Is it good to have enum implementation with processing logic? - java

In the below example Enums do the amount of processing that a class would do.
enum TriggerHandlerType {
DASHBOARD {
#Override
TriggerHandler create() {
return new DashboardTriggerHandler();
}
},
COMPONENT_HANDLER {
//...
};
abstract TriggerHandler create();
}
private static TriggerContext getTriggerContext(TriggerHandlerType triggerHandlerType) throws TriggerHandlerException {
return new TriggerContext(triggerHandlerType.create());
}
Enums are usually used for type safe storage of constants where as in this case they will be returning varying values based on the processing logic. In a way its seems to be a comprehensive technique as the Enums here do the state determination themselves which eases the processing of classes. Also since the return values are a subset of finite values, it seems to make some sense to have the processing handled by the Enums themselves.
I do see problem here where this will break the Open-Close principle in SOLID and the class will have increment in lines of code whenever more enums get added, Could anyone share your thoughts on this?

I had an enum as such, doing operations like OR, AND, SEQ and such.
With java 8 and just one overriden method you could also make a constructor with a functional interface as parameter.
enum TriggerHandlerType {
DASHBOARD(() -> DashboardTriggerHandler::new)),
COMPONENT_HANDLER (() -> { ... });
private final Fun fun;
private TriggerHandlerType(Fun fun) {
this.fun = fun;
}
public TriggerHandler create() {
fun.apply();
}
}
In an other case I did not use this technique, to decouple classes, and have clear tiers of classes. The enum was an early class not already using later classes.
A Map from enum to handler would be OO too. A unit test might check that the created map has a size equal to the enum values'.
I need not say, that enum is an artificial coupling. Fixed number of elements or not, one could make separate classes/singletons.
so it depends.

the real answer is: depends what is the enum defined for..
you can define enum that do some functionality constantly implemented by your API clients as syntax sugar...
a good example of that is the java TimerUnit where every constant is a final class that can be used to calculate time transformations
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/TimeUnit.html#toHours(long)
other enums implement the comparator interface and implement in its constants already defined sort criterias..
all of them are valid since are sintax sugar

Related

How do I avoid breaking the Liskov substitution principle with a class that implements multiple interfaces?

