Decoding Airplay Packets in Java or C/C++ on Android - java

I'm currently working on an AirPlay receiver for a subpart of an android application. I am using the following framework:
https://github.com/pentateu/DroidAirPlay
While this works great on some mid range devices such as the miPad, we need to get this running on a low spec custom device. The custom device is decoding the airplay packets at 10x to 20x slower than the miPad. As a result, the audio packets lose time synchronisation and due to the time taken to decode the packets, the audio can never re-sync.
I was looking into some other airplay receiver apps on the Play Store and from what I can see they tend to be based on Shairport (https://github.com/abrasive/shairport) for the airplay receiver side of things.
**Note: ** the Shairport based frameworks do not seem to suffer the synchronisation issue on the low end device.
The framework I am using is heavily based on the Shairport framework apart from that it is written in Java.
For decoding data, is C/C++ far superior than Java?
If so, would directing the decoding part of the DroidAirPlay framework via a C or C++ implementation using the NDK give me a large boost to performance?
Thanks in advance
Matt

While it is true that Java compiles to bytecode that runs in a virtual machine, it may not necessarily be slower (or faster) than a natively compiled executable, whether C/C++ or not. It all depends on the program!
There's a number of reasons why in this case Java may be slower:
The decoding implementation might just be poorly coded/optimized? (which isn't really Java's fault)
The Java compiler may generate sub-optimal code for the JVM.
Some of Java's language constructs are just too slow for the speed/resource demands placed on it here.
The JVM just is another abstraction layer and the culprit
The garbage collection is in on it?!
(I have to note here that I'm not an expert on Java!)
However, I still wouldn't go so far as to call Java intrinsically slower than C or C++. I'm sure you can find many-a benchmarks and tests on the internet comparing one language to another, and some make claims to a certain degree (out of pride and ego?). But those tests are only specific cases, usually testing specific aspects of a larger language (hash-map lookup performance for instance!).
LLVM had a three part blog post on C and why undefined behavior allows the compiler to generate still correct but more efficient code at the cost of inferring run-time safety checking or deciding that i+1 always comes after i, totally ignoring the existence of integer overflow. If the programmer is not careful, this can have disastrous consequences.
In the words of Bjarne himself in Abstraction and the C++ machine model:
C++ was designed to be a systems programming language and has been used for
embedded systems programming and other resource-constrained types of
programming since the earliest days.
As such, I believe C and C++ can be pushed further than Java because of this undefined behavior and less restrictions placed on it. (And there's also the inline assembly bit, but that's not strictly C!)

Related

Why operating systems are not written in java?

