I am new to concurrency and I was trying to implement executor service concurrency for a do-while loop. But I always run into RejectedExecutionException
Here is my sample code:
do {
Future<Void> future = executor.submit(new Callable<Void>() {
#Override
public Void call() throws Exception {
// action
return null;
}
});
futures.add(future);
executor.shutdown();
for (Future<Void> future : futures) {
try {
future.get();
}
catch (InterruptedException e) {
throw new IOException(e)
}
}
}
while (true);
But this seems incorrect. I think I am calling the shutdown at the wrong place. Can anyone please help me implement Executor Service in a do-while loop correctly. Thanks.
ExecutorService.shutdown() stops the ExecutorService from accepting anymore jobs. It should be called when you're done submitting jobs.
Also Future.get() is a blocking method, which means it will block the execution of current thread and next iteration of loop will not continue unless this future (on which the get is called) returns. This will happen in every iteration, which makes the code non parallel.
You can use a CountDownLatch to wait for all the jobs to return.
Following is the correct code.
final List<Object> results = Collections.synchronizedList(new ArrayList<Object>());
final CountDownLatch latch = new CountDownLatch(10);//suppose you'll have 10 futures
do {
Future<Void> future = executor.submit(new Callable<Void>() {
#Override
public Void call() throws Exception {
// action
latch.countDown();//decrease the latch count
results.add(result); // some result
return null;
}
});
futures.add(future);
} while (true);
executor.shutdown();
latch.await(); //This will block till latch.countDown() has been called 10 times.
//Now results has all the outputs, do what you want with them.
Also if you're working with Java 8 then you can take a look at this answer https://stackoverflow.com/a/36261808/5343269
You're right, the shutdown method is not being called at the correct time. The ExecutorService will not accept tasks after shutdown is called (unless you implement your own version that does).
You should call shutdown after you've already submitted all tasks to the executor, so in this case, somewhere after the do-while loop.
From ThreadPoolExecutor documentation:
Rejected tasks
New tasks submitted in method execute(Runnable) will be rejected when the Executor has been shut down, and also when the Executor uses finite bounds for both maximum threads and work queue capacity, and is saturated.
In either case, the execute method invokes the RejectedExecutionHandler.rejectedExecution(Runnable, ThreadPoolExecutor) method of its RejectedExecutionHandler
From your code, it's clearly evident that you are calling shutdown() first and submitting the tasks later.
On a different note, refer to this related SE question for right way of shutting down ExecutorService:
ExecutorService's shutdown() doesn't wait until all threads will be finished
Related
I'm comparing the behaviour of CompletableFuture.supplyAsync() in the two cases in which I set a custom ExecutorService or I want my Supplier to be executed by the default executor (if not specified) which is ForkJoinPool.commonPool()
Let's see the difference:
public class MainApplication {
public static void main(final String[] args) throws ExecutionException, InterruptedException {
Supplier<String> action1 = () -> {
try {
Thread.sleep(3000);
}finally {
return "Done";
}
};
Function<String, String> action2 = (input) -> {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}finally {
return input + "!!";
}
};
final ExecutorService executorService = Executors.newFixedThreadPool(4);
CompletableFuture.supplyAsync(action1, executorService)
.thenApply (action2)
.thenAccept (res -> System.out.println(res));
System.out.println("This is the end of the execution");
}
}
In this case I'm passing executorService to my supplyAsync() and it prints:
This is the end of the execution
Done!!
So "Done" gets printed after the end of the main execution.
BUT if I use instead:
CompletableFuture.supplyAsync(action1)
so I don't pass my custom executorService and the CompletableFuture class uses under the hood the ForkJoinPool.commonPool() then "Done" is not printed at all:
This is the end of the execution
Process finished with exit code 0
Why?
In both cases when you do
CompletableFuture.supplyAsync(action1, executorService)
.thenApply (action2)
.thenAccept (res -> System.out.println(res));
you don't wait for task completition. But then you program is going to exit and there is differences how common fork join pool:
ForkJoinPool.commonPool()
and regular executor service:
final ExecutorService executorService = Executors.newFixedThreadPool(4);
..react on attempt to call System.exit(...) equivalent.
This is what doc says about fork join common pool, you should point attention to that:
However this pool and any ongoing processing are automatically
terminated upon program System.exit(int). Any program that relies on
asynchronous task processing to complete before program termination
should invoke commonPool().awaitQuiescence, before exit.
That is link to ExecutorService docs, you may point attention to:
The shutdown() method will allow previously submitted tasks to execute
before terminating
I think that may be a difference you asking about.
ForkJoinPool uses daemon threads that does not prevent JVM from exiting. On the other hand the threads in the ExecutorService created by Executors are non-daemon threads, hence it keeps JVM from exiting until you explicitly shutdown the thread pool.
