How many connections to maintain in RabbitMQ? - java

I am using the RabbitMQ java client.
My app has multiple exchanges and queues. Adopting something similar to the Pub/Sub model.
What is the best practice regarding connections?
Shall I have one connection per app?
I understand the channel model, and the thread (un)safety model. Just not sure if I should have multiple connections or not.

One connection per app is correct.
Within that connection, you will have many channels - where the actual work is done.
You can have hundreds or thousands of message producers and consumers (each on their on channel) inside a single connection.
If you start to see slowdown in your RMQ setup because you're dong too much work, look at clustering RMQ and/or standing up multiple instances of your app.
But you would still maintain 1 connection per app instance.

It will depends on the volumetry of messages you will have. If it really is huge, maybe 2 or 3 connections could do it, but one per application seems to be the best choice

Related

Pool GRPC ManagedChannels and BlockingStubs or one shared?

Here is my scenario: I maintain a service that acts primarily as an API gateway. It receives an HTTP REST request, makes multiple GRPC service calls and then combines the responses into a contextual response.
This service is running Jetty, currently configured with 250 threads.
I have several different back-end GRPC services that I call, and for each service, I'm currently creating one ManagedChannel and one BlockingStub, which I'm sharing across all of the worker threads.
I know that this is fine, since both the Channel and Stub are thread-safe, and there is no shared state amongst my threads (all my requests are idempotent).
However, I'm curious if this is the "right" way to do things. I've read some other items about pooling Channels, or having one channel and multiple Stubs, but if I'm not hitting the I/O limit for a Channel, I can't see the benefit (since under the hood, each ClientCall executes in the calling thread).
Is there a specific pointer to Java GRPC 'best practice' documentation that would help me with this?
It sounds like what you're doing is fine. Sharing the ManagedChannel as much as reasonable/possible is the most important piece. It doesn't really matter whether you share stubs or not, nor whether you share interceptors. It's a bit unclear whether you could share ManagedChannels across services (if any of the channels are to the same target).
You are right that some use-cases may want a "pool" of Channels for higher byte throughput, but this is a minority case. Also, even in that case you can "hide" that logic by creating a Channel (or even implement ManagedChannel) that does round-robin across multiple ManagedChannels, and share that "one" Channel as much as possible.

RabbitMQ-Is it a good practice to create multiple consumers for a single queue in one application process

I just work with an new project backed by RabbitMQ, and there are multiple consumer instances created listening to the same queue when the application starts. Howerver they shares the same connections with different channels.
The messages from the queue are massive(millions messages for one single producing behavior ) so I guess the very first code author is trying to do something to make consuming faster.
I am trying to find some posts discussing on this but I can't find a very certain answer.
What I get so far is:
Each channel will have a separate dispatch thread
The operation commands on the same channel is serialized even though they are called in multiple thread
So
creating multiple consumers thus multiple channels will have multiple dispatch threads, but I don't think it provided a better performance to message dispatching since the dispatch should far from enough with one single thread.
The operation of ack will can be paralized in different channels, I am not quite sure this will give any better performances.
Since more channels consume more system resources I wonder is this practice good?
There seem to be a few things going on here, so let's try to look at this scenario from a holistic perspective.
For starters, it sounds like the original designer of this code understood some basics about RabbitMQ (or learned a few things by trial and error), but may have had trouble putting all the pieces together- hopefully I can help.
RabbitMQ connections are, in reality, AMQP-over-TCP connections (and thus are somewhere around the session layer of the OSI model). TCP connections are supposed to be opened up and used until some sort of network interruption or application shutdown closes them (and for this reason, AMQP has trouble with firewalls and other smart network devices). Using a single TCP connection for message processing activities for a single logical process is a good idea, as creating and destroying TCP connections is usually an expensive process for the computer, which leads to
RabbitMQ channels are used to multiplex communication streams in the AMQP-Over-TCP connection (and are defined in the AMQP Protocol Spec). All they do is specify an integer value (I can't remember the number of bytes, but it doesn't matter anyway) used to preface the subsequent command or response on a TCP connection. Most AMQP operations are channel-specific. For the purposes of higher-level operations, channels are treated similar to connections, as they are application-level constructs.
Now, where I think the question starts to go off the rails a bit is here:
The messages from the queue are massive(millions messages for one
single producing behavior ) so I guess the very first code author is
trying to do something to make consuming faster.
A fundamental assumption about a system which uses queues is that messages are consumed at approximately the same rate that they are produced. Queues exist to buffer uneven producing activities. The mathematics and statistics of how queues work are quite interesting, and assuming the production of messages is done in response to some real-world stimulus, your system is virtually guaranteed to behave in a predictable manner. Therefore, your design goal is to ensure that there are enough consumers to process the messages that are produced, and to respond to changing conditions as needed. Your goal should not be to "speed up" the consumers (unless they have some specific issue), but rather to have enough consumers to process the total load.
Further, the average number of items in the queue at any time should approach zero. It is usually a good idea to have overcapacity so that you don't wind up with an unstable situation where messages start accumulating in the queue (and the queue ends up looking like the Stack Overflow Close Vote Queue).
And that brings us to an attempt to answer your fundamental question, which seems to deal with threading and possibly detailed implementation of the Java client, which I will readily admit I have not used (I'm a .NET guy).
Here are some design guidelines for your software:
Ensure that a single thread uses no more than one channel.
Use one TCP connection per logical consuming process.
Balance the number of logical processes on a single physical machine such that resource contention is not a problem (you don't want to starve your consumers of computer resources).
Try to use BASIC.GET as opposed to a push-based consumer. Use of consumers is difficult in practice, and there is no performance benefit at the protocol level over a BASIC.GET. Note I do not know if the Java library has implemented these differently such that it does cause a performance difference- stranger things have been known to happen.
If you do use consumers, make sure pre-fetch is set to 0 (disabled) and that AutoAck is set to false if reliable processing is important (most applications require reliable processing). Along with this, make sure you are acknowledging messages upon completion of processing!
Periodically reboot your consuming threads, channels, and processors - or do a BASIC.Recover. There are degrees of randomness that will result in unacknowledged messages accumulating over time, and this will deal with it.
Again, if you prefer to use consumers, generally speaking to share consumers across channels is a bad idea. Each consumer should get its own channel.

