May the removal of an unused field cause a garbage collection? - java

For a library that involves asynchronous operations, I have to keep a reference to an object alive until a certain condition is met.
(I know, that sounds unusual. So here is some context, although it may not strictly be relevant: The object may be considered to be a direct ByteBuffer which is used in JNI operations. The JNI operations will fetch the address of the buffer. At this point, this address is only a "pointer" that is not considered as a reference to the byte buffer. The address may be used asynchronously, later in time. Thus, the buffer has to be prevented from being garbage collected until the JNI operation is finished.)
To achieve this, I implemented a method that is basically equivalent to this:
private static void keepReference(final Object object)
{
Runnable runnable = new Runnable()
{
#SuppressWarnings("unused")
private Object localObject = object;
public void run()
{
// Do something that does NOT involve the "localObject" ...
waitUntilCertainCondition();
// When this is done, the localObject may be garbage collected
}
};
someExecutor.execute(runnable);
}
The idea is to create a Runnable instance that has the required object as a field, throw this runnable into an executor, and let the runnable wait until the condition is met. The executor will keep a reference to the runnable instance until it is finshed. The runnable is supposed to keep a reference to the required object. So only after the condition is met, the runnable will be released by the executor, and thus, the local object will become eligible for garbage collection.
The localObject field is not used in the body of the run() method. May the compiler (or more precisely: the runtime) detect this, and decide to remove this unused reference, and thus allow the object to be garbage collected too early?
(I considered workarounds for this. For example, using the object in a "dummy statement" like logger.log(FINEST, localObject);. But even then, one could not be sure that a "smart" optimizer wouldn't do some inlining and still detect that the object is not really used)
Update: As pointed out in the comments: Whether this can work at all might depend on the exact Executor implementation (although I'd have to analyze this more carefully). In the given case, the executor will be a ThreadPoolExecutor.
This may be one step towards the answer:
The ThreadPoolExecutor has an afterExecute method. One could override this method and then use a sledgehammer of reflection to dive into the Runnable instance that is given there as an argument. Now, one could simply use reflection hacks to walk to this reference, and use runnable.getClass().getDeclaredFields() to fetch the fields (namely, the localObject field), and then fetch the value of this field. And I think that it should not be allowed to observe a value there that is different from the one that it originally had.
Another comment pointed out that the default implementation of afterExecute is empty, but I'm not sure whether this fact can affect the question of whether the field may be removed or not.
Right now, I strongly assume that the field may not be removed. But some definite reference (or at least more convincing arguments) would be nice.
Update 2: Based on the comments and the answer by Holger, I think that not the removal of "the field itself" may be a problem, but rather the GC of the surrounding Runnable instance. So right now, I assume that one could try something like this:
private static long dummyCounter = 0;
private static Executor executor = new ThreadPoolExecutor(...) {
#Override
public void afterExecute(Runnable r, Throwable t) {
if (r != null) dummyCounter++;
if (dummyCounter == Long.MAX_VALUE) {
System.out.println("This will never happen", r);
}
}
}
to make sure that the localObject in the runnable really lives as long as it should. But I can hardly remember ever having been forced to write something that screamed "crude hack" as loud as these few lines of code...

If JNI code fetches the address of a direct buffer, it should be the responsibility of the JNI code itself, to hold a reference to the direct buffer object as long as the JNI code holds the pointer, e.g. using NewGlobalRef and DeleteGlobalRef.
Regarding your specific question, this is addressed directly in JLS §12.6.1. Implementing Finalization:
Optimizing transformations of a program can be designed that reduce the number of objects that are reachable to be less than those which would naively be considered reachable. …
Another example of this occurs if the values in an object's fields are stored in registers. … Note that this sort of optimization is only allowed if references are on the stack, not stored in the heap.
(the last sentence matters)
It is illustrated in that chapter by an example not too different to yours. To make things short, the localObject reference within the Runnable instance will keep the life time of the referenced object at least as long as the life time of the Runnable instance.
That said, the critical point here is the actual life time of the Runnable instance. It will be considered definitely alive, i.e. immune to optimizations, due to the rule specified above, if it is also referred by an object that is immune to optimizations, but even an Executor isn’t necessarily a globally visible object.
That said, method inlining is one of the simplest optimizations, after which a JVM would detect that the afterExecute of a ThreadPoolExecutor is a no-op. By the way, the Runnable passed to it is the Runnable passed to execute, but it wouldn’t be the same as passed to submit, if you use that method, as (only) in the latter case, it’s wrapped in a RunnableFuture.
Note that even the ongoing execution of the run() method does not prevent the collection of the Runnable implementation’s instance, as illustrated in “finalize() called on strongly reachable object in Java 8”.
The bottom line is that you will be walking on thin ice when you try to fight the garbage collector. As the first sentence of the cite above states: “Optimizing transformations of a program can be designed that reduce the number of objects that are reachable to be less than those which would naively be considered reachable.” Whereas we all may find ourselves being thinking too naively…
As said at the beginning, you may rethink the responsibilities. It’s worth noting that when your class has a close() method which has to be invoked to release the resource after all threads have finished their work, this required explicit action is already sufficient to prevent the early collection of the resource (assuming that the method is indeed called at the right point)…

Execution of Runnable in a thread pool is not enough to keep an object from being garbage collected. Even "this" can be collected! See JDK-8055183.