All the operating systems till date have been written in C/C++ while there is none in Java. There are tonnes of Java applications but not an OS. Why?
Because we have operating systems already, mainly. Java isn't designed to run on bare metal, but that's not as big of a hurdle as it might seem at first. As C compilers provide intrinsic functions that compile to specific instructions, a Java compiler (or JIT, the distinction isn't meaningful in this context) could do the same thing. Handling the interaction of GC and the memory manager would be somewhat tricky also. But it could be done. The result is a kernel that's 95% Java and ready to run jars. What's next?
Now it's time to write an operating system. Device drivers, a filesystem, a network stack, all the other components that make it possible to do things with a computer. The Java standard library normally leans heavily on system calls to do the heavy lifting, both because it has to and because running a computer is a pain in the ass. Writing a file, for example, involves the following layers (at least, I'm not an OS guy so I've surely missed stuff):
The filesystem, which has to find space for the file, update its directory structure, handle journaling, and finally decide what disk blocks need to be written and in what order.
The block layer, which has to schedule concurrent writes and reads to maximize throughput while maximizing fairness.
The device driver, which has to keep the device happy and poke it in the right places to make things happen. And of course every device is broken in its own special way, requiring its own driver.
And all this has to work fine and remain performant with a dozen threads accessing the disk, because a disk is essentially an enormous pile of shared mutable state.
At the end, you've got Linux, except it doesn't work as well because it doesn't have near as much effort invested into functionality and performance, and it only runs Java. Possibly you gain performance from having a single address space and no kernel/userspace distinction, but the gain isn't worth the effort involved.
There is one place where a language-specific OS makes sense: VMs. Let the underlying OS handle the hard parts of running a computer, and the tenant OS handles turning a VM into an execution environment. BareMetal and MirageOS follow this model. Why would you bother doing this instead of using Docker? That's a good question.
Indeed there is a JavaOS http://en.wikipedia.org/wiki/JavaOS
And here is discuss about why there is not many OS written in java Is it possible to make an operating system using java?
In short, Java need to run on JVM. JVM need to run on an OS. writing an OS using Java is not a good choice.
OS needs to deal with hardware which is not doable using java (except using JNI). And that is because JVM only provided limited commands which can be used in Java. These command including add, call a method and so on. But deal with hardware need command to operate reg, memory, CPU, hardware drivers directly. These are not supported directly in JVM so JNI is needed. That is back to the start - it is still needed to write an OS using C/assembly.
Hope this helps.
One of the main benefits of using Java is that abstracts away a lot of low level details that you usually don't really need to care about. It's those details which are required when you build an OS. So while you could work around this to write an OS in Java, it would have a lot of limitations, and you'd spend a lot of time fighting with the language and its initial design principles.
For operating systems you need to work really low-level. And that is a pain in Java. You do need e.g. unsigned data types, and Java only has signed data types. You need struct objects that have exactly the memory alignment the driver expects (and no object header like Java adds to every object).
Even key components of Java itself are no longer written in Java.
And this is -by no means- a temporary thing. More and more does get rewritten in native code to get better performance. The HotSpot VM adds "intrinsics" for performance critical native code, and there is work underway to reduce the overall cost of native calls.
For example JavaFX: The reason why it is much faster than AWT/Swing ever were is because it contains/uses a huge amount of native code. It relies on native code for rendering, and e.g. if you add the "webview" browser component it is actually using the webkit C library to provide the browser.
There is a number of things Java does really well. It is a nicely structured language with a fantastic toolchain. Python is much more compact to write, but its toolchain is a mess, e.g. refactoring tools are disappointing. And where Java shines is at optimizing polymorphism at run-time. Where C++ compilers would need to do expensive virtual calls - because at compile time it is not known which implementation will be used - there Hotspot can aggressively inline code to get better performance. But for operating systems, you do not need this much. You can afford to manually optimize call sites and inlining.
This answer does not mean to be exhaustive in any way, but I'd like to share my thoughts on the (very vast) topic.
Although it is theoretically possible to write some OS in pure java, there are practical matters that make this task really difficult. The main problem is that there is no (currently up to date and reliable) java compiler able to compile java to byte code. So there is no existing tool to make writing a whole OS from the ground up feasible in java, at least as far as my knowledge goes.
Java was designed to run in some implementation of the java virtual machine. There exist implementations for Windows, Mac, Linux, Android, etc. The design of the language is strongly based on the assumption that the JVM exists and will do some magic for you at runtime (think garbage collection, JIT compiler, reflection, etc.). This is most likely part of the reason why such a compiler does not exist: where would all these functionality go? Compiled down to byte code? It's possible but at this point I believe it would be difficult to do. Even Android, whose SDK is purely java based, runs Dalvik (a version of the JVM that supports a subset of the language) on a Linux Kernel.

OpenCV (JavaCV) vs OpenCV (C/C++ interfaces)