Given the following class:
class Example implements Interface1, Interface2 {
...
}
When I instantiate the class using Interface1:
Interface1 example = new Example();
...then I can call only the Interface1 methods, and not the Interface2 methods, unless I cast:
((Interface2) example).someInterface2Method();
Of course, to make this runtime safe, I should also wrap this with an instanceof check:
if (example instanceof Interface2) {
((Interface2) example).someInterface2Method();
}
I'm aware that I could have a wrapper interface that extends both interfaces, but then I could end up with multiple interfaces to cater for all the possible permutations of interfaces that can be implemented by the same class. The Interfaces in question do not naturally extend one another so inheritance also seems wrong.
Does the instanceof/cast approach break LSP as I am interrogating the runtime instance to determine its implementations?
Whichever implementation I use seems to have some side-effect either in bad design or usage.
I'm aware that I could have a wrapper interface that extends both
interfaces, but then I could end up with multiple interfaces to cater
for all the possible permutations of interfaces that can be
implemented by the same class
I suspect that if you're finding that lots of your classes implement different combinations of interfaces then either: your concrete classes are doing too much; or (less likely) your interfaces are too small and too specialised, to the point of being useless individually.
If you have good reason for some code to require something that is both a Interface1 and a Interface2 then absolutely go ahead and make a combined version that extends both. If you struggle to think of an appropriate name for this (no, not FooAndBar) then that's an indicator that your design is wrong.
Absolutely do not rely on casting anything. It should only be used as a last resort and usually only for very specific problems (e.g. serialization).
My favourite and most-used design pattern is the decorator pattern. As such most of my classes will only ever implement one interface (except for more generic interfaces such as Comparable). I would say that if your classes are frequently/always implementing more than one interface then that's a code smell.
If you're instantiating the object and using it within the same scope then you should just be writing
Example example = new Example();
Just so it's clear (I'm not sure if this is what you were suggesting), under no circumstances should you ever be writing anything like this:
Interface1 example = new Example();
if (example instanceof Interface2) {
((Interface2) example).someInterface2Method();
}
Your class can implement multiple interfaces fine, and it is not breaking any OOP principles. On the contrary, it is following the interface segregation principle.
It is confusing why would you have a situation where something of type Interface1 is expected to provide someInterface2Method(). That is where your design is wrong.
Think about it in a slightly different way: Imagine you have another method, void method1(Interface1 interface1). It can't expect interface1 to also be an instance of Interface2. If it was the case, the type of the argument should have been different. The example you have shown is precisely this, having a variable of type Interface1 but expecting it to also be of type Interface2.
If you want to be able to call both methods, you should have the type of your variable example set to Example. That way you avoid the instanceof and type casting altogether.
If your two interfaces Interface1 and Interface2 are not that loosely coupled, and you will often need to call methods from both, maybe separating the interfaces wasn't such a good idea, or maybe you want to have another interface which extends both.
In general (although not always), instanceof checks and type casts often indicate some OO design flaw. Sometimes the design would fit for the rest of the program, but you would have a small case where it is simpler to type cast rather than refactor everything. But if possible you should always strive to avoid it at first, as part of your design.
You have two different options (I bet there are a lot more).
The first is to create your own interface which extends the other two:
interface Interface3 extends Interface1, Interface2 {}
And then use that throughout your code:
public void doSomething(Interface3 interface3){
...
}
The other way (and in my opinion the better one) is to use generics per method:
public <T extends Interface1 & Interface2> void doSomething(T t){
...
}
The latter option is in fact less restricted than the former, because the generic type T gets dynamically inferred and thus leads to less coupling (a class doesn't have to implement a specific grouping interface, like the first example).
The core issue
Slightly tweaking your example so I can address the core issue:
public void DoTheThing(Interface1 example)
{
if (example instanceof Interface2)
{
((Interface2) example).someInterface2Method();
}
}
So you defined the method DoTheThing(Interface1 example). This is basically saying "to do the thing, I need an Interface1 object".
But then, in your method body, it appears that you actually need an Interface2 object. Then why didn't you ask for one in your method parameters? Quite obviously, you should've been asking for an Interface2
What you're doing here is assuming that whatever Interface1 object you get will also be an Interface2 object. This is not something you can rely on. You might have some classes which implement both interfaces, but you might as well have some classes which only implement one and not the other.
There is no inherent requirement whereby Interface1 and Interface2 need to both be implemented on the same object. You can't know (nor rely on the assumption) that this is the case.
Unless you define the inherent requirement and apply it.
interface InterfaceBoth extends Interface1, Interface2 {}
public void DoTheThing(InterfaceBoth example)
{
example.someInterface2Method();
}
In this case, you've required InterfaceBoth object to both implement Interface1 and Interface2. So whenever you ask for an InterfaceBoth object, you can be sure to get an object which implements both Interface1 and Interface2, and thus you can use methods from either interface without even needing to cast or check the type.
You (and the compiler) know that this method will always be available, and there's no chance of this not working.
Note: You could've used Example instead of creating the InterfaceBoth interface, but then you would only be able to use objects of type Example and not any other class which would implement both interfaces. I assume you're interested in handling any class which implements both interfaces, not just Example.
Deconstructing the issue further.
Look at this code:
ICarrot myObject = new Superman();
If you assume this code compiles, what can you tell me about the Superman class? That it clearly implements the ICarrot interface. That is all you can tell me. You have no idea whether Superman implements the IShovel interface or not.
So if I try to do this:
myObject.SomeMethodThatIsFromSupermanButNotFromICarrot();
or this:
myObject.SomeMethodThatIsFromIShovelButNotFromICarrot();
Should you be surprised if I told you this code compiles? You should, because this code doesn't compile.
You may say "but I know that it's a Superman object which has this method!". But then you'd be forgetting that you only told the compiler it was an ICarrot variable, not a Superman variable.
You may say "but I know that it's a Superman object which implements the IShovel interface!". But then you'd be forgetting that you only told the compiler it was an ICarrot variable, not a Superman or IShovel variable.
Knowing this, let's look back at your code.
Interface1 example = new Example();
All you've said is that you have an Interface1 variable.
if (example instanceof Interface2) {
((Interface2) example).someInterface2Method();
}
It makes no sense for you to assume that this Interface1 object also happens to implement a second unrelated interface. Even if this code works on a technical level, it is a sign of bad design, the developer is expecting some inherent correlation between two interfaces without actually having created this correlation.
You may say "but I know I'm putting an Example object in, the compiler should know that too!" but you'd be missing the point that if this were a method parameter, you would have no way of knowing what the callers of your method are sending.
public void DoTheThing(Interface1 example)
{
if (example instanceof Interface2)
{
((Interface2) example).someInterface2Method();
}
}
When other callers call this method, the compiler is only going to stop them if the passed object does not implement Interface1. The compiler is not going to stop someone from passing an object of a class which implements Interface1 but does not implement Interface2.
Your example does not break LSP, but it seems to break SRP. If you encounter such case where you need to cast an object to its 2nd interface, the method that contains such code can be considered busy.
Implementing 2 (or more) interfaces in a class is fine. In deciding which interface to use as its data type depends entirely on the context of the code that will use it.
Casting is fine, especially when changing context.
class Payment implements Expirable, Limited {
/* ... */
}
class PaymentProcessor {
// Using payment here because i'm working with payments.
public void process(Payment payment) {
boolean expired = expirationChecker.check(payment);
boolean pastLimit = limitChecker.check(payment);
if (!expired && !pastLimit) {
acceptPayment(payment);
}
}
}
class ExpirationChecker {
// This the `Expirable` world, so i'm using Expirable here
public boolean check(Expirable expirable) {
// code
}
}
class LimitChecker {
// This class is about checking limits, thats why im using `Limited` here
public boolean check(Limited limited) {
// code
}
}
Usually, many, client-specific interfaces are fine, and somewhat part of the Interface segregation principle (the "I" in SOLID). Some more specific points, on a technical level, have already been mentioned in other answers.
Particularly that you can go too far with this segregation, by having a class like
class Person implements FirstNameProvider, LastNameProvider, AgeProvider ... {
#Override String getFirstName() {...}
#Override String getLastName() {...}
#Override int getAge() {...}
...
}
Or, conversely, that you have an implementing class that is too powerful, as in
class Application implements DatabaseReader, DataProcessor, UserInteraction, Visualizer {
...
}
I think that the main point in the Interface Segregation Principle is that the interfaces should be client-specific. They should basically "summarize" the functions that are required by a certain client, for a certain task.
To put it that way: The issue is to strike the right balance between the extremes that I sketched above. When I'm trying to figure out interfaces and their relationships (mutually, and in terms of the classes that implement them), I always try to take a step back and ask myself, in an intentionally naïve way: Who is going to receive what, and what is he going to do with it?
Regarding your example: When all your clients always need the functionality of Interface1 and Interface2 at the same time, then you should consider either defining an
interface Combined extends Interface1, Interface2 { }
