail. As Brian remarks, this is something the OP already knew.
However, I want to emphasize, that I suggest to bypass the "multi-inheritance" problem with interfaces and that I don't recommend to use interfaces that represent already a concrete type (such as Bird) but more a behavior (others refer to duck-typing, which is good, too, but I mean just: the biological class of birds, Avialae). I also don't recommend to use interface names starting with a capital 'I', such as IBird, which just tells nothing about why you need an interface. That's the difference to the question: construct the inheritance hierarchy using interfaces, use abstract classes when useful, implement concrete classes where needed and use delegation if appropriate.
There are two fundamental approaches to combining objects together:
The first is Inheritance. As you have already identified the limitations of inheritance mean that you cannot do what you need here.
The second is Composition. Since inheritance has failed you need to use composition.
The way this works is that you have an Animal object. Within that object you then add further objects that give the properties and behaviors that you require.
For example:
Bird extends Animal implements IFlier
Horse extends Animal implements IHerbivore, IQuadruped
Pegasus extends Animal implements IHerbivore, IQuadruped, IFlier
Now IFlier just looks like this:
interface IFlier {
Flier getFlier();
}
So Bird looks like this:
class Bird extends Animal implements IFlier {
Flier flier = new Flier();
public Flier getFlier() { return flier; }
}
Now you have all the advantages of Inheritance. You can re-use code. You can have a collection of IFliers, and can use all the other advantages of polymorphism, etc.
However you also have all the flexibility from Composition. You can apply as many different interfaces and composite backing class as you like to each type of Animal - with as much control as you need over how each bit is set up.
Strategy Pattern alternative approach to composition
An alternative approach depending on what and how you are doing is to have the Animal base class contain an internal collection to keep the list of different behaviors. In that case you end up using something closer to the Strategy Pattern. That does give advantages in terms of simplifying the code (for example Horse doesn't need to know anything about Quadruped or Herbivore) but if you don't also do the interface approach you lose a lot of the advantages of polymorphism, etc.
I have a stupid idea:
public class Pegasus {
private Horse horseFeatures;
private Bird birdFeatures;
public Pegasus(Horse horse, Bird bird) {
this.horseFeatures = horse;
this.birdFeatures = bird;
}
public void jump() {
horseFeatures.jump();
}
public void fly() {
birdFeatures.fly();
}
}
May I suggest the concept of Duck-typing?
Most likely you would tend to make the Pegasus extend a Bird and a Horse interface but duck typing actually suggests that you should rather inherit behaviour. As already stated in the comments, a pegasus is not a bird but it can fly. So your Pegasus should rather inherit a Flyable-interface and lets say a Gallopable-interface.
This kind of concept is utilized in the Strategy Pattern. The given example actually shows you how a duck inherits the FlyBehaviour and QuackBehaviour and still there can be ducks, e.g. the RubberDuck, which can't fly. They could have also made the Duck extend a Bird-class but then they would have given up some flexibility, because every Duck would be able to fly, even the poor RubberDuck.
Technically speaking, you can only extend one class at a time and implement multiple interfaces, but when laying hands on software engineering, I would rather suggest a problem specific solution not generally answerable. By the way, it is good OO practice, not to extend concrete classes/only extend abstract classes to prevent unwanted inheritance behavior - there is no such thing as an "animal" and no use of an animal object but only concrete animals.
In Java 8 and later, you could use default methods to achieve a sort of C++-like multiple inheritance.
You could also have a look at this tutorial which shows a few examples that should be easier to start working with than the official documentation.
It is safe to keep a horse in a stable with a half door, as a horse cannot get over a half door. Therefore I setup a horse housing service that accepts any item of type horse and puts it in a stable with a half door.
So is a horse like animal that can fly even a horse?
I used to think a lot about multiple inheritance, however now that I have been programming for over 15 years, I no longer care about implementing multiple inheritance.
More often than not, when I have tried to cope with a design that pointed toward multiple inheritance, I have later come to release that I had miss understood the problem domain.
OR
If it looks like a duck and quacks like a duck but it needs
batteries, you probably have the wrong abstraction.
Java does not have a Multiple inheritance problem, since it does not have multiple inheritance. This is by design, in order to solve the real multiple inheritance problem (The diamond problem).