I am just wondering whether there would be a significant speed performance advantage relatively on a given set of machines when using JavaCV as opposed to the C/C++ implementation of OpenCV.
Please correct me if I am wrong, but my understanding is that the c/c++ implementation of opencv is closer to the machine where as the Java implementation of OpenCV, JavaC, would have a slight speed performance disadvantage (in milliseconds) as there would be a virtual machine converting your source code to bytecode which then gets converted to machine code. Whereas, with c/c++, it gets converted straight to machine code and thus doesn't carry that intermediary step of the virtual machine overhead.
Please don't kill me here if I made mistakes; I am just learning and would welcome constructive criticism.
Thank you
I'd like to add a couple of things to #ejbs's answer.
First of all, you concerned 2 separate issues:
Java vs. C++ performance
OpenCV vs JavaCV
Java vs. C++ performance is a long, long story. On one hand, C++ programs are compiled to a highly optimized native code. They start quickly and run fast all the time without pausing for garbage collection or other VM duties (as Java do). On other hand, once compiled, program in C++ can't change, no matter on what machine they are run, while Java bytecode is compiled "just-in-time" and is always optimized for processor architecture they run on. In modern world, with so many different devices (and processor architectures) this may be really significant. Moreover, some JVMs (e.g. Oracle Hotspot) can optimize even the code that is already compiled to native code! VM collect data about program execution and from time to time tries to rewrite code in such a way that it is optimized for this specific execution. So in such complicated circumstances the only real way to compare performance of implementations in different programming languages is to just run them and see the result.
OpenCV vs. JavaCV is another story. First you need to understand stack of technologies behind these libraries.
OpenCV was originally created in 1999 in Intel research labs and was written in C. Since that time, it changed the maintainer several times, became open source and reached 3rd version (upcoming release). At the moment, core of the library is written in C++ with popular interface in Python and a number of wrappers in other programming languages.
JavaCV is one of such wrappers. So in most cases when you run program with JavaCV you actually use OpenCV too, just call it via another interface. But JavaCV provides more than just one-to-one wrapper around OpenCV. In fact, it bundles the whole number of image processing libraries, including FFmpeg, OpenKinect and others. (Note, that in C++ you can bind these libraries too).
So, in general it doesn't matter what you are using - OpenCV or JavaCV, you will get just about same performance. It more depends on your main task - is it Java or C++ which is better suited for your needs.
There's one more important point about performance. Using OpenCV (directly or via wrapper) you will sometimes find that OpenCV functions overcome other implementations by several orders. This is because of heavy use of low-level optimizations in its core. For example, OpenCV's filter2D function is SIMD-accelerated and thus can process several sets of data in parallel. And when it comes to computer vision, such optimizations of common functions may easily lead to significant speedup.
JavaCV interfaces to OpenCV, so when you call something OpenCV related there would be some overhead but in general most of the heavy work will still be on the C++ side and therefore there won't be a very large performance penalty.
You would have to do performance benchmarks to find out more.
PS. I'm pretty new here but I'm rather sure that this is not a suitable question for StackOverflow.
i would like to add a few more insights on java as an interface to c++ libraries...
A)developing:
1)while java may be easier to manage large scale projects and compiles extremely fast, it is very very hard, and next to impossible to debug native code from java...
when code crush on native side...or memory leaks( something that happens a lot... ) you feel kind of helpless...
2)unless you build the bindings yourself( not an easy task even with using swig or whatever... ) you are dependent on the good will/health/time of the bindings builder....
so in this case i would prefer the official "desktop java " bindings over javacv...
B)performance.
1) while bindings may be optimized( memory transfer using neobuffer ) as in the javacv case there is still a very very small jni overhead for each native function call -
this is meaningless in our case since most opencv functions consume X100000++ cpu cycles compared to this jni overhead...
2) The BIG-PROBLEM ---- stop the world GARBAGE COLLECTIOR( GC )
java uses a garbage collector that halts all cpu's threads making it UNSUITABLE for REAL-TIME application's , there are work-around's iv'e heard of like redesigning your app not to produce garbage, use a spaciel gc, or use realtime java( cost money... ) they all seem to be extra-work( and all you wanted is a nice easy path to opencv.... )
conclusion - if you want to create a professional real time app - then go with c++
unless you have a huge modular project to manage - just stick with c++ and precompiled headers( make things compile faster... )
while java is a pleasure to work with , when it comes to native binding's HELL breaks loose...i know iv'e been there....

What is the advantage of c++ in writing device drivers? [duplicate]