or not have different interfaces in the first place. On the other hand, when the functionalities are completely distinct and unrelated and never used together, then you should wonder why the single class is implementing them at the same time.
At this point, one could refer to another principle, namely Composition over inheritance. Although it is not classically related to implementing multiple interfaces, composition can also be favorable in this case. For example, you could change your class to not implement the interfaces directly, but only provide instances that implement them:
class Example {
Interface1 getInterface1() { ... }
Interface2 getInterface2() { ... }
}
It looks a bit odd in this Example (sic!), but depending on the complexity of the implementation of Interface1 and Interface2, it can really make sense to keep them separated.
Edited in response to the comment:
The intention here is not to pass the concrete class Example to methods that need both interfaces. A case where this could make sense is rather when a class combines the functionalities of both interfaces, but does not do so by directly implementing them at the same time. It's hard to make up an example that does not look too contrived, but something like this might bring the idea across:
interface DatabaseReader { String read(); }
interface DatabaseWriter { void write(String s); }
class Database {
DatabaseConnection connection = create();
DatabaseReader reader = createReader(connection);
DatabaseReader writer = createWriter(connection);
DatabaseReader getReader() { return reader; }
DatabaseReader getWriter() { return writer; }
}
The client will still rely on the interfaces. Methods like
void create(DatabaseWriter writer) { ... }
void read (DatabaseReader reader) { ... }
void update(DatabaseReader reader, DatabaseWriter writer) { ... }
could then be called with
create(database.getWriter());
read (database.getReader());
update(database.getReader(), database.getWriter());
respectively.
With the help of various posts and comments on this page, a solution has been produced, which I feel is correct for my scenario.
The following shows the iterative changes to the solution to meet SOLID principles.
Requirement
To produce the response for a web service, key + object pairs are added to a response object. There are lots of different key + object pairs that need to be added, each of which may have unique processing required to transform the data from the source to the format required in the response.
From this it is clear that whilst the different key / value pairs may have different processing requirements to transform the source data to the target response object, they all have a common goal of adding an object to the response object.
Therefore, the following interface was produced in solution iteration 1:
Solution Iteration 1
ResponseObjectProvider<T, S> {
void addObject(T targetObject, S sourceObject, String targetKey);
}
Any developer that needs to add an object to the response can now do so using an existing implementation that matches their requirement, or add a new implementation given a new scenario
This is great as we have a common interface which acts as a contract for this common practise of adding response objects
However, one scenario requires that the target object should be taken from the source object given a particular key, "identifier".
There are options here, the first is to add an implementation of the existing interface as follows:
public class GetIdentifierResponseObjectProvider<T extends Map, S extends Map> implements ResponseObjectProvider<T, S> {
public void addObject(final T targetObject, final S sourceObject, final String targetKey) {
targetObject.put(targetKey, sourceObject.get("identifier"));
}
}
This works, however this scenario could be required for other source object keys ("startDate", "endDate" etc...) so this implementation should be made more generic to allow for reuse in this scenario.
Additionally, other implementations may require more context information to perform the addObject operation... So a new generic type should be added to cater for this
Solution Iteration 2
ResponseObjectProvider<T, S, U> {
void addObject(T targetObject, S sourceObject, String targetKey);
void setParams(U params);
U getParams();
}
This interface caters for both usage scenarios; the implementations that require additional params to perform the addObject operation and the implementations that do not
However, considering the latter of the usage scenarios, the implementations that do not require additional parameters will break the SOLID Interface Segregation Principle as these implementations will override getParams and setParams methods but not implement them. e.g:
public class GetObjectBySourceKeyResponseObjectProvider<T extends Map, S extends Map, U extends String> implements ResponseObjectProvider<T, S, U> {
public void addObject(final T targetObject, final S sourceObject, final String targetKey) {
targetObject.put(targetKey, sourceObject.get(U));
}
public void setParams(U params) {
//unimplemented method
}
U getParams() {
//unimplemented method
}
}
Solution Iteration 3
To fix the Interface Segregation issue, the getParams and setParams interface methods were moved into a new Interface:
public interface ParametersProvider<T> {
void setParams(T params);
T getParams();
}
The implementations that require parameters can now implement the ParametersProvider interface:
public class GetObjectBySourceKeyResponseObjectProvider<T extends Map, S extends Map, U extends String> implements ResponseObjectProvider<T, S>, ParametersProvider<U>
private String params;
public void setParams(U params) {
this.params = params;
}
public U getParams() {
return this.params;
}
public void addObject(final T targetObject, final S sourceObject, final String targetKey) {
targetObject.put(targetKey, sourceObject.get(params));
}
}
This solves the Interface Segregation issue but causes two more issues... If the calling client wants to program to an interface, i.e:
ResponseObjectProvider responseObjectProvider = new GetObjectBySourceKeyResponseObjectProvider<>();
Then the addObject method will be available to the instance, but NOT the getParams and setParams methods of the ParametersProvider interface... To call these a cast is required, and to be safe an instanceof check should also be performed:
if(responseObjectProvider instanceof ParametersProvider) {
((ParametersProvider)responseObjectProvider).setParams("identifier");
}
Not only is this undesirable it also breaks the Liskov Substitution Principle - "if S is a subtype of T, then objects of type T in a program may be replaced with objects of type S without altering any of the desirable properties of that program"
i.e. if we replaced an implementation of ResponseObjectProvider that also implements ParametersProvider, with an implementation that does not implement ParametersProvider then this could alter the some of the desirable properties of the program... Additionally, the client needs to be aware of which implementation is in use to call the correct methods
An additional problem is the usage for calling clients. If the calling client wanted to use an instance that implements both interfaces to perform addObject multiple times, the setParams method would need to be called before addObject... This could cause avoidable bugs if care is not taken when calling.
Solution Iteration 4 - Final Solution
The interfaces produced from Solution Iteration 3 solve all of the currently known usage requirements, with some flexibility provided by generics for implementation using different types. However, this solution breaks the Liskov Substitution Principle and has a non-obvious usage of setParams for the calling client
The solution is to have two separate interfaces, ParameterisedResponseObjectProvider and ResponseObjectProvider.
This allows the client to program to an interface, and would select the appropriate interface depending on whether the objects being added to the response require additional parameters or not
The new interface was first implemented as an extension of ResponseObjectProvider:
public interface ParameterisedResponseObjectProvider<T,S,U> extends ResponseObjectProvider<T, S> {
void setParams(U params);
U getParams();
}
However, this still had the usage issue, where the calling client would first need to call setParams before calling addObject and also make the code less readable.
So the final solution has two separate interfaces defined as follows:
public interface ResponseObjectProvider<T, S> {
void addObject(T targetObject, S sourceObject, String targetKey);
}
public interface ParameterisedResponseObjectProvider<T,S,U> {
void addObject(T targetObject, S sourceObject, String targetKey, U params);
}
This solution solves the breaches of Interface Segregation and Liskov Substitution principles and also improves the usage for calling clients and improves the readability of the code.
It does mean that the client needs to be aware of the different interfaces, but since the contracts are different this seems to be a justified decision especially when considering all the issues that the solution has avoided.
The problem you describe often comes about through over-zealous application of the Interface Segregation Principle, encouraged by languages' inability to specify that members of one interface should, by default, be chained to static methods which could implement sensible behaviors.
Consider, for example, a basic sequence/enumeration interface and the following behaviors:
Produce an enumerator which can read out the objects if no other iterator has yet been created.
Produce an enumerator which can read out the objects even if another iterator has already been created and used.
Report how many items are in the sequence
Report the value of the Nth item in the sequence
Copy a range of items from the object into an array of that type.
Yield a reference to an immutable object that can accommodate the above operations efficiently with contents that are guaranteed never to change.
I would suggest that such abilities should be part of the basic sequence/enumeration interface, along with a method/property to indicate which of the above operations are meaningfully supported. Some kinds of single-shot on-demand enumerators (e.g. an infinite truly-random sequence generator) might not be able to support any of those functions, but segregating such functions into separate interfaces will make it much harder to produce efficient wrappers for many kinds of operations.
One could produce a wrapper class that would accommodate all of the above operations, though not necessarily efficiently, on any finite sequence which supports the first ability. If, however, the class is being used to wrap an object that already supports some of those abilities (e.g. access the Nth item), having the wrapper use the underlying behaviors could be much more efficient than having it do everything via the second function above (e.g. creating a new enumerator, and using that to iteratively read and ignore items from the sequence until the desired one is reached).
Having all objects that produce any kind of sequence support an interface that includes all of the above, along with an indication of what abilities are supported, would be cleaner than trying to have different interfaces for different subsets of abilities, and requiring that wrapper classes make explicit provision for any combinations they want to expose to their clients.