The following example shows that keepReference does not really keep it. Though the problem does not happen with vanilla JDK (because the compiler is not smart enough), it can be reproduced when a call to ThreadPoolExecutor.afterExecute is commented out. It is absolutely possible optimization, because afterExecute is no-op in the default ThreadPoolExecutor implementation.
import java.lang.ref.WeakReference;
import java.util.concurrent.*;
public class StrangeGC {
private static final ExecutorService someExecutor =
Executors.newSingleThreadExecutor();
private static void keepReference(final Object object) {
Runnable runnable = new Runnable() {
#SuppressWarnings("unused")
private Object localObject = object;
public void run() {
WeakReference<?> ref = new WeakReference<>(object);
if (ThreadLocalRandom.current().nextInt(1024) == 0) {
System.gc();
}
if (ref.get() == null) {
System.out.println("Object is garbage collected");
System.exit(0);
}
}
};
someExecutor.execute(runnable);
}
public static void main(String[] args) throws Exception {
while (true) {
keepReference(new Object());
}
}
}
Your hack with overriding afterExecute will work though.
You've basically invented a kind of Reachability Fence, see JDK-8133348.
The problem you've faced is known. It will be addressed in Java 9 as a part of JEP 193. There will be a standard API to explicitly mark objects as reachable: Reference.reachabilityFence(obj).
Update
Javadoc comments to Reference.reachabilityFence suggest synchronized block as an alternative construction to ensure reachability.

Related

Best practice: weak reference to activity in static method

I need to reference an activity in several static methods. I'm curious to know the best practices to avoid memory leaks. Let's use examples:
Example 1:
static void hideKeyboard(Activity activity) {
WeakReference<Activity> activityReference = new WeakReference<>(activity);
// ... Call activityReference.get() when needed, check if null...
}
Example 2:
static void hideKeyboard(WeakReference<Activity> activityReference) {
// ... Call activityReference.get() when needed, check if null...
}
So three questions:
Do example 1 or 2 make any difference?
I haven't seen methods being called this way much outside of subclasses of Thread or AsyncTask. Any reason why? Am I missing something?
If the weak reference is used in a Thread or AsyncTask inside one of those methods, could memory still leak?
No, it doesn't make a difference. Garbage collection in Java works on the idea of GC roots. If a variable is a GC root or references by a GC root (including transitively) it cannot be garbage collected. Parameters to a function are a GC root- until the function returns none of its parameters can be collected. Since Activity is a parameter to your function, it will be uncollectable as long as that function is in the call stack. Using a WeakReference won't speed it up.
Threads and AsyncTasks (which are just wrappers around Thread really) are slightly different. Every running thread is also a GC root. But threads can have a long lifetime and exist beyond the lifecycle of the object. Here, using a WeakReference does possibly help because there isn't another reason it needs to be kept around (like the parameter in your sample).
Your example 2 is a bit better, it isn't blatantly unnecessary. But I question why its needed. In general when doing a Thread the pattern should be:
run() {
do_async_work()
update_ui()
}
update_ui() {
Activity activity = weakReference.get()
if(activity == null) {
return
}
//update the UI
}
Doing it like this will prevent a lot of problems like needing to check the weak reference a dozen times.
There is absolutely no reason to use WeakReference in a parameter passed to a method, unless this parameter is being stored. If the parameter is only used in the method, you can just pass in the Activity reference.

Is memory leaks possible in java? [duplicate]

I just had an interview where I was asked to create a memory leak with Java.
Needless to say, I felt pretty dumb, having no idea how to start creating one.
What would an example be?
Here's a good way to create a true memory leak (objects inaccessible by running code but still stored in memory) in pure Java:
The application creates a long-running thread (or use a thread pool to leak even faster).
The thread loads a class via an (optionally custom) ClassLoader.
The class allocates a large chunk of memory (e.g. new byte[1000000]), stores a strong reference to it in a static field, and then stores a reference to itself in a ThreadLocal. Allocating the extra memory is optional (leaking the class instance is enough), but it will make the leak work that much faster.
The application clears all references to the custom class or the ClassLoader it was loaded from.
Repeat.
Due to the way ThreadLocal is implemented in Oracle's JDK, this creates a memory leak:
Each Thread has a private field threadLocals, which actually stores the thread-local values.
Each key in this map is a weak reference to a ThreadLocal object, so after that ThreadLocal object is garbage-collected, its entry is removed from the map.
But each value is a strong reference, so when a value (directly or indirectly) points to the ThreadLocal object that is its key, that object will neither be garbage-collected nor removed from the map as long as the thread lives.
In this example, the chain of strong references looks like this:
Thread object → threadLocals map → instance of example class → example class → static ThreadLocal field → ThreadLocal object.
(The ClassLoader doesn't really play a role in creating the leak, it just makes the leak worse because of this additional reference chain: example class → ClassLoader → all the classes it has loaded. It was even worse in many JVM implementations, especially prior to Java 7, because classes and ClassLoaders were allocated straight into permgen and were never garbage-collected at all.)