Is it ok to use multiple session and connection on JMS (ActiveMQ)?

I must handle about 100 JMS Queue in a point-to-point messaging architecture. Every queue has a consumer. So I will have 100 consumer threads to handle them. Is it ok?
1)ActiveMQ Support your request(suggest write a connection pool)
2)you should confirm you server configuration whether is ok,when
QPS is high,
Instead of 100 queues, you could use a single queue and provide JMS message properties, having each consumer filter just the messages it wants.
What this does is give you some more options in architecture and deployment. You could have a single process consume multiple type of messages. Depending on your scaling issues, you could have multiple instances of a single consumer spread out among processes/servers/whatever.
You could also have one consumer for all 100 logical queues, reading the property and figuring out where to hand off the message internally, again, depending on whatever design issues you're running into.
Overall, messaging is so light-weight that it takes a significant volume of messages or a significant size of individual messages to really hurt things. I've got an ActiveMQ app that upon restart might have to process 10K/20K messages and it's complete in seconds. Fairly small messages, but still very possible (and my experience with other MQs is similar performance, as long as your processing is not too overwhelmingly difficult, you should be able to keep up).

How to design non-EJB load balanced applications?

I have a java class Processor that is listening to a jms topic and it is struggling to keep up with the speed in which messages are arriving so we've decided to go concurrent:
A single class listening to the topic who's job is to hand the messages out to a pool of worker threads, effectively being a load balancer. It also has to prevent 2 workers processing messages for the same customer.
I expected there to be quite a lot of information on the internet about this but everything seems to suggest the use of EJBs where the app server manages the pool and does the balancing. I'm sure this must be a really common problem, but can't seem to find any libraries or design patterns to assist. Am I making more out of it than it is and should just delve in and write my own code?
Why don't you just use a queue instead of a topic and have several instances of the same application handle messages from this queue ?
This is an easy problem to solve with a pool of listeners. That's what the app server would be doing for you.
I'd get a good app server and use its MDBs to solve this quickly. Size the pool to keep up and you'll be fine.
If you insist on writing your own code, get a good open source pool implementation and use it.
If it must be non-EJB, consider Spring. It has message driven POJOs that could be just what you need.

Potential pitfalls in using a JMS queue?