Also notice that in your example you need to shutdown the pool at the end in order to terminate the JVM.
executorService.shutdown();
So, one solution would be to keep the main thread waiting for few seconds until your computation is completed like so,
Thread.sleep(4000);
here is two options , just bit confuse which one is best to go.
Option 1:
ExecutorService es = Executors.newFixedThreadPool(4);
List<Runnable> tasks = getTasks();
CompletableFuture<?>[] futures = tasks.stream()
.map(task -> CompletableFuture.runAsync(task, es))
.toArray(CompletableFuture[]::new);
CompletableFuture.allOf(futures).join();
es.shutdown();
Option 2:
ExecutorService es = Executors.newFixedThreadPool(4);
List< Future<?>> futures = new ArrayList<>();
for(Runnable task : taskList) {
futures.add(es.submit(task));
}
for(Future<?> future : futures) {
try {
future.get();
}catch(Exception e){
// do logging and nothing else
}
}
es.shutdown();
Here putting future.get(); in try catch is good idea right?
Since you effectively hold each submitted Future in a list of of futures by doing this:
List< Future<?>> futures = new ArrayList<>();
for(Runnable task : taskList) {
futures.add(es.submit(task));
}
You can very easily check if all the submitted jobs are done executing just, by invoking the Future#isDone method, which wilkl return true or false based on whether the task has finished or not. You can check more on this on the related documentation here.
Hence, with the above in mind you could very well create a simple helper method, that will iterate the list of your futures and check on their state. For example:
private boolean areJobsDone() {
return futures.stream()
.allMatch(Future::isDone);
}
Note that in contrast to the Future#get method, isDone is non blocking (as it's not waiting for the task to return it's result) as it effectively queries it's state.
With this you can go ahead and check for the state of your runnables, blocking the flow with a loop that will invoke the helper method, before proceeding.
Hope this helps.
There is another way to wait for all tasks to complete. After you submitted all of your tasks, call
es.shutdown()
es.awaitTermination(Long.MAX_VALUE, TimeUnit.NANO_SECONDS)
Oracle's Java Docs read:
shutdown [...] Initiates an orderly shutdown in which previously submitted tasks are executed.
awaitTermination [...] Blocks until all tasks have completed execution after a shutdown request, or the timeout occurs, or the current thread is interrupted, whichever happens first.
Concerning the timeout: with the above values, the thread-pool will only terminate after about 300 years.
Similar to the Aris_Kortex' proposal,
List<CompletableFuture<?>> futures = new ArrayList<>();
for(Runnable task : taskList) {
futures.add(CompletableFuture.runAsync(task, es));
}
and then create the combined CompletableFuture:
CompletableFuture<Void> cf = CompletableFuture.allOf(futures.toArray(futires.size()));
then you can wait for all tasks synchronously:
cf.get();
synchronously with timeout:
cf.get(1, TimeUnit.SECOND);
of asynchronously:
cf.thenRun(()->{finalActions();});
I have one "Runnable" threads which is initiating few "Callable" threads and I want to display results when all above threads has finished their jobs.
What is the best way to do it?
My code is as follows
Connector.java (Starting Runnable Thread)
public class Connector {
private static void anyFileConnector() {
// Starting searching Thread
ExecutorService executor = Executors.newFixedThreadPool(100);
executor.submit(traverse, executor);
//HERE I WANT MY ALL SEARCH RESULTS/OUTPUT : CURRENTLY IT IS STARTING OTHER THREADS AND NOT SHOWING ME ANY RESULTS BECAUSE NONE OF THEM WAS FINISHED.(IN CONSOLE, I WAS ABLE TO SEE RESULTS FROM ALL THE THREADS
setSearchResult(traverse.getResult());
executor.shutdown();
}
}
Traverse.java (Runnable Thread)
I am using ExecutorCompletionService to handle it...but it didn't create any difference.
:(
public class Traverse implements Runnable {
public void run() {
ExecutorService executor = Executors.newFixedThreadPool(100);
ExecutorCompletionService<List<ResultBean>> taskCompletionService =
new ExecutorCompletionService<List<ResultBean>>(executor);
try (DirectoryStream<Path> stream = Files
.newDirectoryStream(dir)) {
Search newSearch = new Search();
taskCompletionService.submit(newSearch);
}
list.addAll(taskCompletionService.take().get());
}
}
Search.java (Callable Thread)
public class Search implements Callable<List<ResultBean>> {
public List<ResultBean> call() {
synchronized (Search.class) {
// It will return results
return this.search();
}
}
}
Go for CyclicBarrier and you will be able to achieve this.
A cyclic barrier will perform a task as soon as all the threads are done with their work, this is where you can print the en result.