A variation on this pattern is why application containers (like Tomcat) can leak memory like a sieve if you frequently redeploy applications which happen to use ThreadLocals that in some way point back to themselves. This can happen for a number of subtle reasons and is often hard to debug and/or fix.
Update: Since lots of people keep asking for it, here's some example code that shows this behavior in action.
Static field holding an object reference [especially a final field]
class MemorableClass {
static final ArrayList list = new ArrayList(100);
}
(Unclosed) open streams (file , network, etc.)
try {
BufferedReader br = new BufferedReader(new FileReader(inputFile));
...
...
} catch (Exception e) {
e.printStackTrace();
}
Unclosed connections
try {
Connection conn = ConnectionFactory.getConnection();
...
...
} catch (Exception e) {
e.printStackTrace();
}
Areas that are unreachable from JVM's garbage collector, such as memory allocated through native methods.
In web applications, some objects are stored in application scope until the application is explicitly stopped or removed.
getServletContext().setAttribute("SOME_MAP", map);
Incorrect or inappropriate JVM options, such as the noclassgc option on IBM JDK that prevents unused class garbage collection
See IBM JDK settings.
A simple thing to do is to use a HashSet with an incorrect (or non-existent) hashCode() or equals(), and then keep adding "duplicates". Instead of ignoring duplicates as it should, the set will only ever grow and you won't be able to remove them.
If you want these bad keys/elements to hang around you can use a static field like
class BadKey {
// no hashCode or equals();
public final String key;
public BadKey(String key) { this.key = key; }
}
Map map = System.getProperties();
map.put(new BadKey("key"), "value"); // Memory leak even if your threads die.
Below there will be a non-obvious case where Java leaks, besides the standard case of forgotten listeners, static references, bogus/modifiable keys in hashmaps, or just threads stuck without any chance to end their life-cycle.
File.deleteOnExit() - always leaks the string, if the string is a substring, the leak is even worse (the underlying char[] is also leaked) - in Java 7 substring also copies the char[], so the later doesn't apply; #Daniel, no needs for votes, though.
I'll concentrate on threads to show the danger of unmanaged threads mostly, don't wish to even touch swing.
Runtime.addShutdownHook and not remove... and then even with removeShutdownHook due to a bug in ThreadGroup class regarding unstarted threads it may not get collected, effectively leak the ThreadGroup. JGroup has the leak in GossipRouter.
Creating, but not starting, a Thread goes into the same category as above.
Creating a thread inherits the ContextClassLoader and AccessControlContext, plus the ThreadGroup and any InheritedThreadLocal, all those references are potential leaks, along with the entire classes loaded by the classloader and all static references, and ja-ja. The effect is especially visible with the entire j.u.c.Executor framework that features a super simple ThreadFactory interface, yet most developers have no clue of the lurking danger. Also a lot of libraries do start threads upon request (way too many industry popular libraries).
ThreadLocal caches; those are evil in many cases. I am sure everyone has seen quite a bit of simple caches based on ThreadLocal, well the bad news: if the thread keeps going more than expected the life the context ClassLoader, it is a pure nice little leak. Do not use ThreadLocal caches unless really needed.
Calling ThreadGroup.destroy() when the ThreadGroup has no threads itself, but it still keeps child ThreadGroups. A bad leak that will prevent the ThreadGroup to remove from its parent, but all the children become un-enumerateable.
Using WeakHashMap and the value (in)directly references the key. This is a hard one to find without a heap dump. That applies to all extended Weak/SoftReference that might keep a hard reference back to the guarded object.
Using java.net.URL with the HTTP(S) protocol and loading the resource from(!). This one is special, the KeepAliveCache creates a new thread in the system ThreadGroup which leaks the current thread's context classloader. The thread is created upon the first request when no alive thread exists, so either you may get lucky or just leak. The leak is already fixed in Java 7 and the code that creates thread properly removes the context classloader. There are few more cases (like ImageFetcher, also fixed) of creating similar threads.
Using InflaterInputStream passing new java.util.zip.Inflater() in the constructor (PNGImageDecoder for instance) and not calling end() of the inflater. Well, if you pass in the constructor with just new, no chance... And yes, calling close() on the stream does not close the inflater if it's manually passed as constructor parameter. This is not a true leak since it'd be released by the finalizer... when it deems it necessary. Till that moment it eats native memory so badly it can cause Linux oom_killer to kill the process with impunity. The main issue is that finalization in Java is very unreliable and G1 made it worse till 7.0.2. Moral of the story: release native resources as soon as you can; the finalizer is just too poor.
The same case with java.util.zip.Deflater. This one is far worse since Deflater is memory hungry in Java, i.e. always uses 15 bits (max) and 8 memory levels (9 is max) allocating several hundreds KB of native memory. Fortunately, Deflater is not widely used and to my knowledge JDK contains no misuses. Always call end() if you manually create a Deflater or Inflater. The best part of the last two: you can't find them via normal profiling tools available.
(I can add some more time wasters I have encountered upon request.)
Good luck and stay safe; leaks are evil!