I've been asked to design and implement a system for receiving a high volume of automated sensor data from a large number of devices. This data will be produced at regular intervals and sent to the server as xml in an http post. The devices will keep resending the same data if they don't receive a specific acknowledgment from the server. Some potentially heavy duty processing of this data will need to occur before it's inserted to a number of tables in the main database via a transaction, and additionally some data points will need to be enqueued to be re-directed to other external urls.
I'm planning on using a Java application server (leaning towards GlassFish) with a servlet to receive the incoming data. I'd like to implement some kind of queuing mechanism to store the data temporarily so that the response back to the sensor isn't dependent on all the intermediate processing. Separate independent queues are also a requirement for the data re-direction piece. After doing some research the two main options seem to be:
1) Install a database on the app server and use tables for the various queues. The queues would be processed by a Java application, either running in the app server or standalone as it's own service.
2) Use a database backed JMS solution to implement the queuing.
I'm not that familiar with JMS but from what I've read it seems to be the better solution in this case. The primary requirement is that no sensor data ever be lost or dropped from the queue before being processed and that it be processed more or less sequentially. We'd also like to make it easy to halt the processing of some of the queues at certain times but still have them accumulate data and for these messages to never automatically expire.
With strategy 1 it's obvious to me how to meet these requirements but it may be less robust and scalable, and more complex to develop than strategy 2, since I'll need to write my own multi-threaded code to handle the various independent queues. I'm wondering what the potential pitfalls could be in using JMS queues for this purpose since I've never worked with them before.
Data integrity is a big issue so I need to make sure JMS can guarantee no data loss in the event of a server reboot, power outage, or if the queue gets very large for some reason. For instance could a problem completing transactions to the main database for a period of time potentially cause the JVM to run out of memory, crash, and lose all accumulated data? (This would be the nightmare scenario).
Also, I was wondering if there would be any way to pause the JMS queue processing via an app server admin tool or to easily see what's in the queue (I would be enqueuing an object which would be the message xml plus some other data, including timestamp received, etc.) I've read a few posts on here that deal with related issues but wanted to get some direct feedback. Basically I'd like to know of instances (if any) where JMS is not an appropriate queuing solution and if this is one of those cases. Any advice is greatly appreciated.
Kaleb's answer talks about the benefits of JMS quite eloquently, but since you're asking about pitfalls, here's what I can think of.
Not all JMS implementations are equal. In theory you can use whatever implementation suits your needs, but unless you're prepared to do some serious load testing and failure condition testing, you can't know that a particular implementation isn't going to fail under your particular use case.
Most JMS use a transactional datastore like a relational database as their back end. That means that rather than writing directly to whatever datastore you're familiar with, you have to rely on the JMS implementation's extra layer between you and that stored messages.
While swapping JMS implementations to find the one that perfectly fits your needs may seem like a simple endeavor because of the homogeneous JMS API, the critical features for failure handling, JMS server monitoring, and all the other cool stuff that exists above and beyond messaging is going to be a hassle to deal with if you do change your implementation.
That said, I think you'd be crazy to write to the DB yourself instead of going with JMS. On the first point, ActiveMQ is a venerable JMS server used in many enterprise environments. On the second point, the fact is you'd just end up writing that extra layer yourself in order to implement messaging, and your code won't have the benefit of thousands of eyes (or a set of paid developers who's sole job it is to respond to customers and make sure the JMS implementation is solid). On the third point, well the same ends up being true of your backend datastore. Use JMS, you'll save yourself trouble in the long run.
If you want to go the JMS route, a standalone JMS-compatible message broker (separate from your app server) would be a good choice. Message brokers range from free open-source (like ActiveMQ at http://activemq.apache.org/ or OpenMQ at https://mq.dev.java.net/), to large-scale commercial solutions (IBM's WebSphere MQ at http://www-01.ibm.com/software/integration/wmq/ is one of the largest).
Message brokers offer guaranteed delivery (provided the server's up and listening), and you can do quite a bit to ensure that the system is fail-safe including integrated backup broker servers and instant power backup. Broker queues can eventually run out of room if your app server isn't picking up the messages, but you can assign huge queue depth (100's of GB) and have the server send alerts if the messages aren't getting processed and the queue reaches a certain percentage.
Your Java app would then run on a different server entirely, and would connect to the broker and pull messages off of the queue as fast as possible. If the app server crashes or stops picking up messages for any other reason, the broker would just keep all messages in that queue until the app server begins picking them up again.
You will be wanting to implement a poison message queue in your implementation - this is the place that messages unable to be processed after some number of retries will arrive.
You will probably need to write some code that can examine the messages in that queue and re-send them to the appropriate destination after fixing whatever is causing them to fail.
If sequence of message processing is important, a message ending up in the poison queue could mean all processing is halted until that message is corrected.
As far as fault tolerance goes, you can have multiple instances of the consuming services subscribe to the same queue or topic, providing an ability to continue processing even if one or more instances goes down.
Finally, have a watchdog process that pings the various consumers on your message queue, and if one doesn't respond, have it send a message that results in a new instance being started. In this way, your message processing environment can be somewhat self regulating.

Categories

Resources