Check this lik for working of CyclicBarrier : http://javarevisited.blogspot.com/2012/07/cyclicbarrier-example-java-5-concurrency-tutorial.html
Easy - all the Callables will return Future objects which you can used to wait and get the result by calling Future.get() in a blocking wait way. So your problem is just a for loop waiting for each future on the callables blockingly.
After that, just aggregate the results to return to client.
The submit method of executor service can return a list of Future objects. What you can do for your case is call isDone() method of these Future objects in a while loop.
Whenever, any future task gets completed this method will return true. You can now call get() method on this to get the value returned by this task. In this way you could get hold of all the future task values without having to wait for any particular task to get complete (since your first future task could have the longest completion time)
I am looking for a way to execute batches of tasks in java. The idea is to have an ExecutorService based on a thread pool that will allow me to spread a set of Callable among different threads from a main thread. This class should provide a waitForCompletion method that will put the main thread to sleep until all tasks are executed. Then the main thread should be awaken, and it will perform some operations and resubmit a set of tasks.
This process will be repeated numerous times, so I would like to use ExecutorService.shutdown as this would require to create multiple instances of ExecutorService.
Currently I have implemented it in the following way using a AtomicInteger, and a Lock/Condition:
public class BatchThreadPoolExecutor extends ThreadPoolExecutor {
private final AtomicInteger mActiveCount;
private final Lock mLock;
private final Condition mCondition;
public <C extends Callable<V>, V> Map<C, Future<V>> submitBatch(Collection<C> batch){
...
for(C task : batch){
submit(task);
mActiveCount.incrementAndGet();
}
}
#Override
protected void afterExecute(Runnable r, Throwable t) {
super.afterExecute(r, t);
mLock.lock();
if (mActiveCount.decrementAndGet() == 0) {
mCondition.signalAll();
}
mLock.unlock();
}
public void awaitBatchCompletion() throws InterruptedException {
...
// Lock and wait until there is no active task
mLock.lock();
while (mActiveCount.get() > 0) {
try {
mCondition.await();
} catch (InterruptedException e) {
mLock.unlock();
throw e;
}
}
mLock.unlock();
}
}
Please not that I will not necessarily submit all the tasks from the batch at once, therefore CountDownLatch does not seem to be an option.
Is this a valid way to do it? Is there a more efficient/elegant way to implement that?
Thanks
I think the ExecutorService itself will be able to perform your requirements.
Call invokeAll([...]) and iterate over all of your Tasks. All Tasks are finished, if you can iterate through all Futures.
As the other answers point out, there doesn't seem to be any part of your use case that requires a custom ExecutorService.
It seems to me that all you need to do is submit a batch, wait for them all to finish while ignoring interrupts on the main thread, then submit another batch perhaps based on the results of the first batch. I believe this is just a matter of:
ExecutorService service = ...;
Collection<Future> futures = new HashSet<Future>();
for (Callable callable : tasks) {
Future future = service.submit(callable);
futures.add(future);
}
for(Future future : futures) {
try {
future.get();
} catch (InterruptedException e) {
// Figure out if the interruption means we should stop.
}
}
// Use the results of futures to figure out a new batch of tasks.
// Repeat the process with the same ExecutorService.
I agree with #ckuetbach that the default Java Executors should provide you with all of the functionality you need to execute a "batch" of jobs.
If I were you I would just submit a bunch of jobs, wait for them to finish with the ExecutorService.awaitTermination() and then just start up a new ExecutorService. Doing this to save on "thread creations" is premature optimization unless you are doing this 100s of times a second or something.
If you really are stuck on using the same ExecutorService for each of the batches then you can allocate a ThreadPoolExecutor yourself, and be in a loop looking at ThreadPoolExecutor.getActiveCount(). Something like:
BlockingQueue jobQueue = new LinkedBlockingQueue<Runnable>();
ThreadPoolExecutor executor = new ThreadPoolExecutor(NUM_THREADS, NUM_THREADS,
0L, TimeUnit.MILLISECONDS, jobQueue);
// submit your batch of jobs ...
// need to wait a bit for the jobs to start
Thread.sleep(100);
while (executor.getActiveCount() > 0 && jobQueue.size() > 0) {
// to slow the spin
Thread.sleep(1000);
}
// continue on to submit the next batch
I'm trying to find a less clunky solution to a Java concurrency problem.
The gist of the problem is that I need a shutdown call to block while there are still worker threads active, but the crucial aspect is that the worker tasks are each spawned and completed asynchronously so the hold and release must be done by different threads. I need them to somehow send a signal to the shutdown thread once their work has completed. Just to make things more interesting, the worker threads cannot block each other so I'm unsure about the application of a Semaphore in this particular instance.
I have a solution which I think safely does the job, but my unfamiliarity with the Java concurrency utils leads me to think that there might be a much easier or more elegant pattern. Any help in this regard would be greatly appreciated.