This question already has answers here:
Why are drivers and firmwares almost always written in C or ASM and not C++?
(15 answers)
Closed 6 years ago.
As I know in order to write device drivers people usually use c++ or assembly? The choice of assembly is clear for me. But why c++? I guess it is possible to do in java (for example), or in other high level language as well. So why c++ is so common? Is there a specific feature of C++ programming language that is necessary for writing drivers?
I would say that C is much more commonly used as a language for device drivers (over C++).
There are a couple of reasons for this:
Most of the major operating systems are written in a combination of C and assembler and provide C language interfaces to the operating system.
Writing a device driver usually involves communicating with a device which involves direct memory manipulation of registers and the like. C and C++ allow you to do this natively.
Edit - Example of Direct Memory Manipulation:
Let me make up some fictitious device. Say it has a register, that when you write certain values onto it, makes a light on the device turn on. This register is 32 bits wide. The top 31 bits say how bright to make the light, the lowest bit turns it on and off.
When you plug the device into the computer, the operating system assigns that register a particular memory location, (let's say 0x00FF00FF00 on a 32 bit OS). In order to turn the light on, the device driver would do something like this:
int* lightRegister = 0x00FF00FF00; // You would normally ask the OS for this address, not hardcode it.
int brightnessValue = 256; // Only Even numbers, the low bit must be zero.
*lightRegister = brightnessValue | 1; //Turn it on.
*lightRegister = 0; // Turn it off.
Higher level languages like Java, don't generally let you write into some random memory location like this.
There is a good discussion on the pros and cons of using C++ for device drivers in Windows here:
C++ for Kernel Mode Drivers: Pros and Cons
A lot of the C++ vs. C discussion is "religious" and a question of personal preference. In general working at a lower level gives you better control over things like memory and performance but may also require more time duplicating facilities that may be available in higher level languages. Making those trade-offs and choosing the right tool for the right problem is part of what software development is about.
There is no fundamental reason why you couldn't use Java for writing a device driver. It's more of a question of run-time support for the language, the libraries and the kind of work you need to get done inside the driver (interrupt handlers, I/O etc.). Performance may also be an issue. You would need to develop a very large amount of infrastructure to do that. While Java doesn't offer low level facilities (such as pointers) these could be replaced with calls to a native function.
C++ can produce very efficient assembly code AND provide higher-level constructs such as templates, RAII and OOP. Assembly is much too slow to write by hand for modern programs and does't provide many things that modern programmers expect, like OOP, whereas Java would be MUCH too slow to write a device driver in.
I don't know why? and whether it's actually true, but I would guess, C++ combination of efficiency and high level of abstraction makes it a very good candidate for tasks that require performance and can benefit from high level abstractions.
Because C++ is the last well spread language (except C) which translates directly to machine code without too many complications.

Which programming language for compute-intensive trading portfolio simulation?

I am building a trading portfolio management system that is responsible for production, optimization, and simulation of non-high frequency trading portfolios (dealing with 1min or 3min bars of data, not tick data).
I plan on employing Amazon web services to take on the entire load of the application.
I have four choices that I am considering as language.
Java
C++
C#
Python
Here is the scope of the extremes of the project scope. This isn't how it will be, maybe ever, but it's within the scope of the requirements:
Weekly simulation of 10,000,000 trading systems.
(Each trading system is expected to have its own data mining methods, including feature selection algorithms which are extremely computationally-expensive. Imagine 500-5000 features using wrappers. These are not run often by any means, but it's still a consideration)
Real-time production of portfolio w/ 100,000 trading strategies
Taking in 1 min or 3 min data from every stock/futures market around the globe (approx 100,000)
Portfolio optimization of portfolios with up to 100,000 strategies. (rather intensive algorithm)
Speed is a concern, but I believe that Java can handle the load.
I just want to make sure that Java CAN handle the above requirements comfortably. I don't want to do the project in C++, but I will if it's required.
The reason C# is on there is because I thought it was a good alternative to Java, even though I don't like Windows at all and would prefer Java if all things are the same.