There are different strategies for mitigating the problem. The most immediately achievable one being the Composite object that Pavel suggests (essentially how C++ handles it). I don't know if multiple inheritence via C3 linearization (or similar) is on the cards for Java's future, but I doubt it.
If your question is academic, then the correct solution is that Bird and Horse are more concrete, and it is false to assume that a Pegasus is simply a Bird and a Horse combined. It would be more correct to say that a Pegasus has certain intrinsic properties in common with Birds and Horses (that is they have maybe common ancestors). This can be sufficiently modeled as Moritz' answer points out.
I think it depends very much on your needs, and how your animal classes are to be used in your code.
If you want to be able to make use of methods and features of your Horse and Bird implementations inside your Pegasus class, then you could implement Pegasus as a composition of a Bird and a Horse:
public class Animals {
public interface Animal{
public int getNumberOfLegs();
public boolean canFly();
public boolean canBeRidden();
}
public interface Bird extends Animal{
public void doSomeBirdThing();
}
public interface Horse extends Animal{
public void doSomeHorseThing();
}
public interface Pegasus extends Bird,Horse{
}
public abstract class AnimalImpl implements Animal{
private final int numberOfLegs;
public AnimalImpl(int numberOfLegs) {
super();
this.numberOfLegs = numberOfLegs;
}
#Override
public int getNumberOfLegs() {
return numberOfLegs;
}
}
public class BirdImpl extends AnimalImpl implements Bird{
public BirdImpl() {
super(2);
}
#Override
public boolean canFly() {
return true;
}
#Override
public boolean canBeRidden() {
return false;
}
#Override
public void doSomeBirdThing() {
System.out.println("doing some bird thing...");
}
}
public class HorseImpl extends AnimalImpl implements Horse{
public HorseImpl() {
super(4);
}
#Override
public boolean canFly() {
return false;
}
#Override
public boolean canBeRidden() {
return true;
}
#Override
public void doSomeHorseThing() {
System.out.println("doing some horse thing...");
}
}
public class PegasusImpl implements Pegasus{
private final Horse horse = new HorseImpl();
private final Bird bird = new BirdImpl();
#Override
public void doSomeBirdThing() {
bird.doSomeBirdThing();
}
#Override
public int getNumberOfLegs() {
return horse.getNumberOfLegs();
}
#Override
public void doSomeHorseThing() {
horse.doSomeHorseThing();
}
#Override
public boolean canFly() {
return true;
}
#Override
public boolean canBeRidden() {
return true;
}
}
}
Another possibility is to use an Entity-Component-System approach instead of inheritance for defining your animals. Of course this means, that you will not have individual Java classes of the animals, but instead they are only defined by their components.
Some pseudo code for an Entity-Component-System approach could look like this:
public void createHorse(Entity entity){
entity.setComponent(NUMER_OF_LEGS, 4);
entity.setComponent(CAN_FLY, false);
entity.setComponent(CAN_BE_RIDDEN, true);
entity.setComponent(SOME_HORSE_FUNCTIONALITY, new HorseFunction());
}
public void createBird(Entity entity){
entity.setComponent(NUMER_OF_LEGS, 2);
entity.setComponent(CAN_FLY, true);
entity.setComponent(CAN_BE_RIDDEN, false);
entity.setComponent(SOME_BIRD_FUNCTIONALITY, new BirdFunction());
}
public void createPegasus(Entity entity){
createHorse(entity);
createBird(entity);
entity.setComponent(CAN_BE_RIDDEN, true);
}
you can have an interface hierarchy and then extend your classes from selected interfaces :
public interface IAnimal {
}
public interface IBird implements IAnimal {
}
public interface IHorse implements IAnimal {
}
public interface IPegasus implements IBird,IHorse{
}
and then define your classes as needed, by extending a specific interface :
public class Bird implements IBird {
}
public class Horse implements IHorse{
}
public class Pegasus implements IPegasus {
}
Ehm, your class can be the subclass for only 1 other, but still, you can have as many interfaces implemented, as you wish.
A Pegasus is in fact a horse (it is a special case of a horse), which is able to fly (which is the "skill" of this special horse). From the other hand, you can say, the Pegasus is a bird, which can walk, and is 4legged - it all depends, how it is easier for you to write the code.