get or set a class value as strings [duplicate]

Today I was browsing through some questions on this site and I found a mention of an enum being used in singleton pattern about purported thread-safety benefits to such solution.
I have never used enums and I have been programming in Java for more than a couple of years now. And apparently, they changed a lot. Now they even do full-blown support of OOP within themselves.
Now why and what should I use enum in day to day programming?
You should always use enums when a variable (especially a method parameter) can only take one out of a small set of possible values. Examples would be things like type constants (contract status: "permanent", "temp", "apprentice"), or flags ("execute now", "defer execution").
If you use enums instead of integers (or String codes), you increase compile-time checking and avoid errors from passing in invalid constants, and you document which values are legal to use.
BTW, overuse of enums might mean that your methods do too much (it's often better to have several separate methods, rather than one method that takes several flags which modify what it does), but if you have to use flags or type codes, enums are the way to go.
As an example, which is better?
/** Counts number of foobangs.
* #param type Type of foobangs to count. Can be 1=green foobangs,
* 2=wrinkled foobangs, 3=sweet foobangs, 0=all types.
* #return number of foobangs of type
*/
public int countFoobangs(int type)
versus
/** Types of foobangs. */
public enum FB_TYPE {
GREEN, WRINKLED, SWEET,
/** special type for all types combined */
ALL;
}
/** Counts number of foobangs.
* #param type Type of foobangs to count
* #return number of foobangs of type
*/
public int countFoobangs(FB_TYPE type)
A method call like:
int sweetFoobangCount = countFoobangs(3);
then becomes:
int sweetFoobangCount = countFoobangs(FB_TYPE.SWEET);
In the second example, it's immediately clear which types are allowed, docs and implementation cannot go out of sync, and the compiler can enforce this.
Also, an invalid call like
int sweetFoobangCount = countFoobangs(99);
is no longer possible.
Why use any programming language feature? The reason we have languages at all is for
Programmers to efficiently and correctly express algorithms in a form computers can use.
Maintainers to understand algorithms others have written and correctly make changes.
Enums improve both likelihood of correctness and readability without writing a lot of boilerplate. If you are willing to write boilerplate, then you can "simulate" enums:
public class Color {
private Color() {} // Prevent others from making colors.
public static final Color RED = new Color();
public static final Color AMBER = new Color();
public static final Color GREEN = new Color();
}
Now you can write:
Color trafficLightColor = Color.RED;
The boilerplate above has much the same effect as
public enum Color { RED, AMBER, GREEN };
Both provide the same level of checking help from the compiler. Boilerplate is just more typing. But saving a lot of typing makes the programmer more efficient (see 1), so it's a worthwhile feature.
It's worthwhile for at least one more reason, too:
Switch statements
One thing that the static final enum simulation above does not give you is nice switch cases. For enum types, the Java switch uses the type of its variable to infer the scope of enum cases, so for the enum Color above you merely need to say:
Color color = ... ;
switch (color) {
case RED:
...
break;
}
Note it's not Color.RED in the cases. If you don't use enum, the only way to use named quantities with switch is something like:
public Class Color {
public static final int RED = 0;
public static final int AMBER = 1;
public static final int GREEN = 2;
}
But now a variable to hold a color must have type int. The nice compiler checking of the enum and the static final simulation is gone. Not happy.
A compromise is to use a scalar-valued member in the simulation:
public class Color {
public static final int RED_TAG = 1;
public static final int AMBER_TAG = 2;
public static final int GREEN_TAG = 3;
public final int tag;
private Color(int tag) { this.tag = tag; }
public static final Color RED = new Color(RED_TAG);
public static final Color AMBER = new Color(AMBER_TAG);
public static final Color GREEN = new Color(GREEN_TAG);
}
Now:
Color color = ... ;
switch (color.tag) {
case Color.RED_TAG:
...
break;
}
But note, even more boilerplate!
Using an enum as a singleton
From the boilerplate above you can see why an enum provides a way to implement a singleton. Instead of writing:
public class SingletonClass {
public static final void INSTANCE = new SingletonClass();
private SingletonClass() {}
// all the methods and instance data for the class here
}
and then accessing it with
SingletonClass.INSTANCE
we can just say
public enum SingletonClass {
INSTANCE;
// all the methods and instance data for the class here
}
which gives us the same thing. We can get away with this because Java enums are implemented as full classes with only a little syntactic sugar sprinkled over the top. This is again less boilerplate, but it's non-obvious unless the idiom is familiar to you. I also dislike the fact that you get the various enum functions even though they don't make much sense for the singleton: ord and values, etc. (There's actually a trickier simulation where Color extends Integer that will work with switch, but it's so tricky that it even more clearly shows why enum is a better idea.)
Thread safety
Thread safety is a potential problem only when singletons are created lazily with no locking.
public class SingletonClass {
private static SingletonClass INSTANCE;
private SingletonClass() {}
public SingletonClass getInstance() {
if (INSTANCE == null) INSTANCE = new SingletonClass();
return INSTANCE;
}
// all the methods and instance data for the class here
}
If many threads call getInstance simultaneously while INSTANCE is still null, any number of instances can be created. This is bad. The only solution is to add synchronized access to protect the variable INSTANCE.
However, the static final code above does not have this problem. It creates the instance eagerly at class load time. Class loading is synchronized.
The enum singleton is effectively lazy because it's not initialized until first use. Java initialization is also synchronized, so multiple threads can't initialize more than one instance of INSTANCE. You're getting a lazily initialized singleton with very little code. The only negative is the the rather obscure syntax. You need to know the idiom or thoroughly understand how class loading and initialization work to know what's happening.
Besides the already mentioned use-cases, I often find enums useful for implementing the strategy pattern, following some basic OOP guidelines:
Having the code where the data is (that is, within the enum itself -- or often within the enum constants, which may override methods).
Implementing an interface (or more) in order to not bind the client code to the enum (which should only provide a set of default implementations).
The simplest example would be a set of Comparator implementations:
enum StringComparator implements Comparator<String> {
NATURAL {
#Override
public int compare(String s1, String s2) {
return s1.compareTo(s2);
}
},
REVERSE {
#Override
public int compare(String s1, String s2) {