Most examples here are "too complex". They are edge cases. With these examples, the programmer made a mistake (like don't redefining equals/hashcode), or has been bitten by a corner case of the JVM/JAVA (load of class with static...). I think that's not the type of example an interviewer want or even the most common case.
But there are really simpler cases for memory leaks. The garbage collector only frees what is no longer referenced. We as Java developers don't care about memory. We allocate it when needed and let it be freed automatically. Fine.
But any long-lived application tend to have shared state. It can be anything, statics, singletons... Often non-trivial applications tend to make complex objects graphs. Just forgetting to set a reference to null or more often forgetting to remove one object from a collection is enough to make a memory leak.
Of course all sort of listeners (like UI listeners), caches, or any long-lived shared state tend to produce memory leak if not properly handled. What shall be understood is that this is not a Java corner case, or a problem with the garbage collector. It is a design problem. We design that we add a listener to a long-lived object, but we don't remove the listener when no longer needed. We cache objects, but we have no strategy to remove them from the cache.
We maybe have a complex graph that store the previous state that is needed by a computation. But the previous state is itself linked to the state before and so on.
Like we have to close SQL connections or files. We need to set proper references to null and remove elements from the collection. We shall have proper caching strategies (maximum memory size, number of elements, or timers). All objects that allow a listener to be notified must provide both a addListener and removeListener method. And when these notifiers are no longer used, they must clear their listener list.
A memory leak is indeed truly possible and is perfectly predictable. No need for special language features or corner cases. Memory leaks are either an indicator that something is maybe missing or even of design problems.
The answer depends entirely on what the interviewer thought they were asking.
Is it possible in practice to make Java leak? Of course it is, and there are plenty of examples in the other answers.
But there are multiple meta-questions that may have been being asked?
Is a theoretically "perfect" Java implementation vulnerable to leaks?
Does the candidate understand the difference between theory and reality?
Does the candidate understand how garbage collection works?
Or how garbage collection is supposed to work in an ideal case?
Do they know they can call other languages through native interfaces?
Do they know to leak memory in those other languages?
Does the candidate even know what memory management is, and what is going on behind the scene in Java?
I'm reading your meta-question as "What's an answer I could have used in this interview situation". And hence, I'm going to focus on interview skills instead of Java. I believe you're more likely to repeat the situation of not knowing the answer to a question in an interview than you are to be in a place of needing to know how to make Java leak. So, hopefully, this will help.
One of the most important skills you can develop for interviewing is learning to actively listen to the questions and working with the interviewer to extract their intent. Not only does this let you answer their question the way they want, but also shows that you have some vital communication skills. And when it comes down to a choice between many equally talented developers, I'll hire the one who listens, thinks, and understands before they respond every time.
The following is a pretty pointless example if you do not understand JDBC. Or at least how JDBC expects a developer to close Connection, Statement, and ResultSet instances before discarding them or losing references to them, instead of relying on implementing the finalize method.
void doWork() {
try {
Connection conn = ConnectionFactory.getConnection();
PreparedStatement stmt = conn.preparedStatement("some query");
// executes a valid query
ResultSet rs = stmt.executeQuery();
while(rs.hasNext()) {
// ... process the result set
}
} catch(SQLException sqlEx) {
log(sqlEx);
}
}
The problem with the above is that the Connection object is not closed, and hence the physical Connection will remain open until the garbage collector comes around and sees that it is unreachable. GC will invoke the finalize method, but there are JDBC drivers that do not implement the finalize, at least not in the same way that Connection.close is implemented. The resulting behavior is that while the JVM will reclaim memory due to unreachable objects being collected, resources (including memory) associated with the Connection object might not be reclaimed.
As such, Connection's final method does not clean up everything. One might find that the physical Connection to the database server will last several garbage collection cycles until the database server eventually figures out that the Connection is not alive (if it does) and should be closed.
Even if the JDBC driver implemented finalize, the compiler can throw exceptions during finalization. The resulting behavior is that any memory associated with the now "dormant" object will not be reclaimed by the compiler, as finalize is guaranteed to be invoked only once.
The above scenario of encountering exceptions during object finalization is related to another scenario that could lead to a memory leak - object resurrection. Object resurrection is often done intentionally by creating a strong reference to the object from being finalized, from another object. When object resurrection is misused it will lead to a memory leak in combination with other sources of memory leaks.
There are plenty more examples that you can conjure up - like
Managing a List instance where you are only adding to the list and not deleting from it (although you should be getting rid of elements you no longer need), or
Opening Sockets or Files, but not closing them when they are no longer needed (similar to the above example involving the Connection class).
Not unloading Singletons when bringing down a Java EE application. The Classloader that loaded the singleton class will retain a reference to the class, and hence the singleton instance will never be collected by the JVM. When a new instance of the application is deployed, a new class loader is usually created, and the former class loader will continue to exist due to the singleton.
Probably one of the simplest examples of a potential memory leak, and how to avoid it, is the implementation of ArrayList.remove(int):
public E remove(int index) {
RangeCheck(index);
modCount++;
E oldValue = (E) elementData[index];
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index + 1, elementData, index,
numMoved);
elementData[--size] = null; // (!) Let gc do its work
return oldValue;
}
If you were implementing it yourself, would you have thought to clear the array element that is no longer used (elementData[--size] = null)? That reference might keep a huge object alive ...