Like in your case you can say:
abstract class Animal {
private Integer hp = 0;
public void eat() {
hp++; 
}
}
interface AirCompatible {
public void fly();
}
class Bird extends Animal implements AirCompatible {
#Override
public void fly() {
//Do something useful
}
}
class Horse extends Animal {
#Override
public void eat() {
hp+=2; 
}
}
class Pegasus extends Horse implements AirCompatible {
//now every time when your Pegasus eats, will receive +2 hp
#Override
public void fly() {
//Do something useful
}
}
Interfaces don't simulate multiple inheritance. Java creators considered multiple inheritance wrong, so there is no such thing in Java.
If you want to combine the functionality of two classes into one - use object composition. I.e.
public class Main {
private Component1 component1 = new Component1();
private Component2 component2 = new Component2();
}
And if you want to expose certain methods, define them and let them delegate the call to the corresponding controller.
Here interfaces may come handy - if Component1 implements interface Interface1 and Component2 implements Interface2, you can define
class Main implements Interface1, Interface2
So that you can use objects interchangeably where the context allows it.
So in my point of view, you can't get into diamond problem.
As you will already be aware, multiple inheritance of classes in Java is not possible, but it's possible with interfaces. You may also want to consider using the composition design pattern.
I wrote a very comprehensive article on composition a few years ago...
https://codereview.stackexchange.com/questions/14542/multiple-inheritance-and-composition-with-java-and-c-updated
Define interfaces for defining the capabilities. You can define multiple interfaces for multiple capabilities. These capabilities can be implemented by specific Animal or Bird.
Use inheritance to establish relationships among classes by sharing non-static and non-public data/methods.
Use Decorator_pattern to add capabilities dynamically. This will allow you to reduce number of inheritance classes & combinations.
Have a look at below example for better understanding
When to Use the Decorator Pattern?
To reduce the complexity and simplify the language, multiple inheritance is not supported in java.
Consider a scenario where A, B and C are three classes. The C class inherits A and B classes. If A and B classes have same method and you call it from child class object, there will be ambiguity to call method of A or B class.
Since compile time errors are better than runtime errors, java renders compile time error if you inherit 2 classes. So whether you have same method or different, there will be compile time error now.
class A {
void msg() {
System.out.println("From A");
}
}
class B {
void msg() {
System.out.println("From B");
}
}
class C extends A,B { // suppose if this was possible
public static void main(String[] args) {
C obj = new C();
obj.msg(); // which msg() method would be invoked?
}
}
To solve the problem of mutiple inheritance in Java → interface is used
J2EE (core JAVA) Notes By Mr. K.V.R Page 51
Day - 27
Interfaces are basically used to develop user defined data types.
With respect to interfaces we can achieve the concept of multiple inheritances.
With interfaces we can achieve the concept of polymorphism, dynamic binding and hence we can improve the performance of a JAVA program in
turns of memory space and execution time.
An interface is a construct which contains the collection of purely
undefined methods or an interface is a collection of purely abstract
methods.
[...]
Day - 28:
Syntax-1 for reusing the features of interface(s) to class:
[abstract] class <clsname> implements <intf 1>,<intf 2>.........<intf n>
{
variable declaration;
method definition or declaration;
};
In the above syntax clsname represents name of the class which is
inheriting the features from ‘n’ number of interfaces. ‘Implements’ is
a keyword which is used to inherit the features of interface(s) to a
derived class.
[...]
Syntax-2 inheriting ‘n’ number of interfaces to another interface:
interface <intf 0 name> extends <intf 1>,<intf 2>.........<intf n>
{
variable declaration cum initialization;
method declaration;
};
[...]
Syntax-3:
[abstract] class <derived class name> extends <base class name> implements <intf 1>,<intf 2>.........<intf n>
{
variable declaration;
method definition or declaration;
};
Problem not solved. To sufficiently model this out and to prevent code replication you'd either need multiple inheritance or mixins. Interfaces with default functions are not sufficient because you cannot hold members in interfaces.
Interface modeling leads to code replication in subclasses or statics, which is both evil.