return NATURAL.compare(s2, s1);
}
},
LENGTH {
#Override
public int compare(String s1, String s2) {
return new Integer(s1.length()).compareTo(s2.length());
}
};
}
This "pattern" can be used in far more complex scenarios, making extensive use of all the goodies that come with the enum: iterating over the instances, relying on their implicit order, retrieving an instance by its name, static methods providing the right instance for specific contexts etc. And still you have this all hidden behind the interface so your code will work with custom implementations without modification in case you want something that's not available among the "default options".
I've seen this successfully applied for modeling the concept of time granularity (daily, weekly, etc.) where all the logic was encapsulated in an enum (choosing the right granularity for a given time range, specific behavior bound to each granularity as constant methods etc.). And still, the Granularity as seen by the service layer was simply an interface.
Something none of the other answers have covered that make enums particularly powerful are the ability to have template methods. Methods can be part of the base enum and overridden by each type. And, with the behavior attached to the enum, it often eliminates the need for if-else constructs or switch statements as this blog post demonstrates - where enum.method() does what originally would be executed inside the conditional. The same example also shows the use of static imports with enums as well producing much cleaner DSL like code.
Some other interesting qualities include the fact that enums provide implementation for equals(), toString() and hashCode() and implement Serializable and Comparable.
For a complete rundown of all that enums have to offer I highly recommend Bruce Eckel's Thinking in Java 4th edition which devotes an entire chapter to the topic. Particularly illuminating are the examples involving a Rock, Paper, Scissors (i.e. RoShamBo) game as enums.
From Java documents -
You should use enum types any time you
need to represent a fixed set of
constants. That includes natural enum
types such as the planets in our solar
system and data sets where you know
all possible values at compile
time—for example, the choices on a
menu, command line flags, and so on.
A common example is to replace a class with a set of private static final int constants (within reasonable number of constants) with an enum type. Basically if you think you know all possible values of "something" at compile time you can represent that as an enum type. Enums provide readability and flexibility over a class with constants.
Few other advantages that I can think of enum types. They is always one instance of a particular enum class (hence the concept of using enums as singleton arrives). Another advantage is you can use enums as a type in switch-case statement. Also you can use toString() on the enum to print them as readable strings.
Now why and what for should I used
enum in day to day programming?
You can use an Enum to represent a smallish fixed set of constants or an internal class mode while increasing readability. Also, Enums can enforce a certain rigidity when used in method parameters. They offer the interesting possibility of passing information to a constructor like in the Planets example on Oracle's site and, as you've discovered, also allow a simple way to create a singleton pattern.
ex: Locale.setDefault(Locale.US) reads better than Locale.setDefault(1) and enforces the use of the fixed set of values shown in an IDE when you add the . separator instead of all integers.
Enums enumerate a fixed set of values, in a self-documenting way.
They make your code more explicit, and also less error-prone.
Why not using String, or int, instead of Enum, for constants?
The compiler won't allow typos, neither values out of the fixed
set, as enums are types by themselves. Consequences:
You won't have to write a pre-condition (or a manual if) to assure your argument is in the valid range.
The type invariant comes for free.
Enums can have behaviour, just as any other class.
You would probably need a similar amount of memory to use Strings, anyway (this depends on the complexity of the Enum).
Moreover, each of the Enum's instances is a class, for which you can define its individual behaviour.
Plus, they assure thread safety upon creation of the instances (when the enum is loaded), which has seen great application in simplifying the Singleton Pattern.
This blog illustrates some of its applications, such as a State Machine for a parser.
enum means enumeration i.e. mention (a number of things) one by one.
An enum is a data type that contains fixed set of constants.
OR
An enum is just like a class, with a fixed set of instances known at compile time.
For example:
public class EnumExample {
interface SeasonInt {
String seasonDuration();
}
private enum Season implements SeasonInt {
// except the enum constants remaining code looks same as class
// enum constants are implicitly public static final we have used all caps to specify them like Constants in Java
WINTER(88, "DEC - FEB"), SPRING(92, "MAR - JUN"), SUMMER(91, "JUN - AUG"), FALL(90, "SEP - NOV");
private int days;
private String months;
Season(int days, String months) { // note: constructor is by default private
this.days = days;
this.months = months;
}
#Override
public String seasonDuration() {
return this+" -> "+this.days + "days, " + this.months+" months";
}
}
public static void main(String[] args) {
System.out.println(Season.SPRING.seasonDuration());
for (Season season : Season.values()){
System.out.println(season.seasonDuration());
}
}
}
Advantages of enum:
enum improves type safety at compile-time checking to avoid errors at run-time.
enum can be easily used in switch
enum can be traversed
enum can have fields, constructors and methods
enum may implement many interfaces but cannot extend any class because it internally extends Enum class
for more
It is useful to know that enums are just like the other classes with Constant fields and a private constructor.
For example,
public enum Weekday
{
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY
}
The compiler compiles it as follows;
class Weekday extends Enum
{
public static final Weekday MONDAY = new Weekday( "MONDAY", 0 );
public static final Weekday TUESDAY = new Weekday( "TUESDAY ", 1 );
public static final Weekday WEDNESDAY= new Weekday( "WEDNESDAY", 2 );
public static final Weekday THURSDAY= new Weekday( "THURSDAY", 3 );
public static final Weekday FRIDAY= new Weekday( "FRIDAY", 4 );
public static final Weekday SATURDAY= new Weekday( "SATURDAY", 5 );
public static final Weekday SUNDAY= new Weekday( "SUNDAY", 6 );
private Weekday( String s, int i )
{
super( s, i );
}
// other methods...
}
What is an enum
enum is a keyword defined for Enumeration a new data type. Typesafe enumerations should be used liberally. In particular, they are a robust alternative to the simple String or int constants used in much older APIs to represent sets of related items.
Why to use enum
enums are implicitly final subclasses of java.lang.Enum
if an enum is a member of a class, it's implicitly static
new can never be used with an enum, even within the enum type itself
name and valueOf simply use the text of the enum constants, while toString may be overridden to provide any content, if desired