Any time you keep references around to objects that you no longer need you have a memory leak. See Handling memory leaks in Java programs for examples of how memory leaks manifest themselves in Java and what you can do about it.
You are able to make memory leak with sun.misc.Unsafe class. In fact this service class is used in different standard classes (for example in java.nio classes). You can't create instances of this class directly, but you may use reflection to get an instance.
Code doesn't compile in the Eclipse IDE - compile it using command javac (during compilation you'll get warnings)
import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
import sun.misc.Unsafe;
public class TestUnsafe {
public static void main(String[] args) throws Exception{
Class unsafeClass = Class.forName("sun.misc.Unsafe");
Field f = unsafeClass.getDeclaredField("theUnsafe");
f.setAccessible(true);
Unsafe unsafe = (Unsafe) f.get(null);
System.out.print("4..3..2..1...");
try
{
for(;;)
unsafe.allocateMemory(1024*1024);
} catch(Error e) {
System.out.println("Boom :)");
e.printStackTrace();
}
}
}
I can copy my answer from here:
Easiest way to cause memory leak in Java
"A memory leak, in computer science (or leakage, in this context), occurs when a computer program consumes memory but is unable to release it back to the operating system." (Wikipedia)
The easy answer is: You can't. Java does automatic memory management and will free resources that are not needed for you. You can't stop this from happening. It will always be able to release the resources. In programs with manual memory management, this is different. You can get some memory in C using malloc(). To free the memory, you need the pointer that malloc returned and call free() on it. But if you don't have the pointer any more (overwritten, or lifetime exceeded), then you are unfortunately incapable of freeing this memory and thus you have a memory leak.
All the other answers so far are in my definition not really memory leaks. They all aim at filling the memory with pointless stuff real fast. But at any time you could still dereference the objects you created and thus freeing the memory --> no leak. acconrad's answer comes pretty close though as I have to admit since his solution is effectively to just "crash" the garbage collector by forcing it in an endless loop).
The long answer is: You can get a memory leak by writing a library for Java using the JNI, which can have manual memory management and thus have memory leaks. If you call this library, your Java process will leak memory. Or, you can have bugs in the JVM, so that the JVM looses memory. There are probably bugs in the JVM, there may even be some known ones since garbage collection is not that trivial, but then it's still a bug. By design this is not possible. You may be asking for some Java code that is effected by such a bug. Sorry I don't know one and it might well not be a bug any more in the next Java version anyway.
Here's a simple/sinister one via http://wiki.eclipse.org/Performance_Bloopers#String.substring.28.29.
public class StringLeaker
{
private final String muchSmallerString;
public StringLeaker()
{
// Imagine the whole Declaration of Independence here
String veryLongString = "We hold these truths to be self-evident...";
// The substring here maintains a reference to the internal char[]
// representation of the original string.
this.muchSmallerString = veryLongString.substring(0, 1);
}
}
Because the substring refers to the internal representation of the original, much longer string, the original stays in memory. Thus, as long as you have a StringLeaker in play, you have the whole original string in memory, too, even though you might think you're just holding on to a single-character string.
The way to avoid storing an unwanted reference to the original string is to do something like this:
...
this.muchSmallerString = new String(veryLongString.substring(0, 1));
...
For added badness, you might also .intern() the substring:
...
this.muchSmallerString = veryLongString.substring(0, 1).intern();
...
Doing so will keep both the original long string and the derived substring in memory even after the StringLeaker instance has been discarded.
A common example of this in GUI code is when creating a widget/component and adding a listener to some static/application scoped object and then not removing the listener when the widget is destroyed. Not only do you get a memory leak, but also a performance hit as when whatever you are listening to fires events, all your old listeners are called too.
Take any web application running in any servlet container (Tomcat, Jetty, GlassFish, whatever...). Redeploy the application 10 or 20 times in a row (it may be enough to simply touch the WAR in the server's autodeploy directory.
Unless anybody has actually tested this, chances are high that you'll get an OutOfMemoryError after a couple of redeployments, because the application did not take care to clean up after itself. You may even find a bug in your server with this test.
The problem is, the lifetime of the container is longer than the lifetime of your application. You have to make sure that all references the container might have to objects or classes of your application can be garbage collected.
If there is just one reference surviving the undeployment of your web application, the corresponding classloader and by consequence all classes of your web application cannot be garbage collected.
Threads started by your application, ThreadLocal variables, logging appenders are some of the usual suspects to cause classloader leaks.
Maybe by using external native code through JNI?
With pure Java, it is almost impossible.
But that is about a "standard" type of memory leak, when you cannot access the memory anymore, but it is still owned by the application. You can instead keep references to unused objects, or open streams without closing them afterwards.
I have had a nice "memory leak" in relation to PermGen and XML parsing once.
The XML parser we used (I can't remember which one it was) did a String.intern() on tag names, to make comparison faster.