Here's what I have so far, fairly sparse except for the comments:
final private ReentrantReadWriteLock shutdownLock = new ReentrantReadWriteLock();
volatile private int activeWorkerThreads;
private boolean isShutdown;
private void workerTask()
{
try
{
// Point A: Worker tasks mustn't block each other.
shutdownLock.readLock().lock();
// Point B: I only want worker tasks to continue if the shutdown signal
// hasn't already been received.
if (isShutdown)
return;
activeWorkerThreads ++;
// Point C: This async method call returns immediately, soon after which
// we release our lock. The shutdown thread may then acquire the write lock
// but we want it to continue blocking until all of the asynchronous tasks
// have completed.
executeAsynchronously(new Runnable()
{
#Override
final public void run()
{
try
{
// Do stuff.
}
finally
{
// Point D: Release of shutdown thread loop, if there are no other
// active worker tasks.
activeWorkerThreads --;
}
}
});
}
finally
{
shutdownLock.readLock().unlock();
}
}
final public void shutdown()
{
try
{
// Point E: Shutdown thread must block while any worker threads
// have breached Point A.
shutdownLock.writeLock().lock();
isShutdown = true;
// Point F: Is there a better way to wait for this signal?
while (activeWorkerThreads > 0)
;
// Do shutdown operation.
}
finally
{
shutdownLock.writeLock().unlock();
}
}
Thanks in advance for any help!
Russ
Declaring activeWorkerThreads as volatile doesn't allow you to do activeWorkerThreads++, as ++ is just shorthand for,
activeWorkerThreads = activeWorkerThreads + 1;
Which isn't atomic. Use AtomicInteger instead.
Does executeAsynchronously() send jobs to a ExecutorService? If so you can just use the awaitTermination method, so your shutdown hook will be,
executor.shutdown();
executor.awaitTermination(1, TimeUnit.Minutes);
You can use a semaphore in this scenario and not require a busy wait for the shutdown() call. The way to think of it is as a set of tickets that are handed out to workers to indicate that they are in-flight. If the shutdown() method can acquire all of the tickets then it knows that it has drained all workers and there is no activity. Because #acquire() is a blocking call the shutdown() won't spin. I've used this approach for a distributed master-worker library and its easy extend it to handle timeouts and retrials.
Executor executor = // ...
final int permits = // ...
final Semaphore semaphore = new Semaphore(permits);
void schedule(final Runnable task) {
semaphore.acquire();
try {
executor.execute(new Runnable() {
#Override public run() {
try {
task.run();
} finally {
semaphore.release();
}
}
});
} catch (RejectedExecutionException e) {
semaphore.release();
throw e;
}
}
void shutDown() {
semaphore.acquireUninterruptibly(permits);
// do stuff
}
ExecutorService should be a preferred solution as sbridges mentioned.
As an alternative, if the number of worker threads is fixed, then you can use CountDownLatch:
final CountDownLatch latch = new CountDownLatch(numberOfWorkers);
Pass the latch to every worker thread and call latch.countDown() when task is done.
Call latch.await() from the main thread to wait for all tasks to complete.
Whoa nelly. Never do this:
// Point F: Is there a better way to wait for this signal?
while (activeWorkerThreads > 0)
;
You're spinning and consuming CPU. Use a proper notification:
First: synchronize on an object, then check activeWorkerThreads, and wait() on the object if it's still > 0:
synchronized (mutexObject) {
while (activeWorkerThreads > 0) {
mutexObject.wait();
}
}
Second: Have the workers notify() the object after they decrement the activeWorkerThreads count. You must synchronize on the object before calling notify.
synchronized (mutexObject) {
activeWorkerThreads--;
mutexObject.notify();
}
Third: Seeing as you are (after implementing 1 & 2) synchronizing on an object whenever you touch activeWorkerThreads, use it as protection; there is no need for the variable to be volatile.
Then: the same object you use as a mutex for controlling access to activeWorkerThreads could also be used to control access to isShutdown. Example:
synchronized (mutexObject) {
if (isShutdown) {
return;
}
}
This won't cause workers to block each other except for immeasurably small amounts of time (which you likely do not avoid by using a read-write lock anyway).
This is more like a comment to sbridges answer, but it was a bit too long to submit as a comment.
Anyways, just 1 comment.
When you shutdown the executor, submitting new task to the executor will result in unchecked RejectedExecutionException if you use the default implementations (like Executors.newSingleThreadExecutor()). So in your case you probably want to use the following code.
code:
new ThreadPoolExecutor(1,
1,
1,
TimeUnit.HOURS,
new LinkedBlockingQueue<Runnable>(),
new ThreadPoolExecutor.DiscardPolicy());
This way, the tasks that were submitted to the executor after shutdown() was called, are simply ignored. The parameter above (1,1... etc) should produce an executor that basically is a single-thread executor, but doesn't throw the runtime exception.