All you can do is to use a custom construction and split it up in more components and compose it all together...
toy language

Interface > Abstract Class > Concrete Class pattern

I have found a reference architecture where all domain classes (POJOs) inherit an abstract class and, in turn, the abstract class implements a interface. For instance:
public interface User {
public abstract operation1();
public abstract operation2();
...
}
public abstract class AbstractUser implements User {
String name;
// only attributes
...
}
public abstract class XyzUser extends AbstractUser {
...
}
Do you guys know if this design is some sort of pattern? Can you explain why the architecture was designed like that (Interface --> Abstract Class --> Concrete Class)?
First understand what is need of interface, abstract class and concrete class.
Let us take example here:
public interface Vehicle{
public void startEngine();
public void run();
}
public abstract class Bus implements Vehicle{
public void startEngine(){
System.out.println("Engine Starting of bus");
}
}
public abstract class Plane implements Vehicle{
public void startEngine(){
System.out.println("Engine Starting of plane");
}
}
public class VolvoBus extends Bus{
public void run(){
System.out.println("Running at 100kmp/h");
}
}
public class NonACBus extends Bus{
public void run(){
System.out.println("Running at 50kmp/h");
}
}
public class Test{
public static void main(String[] args){
VolvoBus volvoBus=new VolvoBus();
NonACBus nonAcbus=new NonACBus();
volvoBus.startEngine();
volvoBus.run();
nonAcBus.startEngine();
nonAcBus.run();
}
}
See in above example we have code which is common for bus whether its AC bus or Volvo so it is written in Bus class but run() is not common for all so instead of implementing in Bus class it is kept as abstract so its child class will implement that base on there requirement.
My code will explain you better :)
Thanks
Here the interface User defines a type:
public interface User{
public abstract operation1();
public abstract operation2();
...
}
So implementations of this interface are to be known as of type User.
Now you can provide implementation assistance to the implementers of this interface by using Abstract classes, as interfaces are not permitted to have method implementations. You can provide a skeletal implementation class to go with User interface, which will have default implementations of some of its methods. Here AbstractUser is the skeletal implementation of User:
public abstract class AbstractUser extends IUser
{
public abstract operation1();
public operation2(){
...
}
}
You can now write concrete User implementations with the help of AbstractUser:
public class UserImpl extends AbstractUser implements User {
...
}
The Java Collections Framework has a number of skeletal implementation to go along with the main collection interfaces, to minimize the effort required to implement the collection interfaces: AbstractSet, AbstractList, etc.
When designing code that is meant to be extended, it is standard practice to rely only on interfaces. To make life easier to extenders, boilerplate code is added to abstract classes extending those interfaces.
This is standard OO practice, rather than a "pattern". A good example can be found in just about all Java Swing widget models. For example TableModel is an interface meant to provide access to a table's data, AbstractTableModel is an abstract class that provides implementations for some simple accounting methods in the interface, and DefaultTableModel is a concrete class that uses, as data storage, an ArrayList.
This might be the decorator design pattern. U have an interface, an abstract class that implements the interface. Concrete classes extending the abstract class (decorators). and another concrete class that only implements the interface (the object which you decorate). I am not sure. I cannot tell anything without looking at the entire code. But still, have a look at this link. It might help you.
http://javapapers.com/design-patterns/decorator-pattern/
I have had this kind of architecture implementation. For example here is snippet of code
public class Category extends CategoryBase implements ICategory
Another is
public class Functional extends CategoryBase implements ICategory
Here interesting thing is CategoryBase abstract class where You are keeping your common properties and functionalities and You are just reusing them with inheritance
Abstract class is a generalized class for example animal is generalized because abstract method and properties are mentioned here. As many animal has common behaviors and properties.
Concrete Class is a specilized class for a dog which is inherited from animal class (generalized class) to do more specilized for dog only. here we can add some properties and method and even override it's behaviour (from generlized class)
Interface is a task based class which have only abstract methods which can be implemented in abstract class or/and in concrete class to specilized behaviours
Example code here...
abstract class Animal {
private String leg;
abstract void run();
}
class Dog extends Animal implements Ibehaviors {
#Override
void run() {
System.out.println("dog run");
}
#Override
void eat() {
System.out.println("dog eat");
}
}
interface Ibehaviors {
void eat();
}

Categories

Resources