One of our customers had the great idea to store data values not in XML attributes or text, but as tagnames, so we had a document like:
<data>
<1>bla</1>
<2>foo</>
...
</data>
In fact, they did not use numbers but longer textual IDs (around 20 characters), which were unique and came in at a rate of 10-15 million a day. That makes 200 MB of rubbish a day, which is never needed again, and never GCed (since it is in PermGen). We had permgen set to 512 MB, so it took around two days for the out-of-memory exception (OOME) to arrive...
The interviewer was probably looking for a circular reference like the code below (which incidentally only leak memory in very old JVMs that used reference counting, which isn't the case anymore). But it's a pretty vague question, so it's a prime opportunity to show off your understanding of JVM memory management.
class A {
B bRef;
}
class B {
A aRef;
}
public class Main {
public static void main(String args[]) {
A myA = new A();
B myB = new B();
myA.bRef = myB;
myB.aRef = myA;
myA=null;
myB=null;
/* at this point, there is no access to the myA and myB objects, */
/* even though both objects still have active references. */
} /* main */
}
Then you can explain that with reference counting, the above code would leak memory. But most modern JVMs don't use reference counting any longer. Most use a sweep garbage collector, which will in fact collect this memory.
Next, you might explain creating an Object that has an underlying native resource, like this:
public class Main {
public static void main(String args[]) {
Socket s = new Socket(InetAddress.getByName("google.com"),80);
s=null;
/* at this point, because you didn't close the socket properly, */
/* you have a leak of a native descriptor, which uses memory. */
}
}
Then you can explain this is technically a memory leak, but really the leak is caused by native code in the JVM allocating underlying native resources, which weren't freed by your Java code.
At the end of the day, with a modern JVM, you need to write some Java code that allocates a native resource outside the normal scope of the JVM's awareness.
What's a memory leak:
It's caused by a bug or bad design.
It's a waste of memory.
It gets worse over time.
The garbage collector cannot clean it.
Typical example:
A cache of objects is a good starting point to mess things up.
private static final Map<String, Info> myCache = new HashMap<>();
public void getInfo(String key)
{
// uses cache
Info info = myCache.get(key);
if (info != null) return info;
// if it's not in cache, then fetch it from the database
info = Database.fetch(key);
if (info == null) return null;
// and store it in the cache
myCache.put(key, info);
return info;
}
Your cache grows and grows. And pretty soon the entire database gets sucked into memory. A better design uses an LRUMap (Only keeps recently used objects in cache).
Sure, you can make things a lot more complicated:
using ThreadLocal constructions.
adding more complex reference trees.
or leaks caused by 3rd party libraries.
What often happens:
If this Info object has references to other objects, which again have references to other objects. In a way you could also consider this to be some kind of memory leak, (caused by bad design).
I thought it was interesting that no one used the internal class examples. If you have an internal class; it inherently maintains a reference to the containing class. Of course it is not technically a memory leak because Java WILL eventually clean it up; but this can cause classes to hang around longer than anticipated.
public class Example1 {
public Example2 getNewExample2() {
return this.new Example2();
}
public class Example2 {
public Example2() {}
}
}
Now if you call Example1 and get an Example2 discarding Example1, you will inherently still have a link to an Example1 object.
public class Referencer {
public static Example2 GetAnExample2() {
Example1 ex = new Example1();
return ex.getNewExample2();
}
public static void main(String[] args) {
Example2 ex = Referencer.GetAnExample2();
// As long as ex is reachable; Example1 will always remain in memory.
}
}
I've also heard a rumor that if you have a variable that exists for longer than a specific amount of time; Java assumes that it will always exist and will actually never try to clean it up if cannot be reached in code anymore. But that is completely unverified.
I recently encountered a memory leak situation caused in a way by log4j.
Log4j has this mechanism called Nested Diagnostic Context(NDC) which is an instrument to distinguish interleaved log output from different sources. The granularity at which NDC works is threads, so it distinguishes log outputs from different threads separately.
In order to store thread specific tags, log4j's NDC class uses a Hashtable which is keyed by the Thread object itself (as opposed to say the thread id), and thus till the NDC tag stays in memory all the objects that hang off of the thread object also stay in memory. In our web application we use NDC to tag logoutputs with a request id to distinguish logs from a single request separately. The container that associates the NDC tag with a thread, also removes it while returning the response from a request. The problem occurred when during the course of processing a request, a child thread was spawned, something like the following code:
pubclic class RequestProcessor {
private static final Logger logger = Logger.getLogger(RequestProcessor.class);
public void doSomething() {
....
final List<String> hugeList = new ArrayList<String>(10000);
new Thread() {
public void run() {
logger.info("Child thread spawned")
for(String s:hugeList) {
....
}
}
}.start();
}
}
So an NDC context was associated with inline thread that was spawned. The thread object that was the key for this NDC context, is the inline thread which has the hugeList object hanging off of it. Hence even after the thread finished doing what it was doing, the reference to the hugeList was kept alive by the NDC context Hastable, thus causing a memory leak.