for enum constants, equals and == amount to the same thing, and can be used interchangeably
enum constants are implicitly public static final
Note
enums cannot extend any class.
An enum cannot be a superclass.
the order of appearance of enum constants is called their "natural order", and defines the order used by other items as well: compareTo, iteration order of values, EnumSet, EnumSet.range.
An enumeration can have constructors, static and instance blocks, variables, and methods but cannot have abstract methods.
Apart from all said by others.. In an older project that I used to work for, a lot of communication between entities(independent applications) was using integers which represented a small set. It was useful to declare the set as enum with static methods to get enum object from value and viceversa. The code looked cleaner, switch case usability and easier writing to logs.
enum ProtocolType {
TCP_IP (1, "Transmission Control Protocol"),
IP (2, "Internet Protocol"),
UDP (3, "User Datagram Protocol");
public int code;
public String name;
private ProtocolType(int code, String name) {
this.code = code;
this.name = name;
}
public static ProtocolType fromInt(int code) {
switch(code) {
case 1:
return TCP_IP;
case 2:
return IP;
case 3:
return UDP;
}
// we had some exception handling for this
// as the contract for these was between 2 independent applications
// liable to change between versions (mostly adding new stuff)
// but keeping it simple here.
return null;
}
}
Create enum object from received values (e.g. 1,2) using ProtocolType.fromInt(2)
Write to logs using myEnumObj.name
Hope this helps.
Enum inherits all the methods of Object class and abstract class Enum. So you can use it's methods for reflection, multithreading, serilization, comparable, etc. If you just declare a static constant instead of Enum, you can't. Besides that, the value of Enum can be passed to DAO layer as well.
Here's an example program to demonstrate.
public enum State {
Start("1"),
Wait("1"),
Notify("2"),
NotifyAll("3"),
Run("4"),
SystemInatilize("5"),
VendorInatilize("6"),
test,
FrameworkInatilize("7");
public static State getState(String value) {
return State.Wait;
}
private String value;
State test;
private State(String value) {
this.value = value;
}
private State() {
}
public String getValue() {
return value;
}
public void setCurrentState(State currentState) {
test = currentState;
}
public boolean isNotify() {
return this.equals(Notify);
}
}
public class EnumTest {
State test;
public void setCurrentState(State currentState) {
test = currentState;
}
public State getCurrentState() {
return test;
}
public static void main(String[] args) {
System.out.println(State.test);
System.out.println(State.FrameworkInatilize);
EnumTest test=new EnumTest();
test.setCurrentState(State.Notify);
test. stateSwitch();
}
public void stateSwitch() {
switch (getCurrentState()) {
case Notify:
System.out.println("Notify");
System.out.println(test.isNotify());
break;
default:
break;
}
}
}
Use enums for TYPE SAFETY, this is a language feature so you will usually get:
Compiler support (immediately see type issues)
Tool support in IDEs (auto-completion in switch case, missing cases, force default, ...)
In some cases enum performance is also great (EnumSet, typesafe alternative to traditional int-based "bit flags.")
Enums can have methods, constructors, you can even use enums inside enums and combine enums with interfaces.
Think of enums as types to replace a well defined set of int constants (which Java 'inherited' from C/C++) and in some cases to replace bit flags.
The book Effective Java 2nd Edition has a whole chapter about them and goes into more details. Also see this Stack Overflow post.
ENum stands for "Enumerated Type". It is a data type having a fixed set of constants which you define yourself.
In my opinion, all the answers you got up to now are valid, but in my experience, I would express it in a few words:
Use enums if you want the compiler to check the validity of the value of an identifier.
Otherwise, you can use strings as you always did (probably you defined some "conventions" for your application) and you will be very flexible... but you will not get 100% security against typos on your strings and you will realize them only in runtime.
Java lets you restrict variable to having one of only a few predefined values - in other words, one value from an enumerated list.
Using enums can help to reduce bug's in your code.
Here is an example of enums outside a class:
enums coffeesize{BIG , HUGE , OVERWHELMING };
//This semicolon is optional.
This restricts coffeesize to having either: BIG , HUGE , or OVERWHELMING as a variable.
In my experience I have seen Enum usage sometimes cause systems to be very difficult to change. If you are using an Enum for a set of domain-specific values that change frequently, and it has a lot of other classes and components that depend on it, you might want to consider not using an Enum.
For example, a trading system that uses an Enum for markets/exchanges. There are a lot of markets out there and it's almost certain that there will be a lot of sub-systems that need to access this list of markets. Every time you want a new market to be added to your system, or if you want to remove a market, it's possible that everything under the sun will have to be rebuilt and released.
A better example would be something like a product category type. Let's say your software manages inventory for a department store. There are a lot of product categories, and many reasons why this list of categories could change. Managers may want to stock a new product line, get rid of other product lines, and possibly reorganize the categories from time to time. If you have to rebuild and redeploy all of your systems simply because users want to add a product category, then you've taken something that should be simple and fast (adding a category) and made it very difficult and slow.
Bottom line, Enums are good if the data you are representing is very static over time and has a limited number of dependencies. But if the data changes a lot and has a lot of dependencies, then you need something dynamic that isn't checked at compile time (like a database table).
Enum? Why should it be used? I think it's more understood when you will use it. I have the same experience.
Say you have a create, delete, edit and read database operation.
Now if you create an enum as an operation:
public enum operation {
create("1")
delete("2")
edit("3")
read("4")
// You may have is methods here
public boolean isCreate() {
return this.equals(create);
}
// More methods like the above can be written
}
Now, you may declare something like:
private operation currentOperation;
// And assign the value for it
currentOperation = operation.create
So you can use it in many ways. It's always good to have enum for specific things as the database operation in the above example can be controlled by checking the currentOperation. Perhaps one can say this can be accomplished with variables and integer values too. But I believe Enum is a safer and a programmer's way.
Another thing: I think every programmer loves boolean, don't we? Because it can store only two values, two specific values. So Enum can be thought of as having the same type of facilities where a user will define how many and what type of value it will store, just in a slightly different way. :)