Python - I've read somethings on PyPy and pyscho that claim python can be optimized with JIT compiling to run at near C-like speeds... That's pretty much the only reason it is on this list, besides that fact that Python is a great language and would probably be the most enjoyable language to code in, which is not a factor at all for this project, but a perk.
To sum up:
real time production
weekly simulations of a large number of systems
weekly/monthly optimizations of portfolios
large numbers of connections to collect data from
There is no dealing with millisecond or even second based trades. The only consideration is if Java can possibly deal with this kind of load when spread out of a necessary amount of EC2 servers.
Thank you guys so much for your wisdom.
Pick the language you are most familiar with. If you know them all equally and speed is a real concern, pick C.
While I am a huge fan of Python and personaly I'm not a great lover of Java, in this case I have to concede that Java is the right way to go.
For many projects Python's performance just isn't a problem, but in your case even minor performance penalties will add up extremely quickly. I know this isn't a real-time simulation, but even for batch processing it's still a factor to take into consideration. If it turns out the load is too big for one virtual server, an implementation that's twice as fast will halve your virtual server costs.
For many projects I'd also argue that Python will allow you to develop a solution faster, but here I'm not sure that would be the case. Java has world-class development tools and top-drawer enterprise grade frameworks for parallell processing and cross-server deployment and while Python has solutions in this area, Java clearly has the edge. You also have architectural options with Java that Python can't match, such as Javaspaces.
I would argue that C and C++ impose too much of a development overhead for a project like this. They're viable inthat if you are very familiar with those languages I'm sure it would be doable, but other than the potential for higher performance, they have nothing else to bring to the table.
C# is just a rewrite of Java. That's not a bad thing if you're a Windows developer and if you prefer Windows I'd use C# rather than Java, but if you don't care about Windows there's no reason to care about C#.
I would pick Java for this task. In terms of RAM, the difference between Java and C++ is that in Java, each Object has an overhead of 8 Bytes (using the Sun 32-bit JVM or the Sun 64-bit JVM with compressed pointers). So if you have millions of objects flying around, this can make a difference. In terms of speed, Java and C++ are almost equal at that scale.
So the more important thing for me is the development time. If you make a mistake in C++, you get a segmentation fault (and sometimes you don't even get that), while in Java you get a nice Exception with a stack trace. I have always preferred this.
In C++ you can have collections of primitive types, which Java hasn't. You would have to use external libraries to get them.
If you have real-time requirements, the Java garbage collector may be a nuisance, since it takes some minutes to collect a 20 GB heap, even on machines with 24 cores. But if you don't create too many temporary objects during runtime, that should be fine, too. It's just that your program can make that garbage collection pause whenever you don't expect it.
Why only one language for your system? If I were you, I will build the entire system in Python, but C or C++ will be used for performance-critical components. In this way, you will have a very flexible and extendable system with fast-enough performance. You can find even tools to generate wrappers automatically (e.g. SWIG, Cython). Python and C/C++/Java/Fortran are not competing each other; they are complementing.
Write it in your preferred language. To me that sounds like python. When you start running the system you can profile it and see where the bottlenecks are. Once you do some basic optimisations if it's still not acceptable you can rewrite portions in C.
A consideration could be writing this in iron python to take advantage of the clr and dlr in .net. Then you can leverage .net 4 and parallel extensions. If anything will give you performance increases it'll be some flavour of threading which .net does extremely well.
Edit:
Just wanted to make this part clear. From the description, it sounds like parallel processing / multithreading is where the majority of the performance gains are going to come from.
It is useful to look at the inner loop of your numerical code. After all you will spend most of your CPU-time inside this loop.
If the inner loop is a matrix operation, then I suggest python and scipy, but of the inner loop if not a matrix operation, then I would worry about python being slow. (Or maybe I would wrap c++ in python using swig or boost::python)
The benefit of python is that it is easy to debug, and you save a lot of time by not having to compile all the time. This is especially useful for a project where you spend a lot of time programming deep internals.
I would go with pypy. If not, http://lolcode.com/.