Create a static Map and keep adding hard references to it. Those will never be garbage collected.
public class Leaker {
private static final Map<String, Object> CACHE = new HashMap<String, Object>();
// Keep adding until failure.
public static void addToCache(String key, Object value) { Leaker.CACHE.put(key, value); }
}
Everyone always forgets the native code route. Here's a simple formula for a leak:
Declare a native method.
In the native method, call malloc. Don't call free.
Call the native method.
Remember, memory allocations in native code come from the JVM heap.
You can create a moving memory leak by creating a new instance of a class in that class's finalize method. Bonus points if the finalizer creates multiple instances. Here's a simple program that leaks the entire heap in sometime between a few seconds and a few minutes depending on your heap size:
class Leakee {
public void check() {
if (depth > 2) {
Leaker.done();
}
}
private int depth;
public Leakee(int d) {
depth = d;
}
protected void finalize() {
new Leakee(depth + 1).check();
new Leakee(depth + 1).check();
}
}
public class Leaker {
private static boolean makeMore = true;
public static void done() {
makeMore = false;
}
public static void main(String[] args) throws InterruptedException {
// make a bunch of them until the garbage collector gets active
while (makeMore) {
new Leakee(0).check();
}
// sit back and watch the finalizers chew through memory
while (true) {
Thread.sleep(1000);
System.out.println("memory=" +
Runtime.getRuntime().freeMemory() + " / " +
Runtime.getRuntime().totalMemory());
}
}
}
I don't think anyone has said this yet: you can resurrect an object by overriding the finalize() method such that finalize() stores a reference of this somewhere. The garbage collector will only be called once on the object so after that the object will never destroyed.
I came across a more subtle kind of resource leak recently.
We open resources via class loader's getResourceAsStream and it happened that the input stream handles were not closed.
Uhm, you might say, what an idiot.
Well, what makes this interesting is: this way, you can leak heap memory of the underlying process, rather than from JVM's heap.
All you need is a jar file with a file inside which will be referenced from Java code. The bigger the jar file, the quicker memory gets allocated.
You can easily create such a jar with the following class:
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.zip.ZipEntry;
import java.util.zip.ZipOutputStream;
public class BigJarCreator {
public static void main(String[] args) throws IOException {
ZipOutputStream zos = new ZipOutputStream(new FileOutputStream(new File("big.jar")));
zos.putNextEntry(new ZipEntry("resource.txt"));
zos.write("not too much in here".getBytes());
zos.closeEntry();
zos.putNextEntry(new ZipEntry("largeFile.out"));
for (int i=0 ; i<10000000 ; i++) {
zos.write((int) (Math.round(Math.random()*100)+20));
}
zos.closeEntry();
zos.close();
}
}
Just paste into a file named BigJarCreator.java, compile and run it from command line:
javac BigJarCreator.java
java -cp . BigJarCreator
Et voilà: you find a jar archive in your current working directory with two files inside.
Let's create a second class:
public class MemLeak {
public static void main(String[] args) throws InterruptedException {
int ITERATIONS=100000;
for (int i=0 ; i<ITERATIONS ; i++) {
MemLeak.class.getClassLoader().getResourceAsStream("resource.txt");
}
System.out.println("finished creation of streams, now waiting to be killed");
Thread.sleep(Long.MAX_VALUE);
}
}
This class basically does nothing, but create unreferenced InputStream objects. Those objects will be garbage collected immediately and thus, do not contribute to heap size.
It is important for our example to load an existing resource from a jar file, and size does matter here!
If you're doubtful, try to compile and start the class above, but make sure to chose a decent heap size (2 MB):
javac MemLeak.java
java -Xmx2m -classpath .:big.jar MemLeak
You will not encounter an OOM error here, as no references are kept, the application will keep running no matter how large you chose ITERATIONS in the above example.
The memory consumption of your process (visible in top (RES/RSS) or process explorer) grows unless the application gets to the wait command. In the setup above, it will allocate around 150 MB in memory.
If you want the application to play safe, close the input stream right where it's created:
MemLeak.class.getClassLoader().getResourceAsStream("resource.txt").close();
and your process will not exceed 35 MB, independent of the iteration count.
Quite simple and surprising.
As a lot of people have suggested, resource leaks are fairly easy to cause - like the JDBC examples. Actual memory leaks are a bit harder - especially if you aren't relying on broken bits of the JVM to do it for you...
The ideas of creating objects that have a very large footprint and then not being able to access them aren't real memory leaks either. If nothing can access it then it will be garbage collected, and if something can access it then it's not a leak...
One way that used to work though - and I don't know if it still does - is to have a three-deep circular chain. As in Object A has a reference to Object B, Object B has a reference to Object C and Object C has a reference to Object A. The GC was clever enough to know that a two deep chain - as in A <--> B - can safely be collected if A and B aren't accessible by anything else, but couldn't handle the three-way chain...
Another way to create potentially huge memory leaks is to hold references to Map.Entry<K,V> of a TreeMap.
It is hard to asses why this applies only to TreeMaps, but by looking at the implementation the reason might be that: a TreeMap.Entry stores references to its siblings, therefore if a TreeMap is ready to be collected, but some other class holds a reference to any of its Map.Entry, then the entire Map will be retained into memory.