So far, I have never needed to use enums. I have been reading about them since they were introduced in 1.5 or version tiger as it was called back in the day. They never really solved a 'problem' for me. For those who use it (and I see a lot of them do), am sure it definitely serves some purpose. Just my 2 quid.
There are many answers here, just want to point two specific ones:
1) Using as constants in Switch-case statement.
Switch case won't allow you to use String objects for case. Enums come in handy. More: http://www.javabeat.net/2009/02/how-to-use-enum-in-switch/
2) Implementing Singleton Design Pattern - Enum again, comes to rescue. Usage, here: What is the best approach for using an Enum as a singleton in Java?
What gave me the Ah-Ha moment was this realization: that Enum has a private constructor only accessible via the public enumeration:
enum RGB {
RED("Red"), GREEN("Green"), BLUE("Blue");
public static final String PREFIX = "color ";
public String getRGBString() {
return PREFIX + color;
}
String color;
RGB(String color) {
this.color = color;
}
}
public class HelloWorld {
public static void main(String[] args) {
String c = RGB.RED.getRGBString();
System.out.print("Hello " + c);
}
}
As for me to make the code readable in future the most useful aplyable case of enumeration is represented in next snippet:
public enum Items {
MESSAGES, CHATS, CITY_ONLINE, FRIENDS, PROFILE, SETTINGS, PEOPLE_SEARCH, CREATE_CHAT
}
#Override
public boolean onCreateOptionsMenu(Menu menuPrm) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate(R.menu.main, menuPrm);
View itemChooserLcl;
for (int i = 0; i < menuPrm.size(); i++) {
MenuItem itemLcl = menuPrm.getItem(i);
itemChooserLcl = itemLcl.getActionView();
if (itemChooserLcl != null) {
//here Im marking each View' tag by enume values:
itemChooserLcl.setTag(Items.values()[i]);
itemChooserLcl.setOnClickListener(drawerMenuListener);
}
}
return true;
}
private View.OnClickListener drawerMenuListener=new View.OnClickListener() {
#Override
public void onClick(View v) {
Items tagLcl= (Items) v.getTag();
switch (tagLcl){
case MESSAGES: ;
break;
case CHATS : ;
break;
case CITY_ONLINE : ;
break;
case FRIENDS : ;
break;
case PROFILE: ;
break;
case SETTINGS: ;
break;
case PEOPLE_SEARCH: ;
break;
case CREATE_CHAT: ;
break;
}
}
};
In addition to #BradB Answer :
That is so true... It's strange that it is the only answer who mention that. When beginners discover enums, they quickly take that as a magic-trick for valid identifier checking for the compiler. And when the code is intended to be use on distributed systems, they cry... some month later. Maintain backward compatibility with enums that contains non static list of values is a real concern, and pain. This is because when you add a value to an existing enum, its type change (despite the name does not).
"Ho, wait, it may look like the same type, right? After all, they’re enums with the same name – and aren’t enums just integers under the hood?" And for these reasons, your compiler will likely not flag the use of one definition of the type itself where it was expecting the other. But in fact, they are (in most important ways) different types. Most importantly, they have different data domains – values that are acceptable given the type. By adding a value, we’ve effectively changed the type of the enum and therefore break backward compatibility.
In conclusion : Use it when you want, but, please, check that the data domain used is a finite, already known, fixed set.
The enum based singleton
a modern look at an old problem
This approach implements the singleton by taking advantage of Java's guarantee that any enum value is instantiated only once in a Java program and enum provides implicit support for thread safety. Since Java enum values are globally accessible, so they can be used as a singleton.
public enum Singleton {
SINGLETON;
public void method() { }
}
How does this work? Well, line two of the code may be considered to something like this:
public final static Singleton SINGLETON = new Singleton();
And we get good old early initialized singleton.
Remember that since this is an enum you can always access to the instance via Singleton. SINGLETON as well:
Singleton s = Singleton.SINGLETON;
Advantages
To prevent creating other instances of singleton during deserialization use enum based singleton because serialization of enum is taken care by JVM. Enum serialization and deserialization work differently than for normal java objects. The only thing that gets serialized is the name of the enum value. During the deserialization process, the enum valueOf method is used with the deserialized name to get the desired instance.
Enum based singleton allows to protect itself from reflection attacks. The enum type actually extends the java Enum class. The reason that reflection cannot be used to instantiate objects of enum type is that the java specification disallows and that rule is coded in the implementation of the newInstance method of the Constructor class, which is usually used for creating objects via reflection:
if ((clazz.getModifiers() & Modifier.ENUM) != 0)
throw new IllegalArgumentException("Cannot reflectively create enum objects");
Enum is not supposed to be cloned because there must be exactly one instance of each value.
The most laconic code among all singleton realizations.
Disadvantages
The enum based singleton does not allow lazy initialization.
If you changed your design and wanted to convert your singleton to multiton, enum would not allow this. The multiton pattern is used for the controlled creation of multiple instances, which it manages through the use of a map. Rather than having a single instance per application (e.g. the java.lang.Runtime) the multiton pattern instead ensures a single instance per key.
Enum appears only in Java 5 so you can not use it in the prior version.
There are several realizations of singleton pattern each one with advantages and disadvantages.
Eager loading singleton
Double-checked locking singleton
Initialization-on-demand holder idiom
The enum based singleton
A detailed description each of them is too verbose so I just put a link to a good article - All you want to know about Singleton
I would use enums as a useful mapping instrument, avoiding multiple if-else
provided that some methods are implemented.
public enum Mapping {
ONE("1"),
TWO("2");
private String label;
private Mapping(String label){
this.label = label;
}
public static Mapping by(String label) {
for(Mapping m: values() {
if(m.label.equals(label)) return m;
}
return null;
}
}
So the method by(String label) allows you to get the Enumerated value by non-enumerated. Further, one can invent mapping between 2 enums. Could also try '1 to many' or 'many to many' in addition to 'one to one' default relation
In the end, enum is a Java class. So you can have main method inside it, which might be useful when needing to do some mapping operations on args right away.
Instead of making a bunch of const int declarations
You can group them all in 1 enum
So its all organized by the common group they belong to
Enums are like classes. Like class, it also has methods and attributes.
Differences with class are:
1. enum constants are public, static , final.
2. an enum can't be used to create an object and it can't extend other classes. But it can implement interfaces.