Is it possible to code a device driver in Java?

Introduction
I heard something about writing device drivers in Java (heard as in "with my ears", not from the internet) and was wondering... I always thought device drivers operated on an operating system level and thus must be written in the same language as the OS (thus mostly C I suppose)
Questions
Am I generally wrong with this
assumption? (it seems so)
How can a driver in an "alien"
language be used in the OS?
What are the requirements (from a
programming language point of view)
for a device driver anyway?
Thanks for reading
There are a couple of ways this can be done.
First, code running at "OS level" does not need to be written in the same language as the OS. It merely has to be able to be linked together with OS code. Virtually all languages can interoperate with C, which is really all that's needed.
So language-wise, there is technically no problem. Java functions can call C functions, and C functions can call Java functions. And if the OS isn't written in C (let's say, for the sake of argument that it's written in C++), then the OS C++ code can call into some intermediate C code, which forwards to your Java, and vice versa. C is pretty much a lingua franca of programming.
Once a program has been compiled (to native code), its source language is no longer relevant. Assembler looks much the same regardless of which language the source code was written in before compilation. As long as you use the same calling convention as the OS, it's no problem.
A bigger problem is runtime support. Not a lot of software services are available in the OS. There usually is no Java virtual machine, for example. (There is no reason why there technically couldn't be, but usually, but usually, it's safe to assume that it's not present).
Unfortunately, in its "default" representation, as Java bytecode, a Java program requires a lot of infrastructure. It needs the Java VM to interpret and JIT the bytecode, and it needs the class library and so on.
But there are two ways around this:
Support Java in the kernel. This would be an unusual step, but it could be done.
Or compile your Java source code to a native format. A Java program doesn't have to be compiled to Java bytecode. You could compile it to x86 assembler. The same goes for whatever class libraries you use. Those too could be compiled all the way to assembler. Of course, parts of the Java class library requires certain OS features that won't be available, but then use of those classes could be avoided.
So yes, it can be done. But it's not straightforward, and it's unclear what you'd gain.
Of course another problem may be that Java won't let you access arbitrary memory locations, which would make a lot of hardware communication pretty tricky. But that could be worked around too, perhaps by calling into very simple C functions which simply return the relevant memory areas as arrays for Java to work on.
Writing Solaris Device Drivers in Java covers a A RAM disk device written in Java.
Another one for Linux. Goes more in depth on why you might want a DD in Java as well (since some people were wondering by the looks of the other posts and comments)
A device driver could be a lot of things
I actually write device drivers in java for a living: drivers for industrial devices, such as scales or weighing devices, packaging machines, barcode scanners, weighing bridges, bag and box printers, ... Java is a really good choice here.
Industrial devices are very different from your home/office devices (e.g. scanners, printers). Especially in manufacturing (e.g. food), companies opt more and more for a centralized server which runs an MES application (e.g. developed in Java) The MES server needs to interface with the devices of the production line, but also contains business logic. Java is a language that can do both.
Where your home/office devices are often built-in to your computer or connected with an USB cable, these industrial devices usually use Ethernet or RS232 connectors. So, in essence, pretty much every language could do the job.
There is not much standardisation in this area yet. Most vendors prefer to create their own protocol for their devices. After all they are hardware builders, not software geniuses. The result is that there is a high diversity of protocols. Some vendors prefer simple plain-text protocols, but others prefer complex binary protocols with CRC codes, framing, ... Sometimes they like to stack multiple protocols (e.g. a vendor specific handshaking algorithm on top of an OPC layer). A strong OOP language has a lot of advantages here.
E.g. I've seen java print at a continuous speed of 100ms/cycle. This includes generating a unique label, sending it to the printer, receiving a confirmation, printing it on paper and applying it to the product using air pressure.
In summary, the power of java:
It is useful for both business logic as complex interfacing.
It is just as reliable in communication with sockets as C.
Some drivers can benifit from Java's OOP power.
Java is fast enough.
It's not impossible, but possibly hard and possibly makes not much sense.
Possible is it, because Java is a normal programming language, as long as you have some way to access the data, it's no problem. Normally in a modern OS the kernel has a layer to allow raw access to hardware in some way. Also already exist drivers in userspace, at least the userspace-part should be no problem to implement in Java.
It makes possibly not too much sense, because the kernel has to start a JVM to execute the driver. Also JVM-implementations normally eat up much memory.
You could also use Java-code compiled to be executed natively on the platform (not with the help of a JVM). This is usually not that efficient, but it could be suitable for a device-driver.
The question is, does it make sense to implement the driver in Java? Or stated in another way: What is the benefit you hope for, if you use Java for implementing the driver instead of another alternative? If you can answer this question, you should find a way to make it possible.
At the end the hint to JNode, a project that tries to implement a complete OS purely based on Java.
You have a too narrow view of device drivers.
I have written such device drivers on top of MOST in an automotive application. A more widespread use might be drivers for USB devices if Java ever gets a decent USB library.
In these cases there is a generic low-level protocol which is handled in native code, and the Java driver handles the device specifics (data formats, state machines, ...).
For the motivation, please remember that there is plenty of fast languages which are better than C for programming; they might not be as fast as C, but they are safe languages: if you make a mistake you don't get undefined behavior. And "undefined behavior" includes executing arbitrary code supplied by some attacker which formats your HD.