Constant string substitution

I have a class of constants
public class Constants {
private static final String A = "1";
private static final String B = "2";
}
I have another class which takes in the name of the constant as a function parameter and calls the constant.
public class SomeClas {
void someMethod(String constantName) {
callSomeOtherMethod(Constants.<constantName>)
}
}
How Do i do this? My <constantName> can take values as A or B.
Assuming you cannot change anything in the way your classes look like, you are left with reflection. The code to do it with reflection is as follows:
void someMethod(String constantName) throws NoSuchFieldException, IllegalAccessException {
Field fd = Constants.class.getDeclaredField(constantName);
fd.setAccessible(true);
String val = (String) fd.get(null);
callSomeOtherMethod(val);
}
The answer depends on how much control you have of the class Constants. If this is out of your control and you cannot change it then reflection is the way to go. (see marcinj's answer)
However, if you have full control over Constants then I would consider refactoring to an enum (available since Java 5). Whether this is worthwhile will depend on how embedded this class is in your code base. How many places that reference Constants would have to change? Is this a shared class used by other applications? It could be that refactoring here is too much hassle, only you can decide.
To help you decide here is a summary of reasons why using an enum would generally be considered preferable, certainly for new development. If you decide not to refactor then it's still worth a look for the next time you need to create new constants like this.
Reasons against using reflection
Performance - runtime reflection is much slower than compiled method calls or attribute lookups. If your code is called infrequently then you probably won't notice it but if this is a utility method that is called many times then it could be a potential bottleneck.
Overriding the access modifier - private scope attributes are supposed to only be accessible from within the same class. By overriding this you can introduce problems when refactoring as your reflection code could be dependent on attributes or methods that it shouldn't know about.
Compile time safety - if you call a method or reference an attribute in the standard way the compiler will check it exists. If you look things up with reflection then you leave yourself open to runtime errors.
Reasons to prefer an enum to String/int constants
- Each constant can have attributes and methods - Using the Joshua Bloch example you might have a constants class listing the planets of the solar system. If you use an enum type then you can add attributes such as mass, radius etc and methods to retrieve them.
- Compile time type safety - With a class of String constants if you want to pass this in to a method the type will be String, not Constants. This means the compiler will be happy with any old String you pass in whether it's a Constant or not. If you use an enum you have a proper type that the compiler can check.
- You get lots for free such as name(), valueOf(), implements Serializable, Comparable etc. This means you don't have to re-invent the wheel.
- It's a thought out design - Before enums there were a number of design patterns to achieve the same thing with varying levels of considerations. For example do you worry about thread safety? Or Serialization? If you use an enum you don't have to worry about this.
Code example
If you do decide to refactor to an enum then here is an example code snippet to show how this might be achieved.
public enum Constant
{
A("1"),
B("2");
private String value;
private Constant(String value)
{
this.value = value;
}
public Constant lookupConstantByValue(String value)
{
for(Constant constant : values())
{
if(constant.value.equals(value))
{
return constant;
}
}
return null;
}
}
You could now lookup constant values either by the A,B name or the "1", "2" value. e.g.
public class SomeClas
{
void someMethod(String constantName)
{
// if constantName is 1 or 2
callSomeOtherMethod(Constant.lookupConstantByValue(constantName));
// if constantName is A or B
callSomeOtherMethod(Constant.valueOf(constantName));
}
}

How to write a function in Java generalized to take in a map parameter that has different key types?

I have two enums:
enum Country { US, etc }
enum Language { EN, etc }
I want to be able to write a function that takes in a map that has either enum as the key:
checkMap(new HashMap<Language, Long>());
checkMap(new HashMap<Country, Long>());
The only ways I have figured out how to do it are the following:
1. private void checkMap(Map<? extends Enum, Long> mapParam) {...}
2. private <T> void checkMap(Map<T, Long> mapParam) {...}
3. private void checkMap(Map mapParam) {...}
None of these are super specific on the parameters I let in. (1) does the best by making it some subclass of Enum, but complicates much of the logic (which I am greatly simplifying here). (3) I have to do a ton of downstream casting, and I feel it's just generally bad practice.
I feel like I am missing something fairly obvious here.
I also know that I can write two separate method declarations with the different parameters, but there is so much repeat logic and I want to abstract that logic into a function and avoid duplicate code.
I use your option 2: use a generic type parameter T. In your example the methods are private so you have complete control over which methods can delegate to checkMap, and so do not need to be so concerned about delegations using inappropriate key types.
You can use an interface - make Country and Language implement some made-up interface and use it in method declaration:
interface Dummy{}
enum Country implements Dummy {...}
enum Language implements Dummy {...}
private checkMap(Map<Dummy, Long> map) {...}

Does this "call-inversion" pattern have a name?

I just answered another question (Select method based on field in class), and I was wondering if the pattern had a name.
Call action.applyX(a), where X depends on some property of a (e.g. type in the example), so you instead call a.apply(action) and let a (or Type) call the appropriate applyX.
Is there a name for that?
public enum Type {
INTEGER {
#Override
public void apply(Action action, A a) {
action.applyInteger(a);
}
},
STRING {
#Override
public void apply(Action action, A a) {
action.applyString(a);
}
};
public abstract void apply(Action action, A a);
}
public interface Action {
public void applyInteger(A a);
public void applyString(A a);
}
public class A {
private Type type;
...
public void apply(Action action) {
this.type.apply(action, this);
}
}
Update
The above is just an example, and using type as the selector is not the important part.
The selection criteria for deciding which X method to call can be anything. In a dice game, X could be 'Odd' or 'Even' and class A could be 'Dice' with a 1-6 int value.
The example is using abstract enum methods as a way to avoid a switch statement (less error prone). The abstract method implementations are a kind of switching technology, in this case the way to choose the appropriate X.
Update 2
This question is about the pattern used to avoid switch statements for doing "action" logic outside of the class (A), not about changing the behavior of A (strategy/policy), where the "switch choices" are well defined, e.g. as a type enum (example above), or by well-known subclasses of A.
As an example, A could define a table column. The class should not be tightly coupled to implementation code, but there will be many different implementation methods ("Actions") that must process column types differently.
Actions might be a call to the appropriate getXxx method on ResultSet, call the appropriate setXxx method on PreparedStatement, format the value for display, render it the XML or Json, parse the value, ...
All these methods would either need a switch statement, or they could implement an interface with the "typed" methods, and ask the class "please call the right one for me".
This question is becoming pretty long. Sorry if I'm not stating the pattern clearly.
This resembles the Visitor pattern, because you are basically adding new operations to A without changing it (you are externalizing its operations to a separate class).
this.type.apply(action, this);
plays the role of:
visitor.visit(this);
If a new action is added (say applyBoolean), you would need to change the code for A if you used switch statement. However, in your implementation you would just use the new visitor subclass (a new Type enum constant) which implements the code that would otherwise be placed in A.
This is the beginnings of a Strategy Pattern
It's a Behavorial Pattern, as opposed to the more common Structural Patterns.
In your example you're not taking full advantage of the pattern. Since you use a single interface for all your strategies
In computer programming, the strategy pattern (also known as the policy pattern) is a software design pattern that enables an algorithm's behavior to be selected at runtime.
I think the name for this is just the name of the language feature used, polymorphism.
Looks like the type decomposition you would find in functional languages
I would say this is an example of using the strategy pattern. The example in the Wikipedia article (written in C#) also uses an enum.

Categories

Resources