Many functional languages are usually compiled to native code.
Device drivers contain the most bugs in an OS kernel - I know that for Linux (Linus Torvalds and others keep saying so) and I heard that for Windows. While for a disk or Ethernet driver you need top-notch performance, and while in Linux drivers today are the bottleneck for 10G Ethernet or SSD disks, most drivers don't need that much speed - all computers wait at the same speed.
That's why there are various projects to allow writing drivers which run outside of the kernel, even if that causes a slowdown; when you can do that, you can use whatever language you want; you will just then need Java bindings for the hardware control library you use - if you were writing the driver in C, you would still have a library with C bindings.
For drivers in kernel mode proper, there are two problems that I've not yet seen mentioned:
Garbage Collection, and that's a tough requirement. You need to write an in-kernel Garbage Collector; some GC algorithms rely on Virtual Memory, and you cannot use them. Moreover, you probably need to scan the whole OS memory to find roots for the GC. Finally, I would only trust an algorithm guaranteeing (soft) real-time GC, which would make the overhead even bigger.
Reading the paper which was mentioned about Java Device Drivers on top of Linux, they just give up, and require programmers to manually free memory. They try to argue that this will not compromise safety, but I don't think their argument is convincing - it's not even clear whether they understand that Garbage Collection is needed for a safe language.
Reflection and class loading. A full Java implementation, even when running native code, needs to be able to load new code. This is a library you can avoid, but if you have an interpreter or JIT compiler in kernel (and there's no real reason that makes it technically impossible).
Performance. The paper about a JVM on Linux is very bad, and their performance numbers are not convincing - indeed, they test a USB 1.1 network driver, and then show that performance is not so bad! However, given enough effort something better can surely be done.
Two last things:
I'd like to mention Singularity, which is a complete OS written in a C# variant, with just a Hardware Abstraction Layer in a native language.
About picoJava, it's a bad idea to use it unless your system is a really memory constrained one, like a smart card. Cliff Click already explained why: it gives better performance to write a good JIT, and nowadays even smartphones can support that.
Have you perhaps heard a reference to the JDDK?
Writing a device driver 100% in Java is not possible without native code to provide the interaction between (1) the OS-specific driver entry points and conventions, and (2) the JVM instance. The JVM instance could be started "in-process" (and "in-process" may have different meanings depending on the OS and on whether the driver is a kernel-mode or user-mode driver), or as a separate user-land process with which a thin, native driver adaptation layer can communicate and onto which the said driver adaptation layer can offload actual user-land work.
It is possible to compile java code to hardware native (i.e. not JVM bytecode) instructions. See for instance GCJ. With this in hand, you're a lot closer to being able to compile device drivers than you were before.
I don't know how practical it is, though.
Possible?
Yes but only in special circumstances. Because you can write an operating system in Java and C#, and then, should be able to write device drivers for it. The memory hit to these drivers and operating systems would be substantial.
Probable?
Not likely. Atleast not in the world of Windows or MacOS or even Linux... At least not anytime soon. Because languages like C# and Java depend on the CLR and JVM. The way these languages work means that they cannot effectively be loaded into ring0.
Also, the performance hit would be rather large if managed languages were employed in device drivers.
Device drivers have to be written in a language which can execute in the kernel, either compiled into it, or loaded as a module at runtime. This usually precludes writing device drivers in Java, but I suppose you theoretically could implement a JVM inside a device driver and let it execute Java code. Not that any sane person would want to do that.
On Linux there are several user-land (i.e. non-kernel) implementations of filesystems which uses a common abstraction layer called (fuse) which allows user-land programs to implement things which are typically done in the kernel.
The Windows Driver Foundation (WDF) is a Microsoft API that does allow both User and Kernel mode device drivers to be written. This is being done today, and it is now compatible with w2k and later (used to not have w2k as a supported target). There is no reason that JNI calls can't be made to do some work in the JRE . . . ( assuming that JNI is still the way to call Java from C/C++ . . . my knowledge is dated in that arena). This could be an interesting way to have high level algorithms directly munch on data from a USB pipe for something to that effect . . . cool stuff!
PCIe user space device drivers can be written in Pure Java. See JVerbs for details about memory-based direct hardware access, in the context of OFED. This is a technique that can be used to create very high performance systems.
You can examine the PCI bus to determine the memory regions for a given device, what ports it has, etc. The memory regions can be mapped into the JVM's process.
Of course, you're responsible for implementing everything yourself.
I didn't say easy. I said possible. ;)
See also Device Drivers in User Space, which discusses using the UIO framework to build a user space driver.
First of all, note that I'm not an expert on device drivers (though I wrote a few myself back in the day), much less an expert on Java.
Let's leave the fact that writing device drivers in a high-level language is not a good idea (for performance and possibly many other reasons) aside for a moment, and answer your question.
You can write device drivers in almost any language, at least in theory.
However, most device drivers need to do plenty of low-level stuff like handling interrupts and communicating with the OS using the OS APIs and system calls, which I believe you can't do in Java.
But, if your device communicates using, say, a serial port or USB, and if the OS doesn't necessarily need to be aware of the device (only your application will access the device*), then you can write the driver in any language that provides the necessary means to access the device.
So for example you probably can't write a SCSI card driver in Java, but you can write a driver for a proprietary control device, USB lava lamp, license dongle, etc.
* The obvious question here is, of course, does that count as a driver?

Categories

Resources