Real-life scenario:
Imagine having a db query that returns a big TreeMap data structure. People usually use TreeMaps as the element insertion order is retained.
public static Map<String, Integer> pseudoQueryDatabase();
If the query was called lots of times and, for each query (so, for each Map returned) you save an Entry somewhere, the memory would constantly keep growing.
Consider the following wrapper class:
class EntryHolder {
Map.Entry<String, Integer> entry;
EntryHolder(Map.Entry<String, Integer> entry) {
this.entry = entry;
}
}
Application:
public class LeakTest {
private final List<EntryHolder> holdersCache = new ArrayList<>();
private static final int MAP_SIZE = 100_000;
public void run() {
// create 500 entries each holding a reference to an Entry of a TreeMap
IntStream.range(0, 500).forEach(value -> {
// create map
final Map<String, Integer> map = pseudoQueryDatabase();
final int index = new Random().nextInt(MAP_SIZE);
// get random entry from map
for (Map.Entry<String, Integer> entry : map.entrySet()) {
if (entry.getValue().equals(index)) {
holdersCache.add(new EntryHolder(entry));
break;
}
}
// to observe behavior in visualvm
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
});
}
public static Map<String, Integer> pseudoQueryDatabase() {
final Map<String, Integer> map = new TreeMap<>();
IntStream.range(0, MAP_SIZE).forEach(i -> map.put(String.valueOf(i), i));
return map;
}
public static void main(String[] args) throws Exception {
new LeakTest().run();
}
}
After each pseudoQueryDatabase() call, the map instances should be ready for collection, but it won't happen, as at least one Entry is stored somewhere else.
Depending on your jvm settings, the application may crash in the early stage due to a OutOfMemoryError.
You can see from this visualvm graph how the memory keeps growing.
The same does not happen with a hashed data-structure (HashMap).
This is the graph when using a HashMap.
The solution? Just directly save the key / value (as you probably already do) rather than saving the Map.Entry.
I have written a more extensive benchmark here.
There are many good examples of memory leaks in Java, and I will mention two of them in this answer.
Example 1:
Here is a good example of a memory leak from the book Effective Java, Third Edition (item 7: Eliminate obsolete object references):
// Can you spot the "memory leak"?
public class Stack {
private static final int DEFAULT_INITIAL_CAPACITY = 16;
private Object[] elements;
private int size = 0;
public Stack() {
elements = new Object[DEFAULT_INITIAL_CAPACITY];
}
public void push(Object e) {
ensureCapacity();
elements[size++] = e;
}
public Object pop() {
if (size == 0) throw new EmptyStackException();
return elements[--size];
}
/*** Ensure space for at least one more element, roughly* doubling the capacity each time the array needs to grow.*/
private void ensureCapacity() {
if (elements.length == size) elements = Arrays.copyOf(elements, 2 * size + 1);
}
}
This is the paragraph of the book that describes why this implementation will cause a memory leak:
If a stack grows and then shrinks, the objects that were popped off the
stack will not be garbage collected, even if the program using the
stack has no more references to them. This is because the
stack maintains obsolete references to these objects. An obsolete
reference is simply a reference that will never be dereferenced
again. In this case, any references outside of the “active portion” of
the element array are obsolete. The active portion consists of the
elements whose index is less than size
Here is the solution of the book to tackle this memory leak:
The fix for this sort of problem is simple: null out
references once they become obsolete. In the case of our Stack class,
the reference to an item becomes obsolete as soon as it’s popped
off the stack. The corrected version of the pop method looks like this:
public Object pop() {
if (size == 0) throw new EmptyStackException();
Object result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;
}
But how can we prevent a memory leak from happening? This is a good caveat from the book:
Generally speaking, whenever a class manages its own memory,
the programmer should be alert for memory leaks. Whenever an element
is freed, any object references contained in the element should be
nulled out.
Example 2:
The observer pattern also can cause a memory leak. You can read about this pattern in the following link: Observer pattern.
This is one implementation of the Observer pattern:
class EventSource {
public interface Observer {
void update(String event);
}
private final List<Observer> observers = new ArrayList<>();
private void notifyObservers(String event) {
observers.forEach(observer -> observer.update(event)); //alternative lambda expression: observers.forEach(Observer::update);
}
public void addObserver(Observer observer) {
observers.add(observer);
}
public void scanSystemIn() {
Scanner scanner = new Scanner(System.in);
while (scanner.hasNextLine()) {
String line = scanner.nextLine();
notifyObservers(line);
}
}
}
In this implementation, EventSource, which is Observable in the Observer design pattern, can hold links to Observer objects, but this link is never removed from the observers field in EventSource. So they will never be collected by the garbage collector. One solution to tackle this problem is providing another method to the client for removing the aforementioned observers from the observers field when they don't need those observers anymore:
public void removeObserver(Observer observer) {
observers.remove(observer);
}
Threads are not collected until they terminate. They serve as roots of garbage collection. They are one of the few objects that won't be reclaimed simply by forgetting about them or clearing references to them.
Consider: the basic pattern to terminate a worker thread is to set some condition variable seen by the thread. The thread can check the variable periodically and use that as a signal to terminate. If the variable is not declared volatile, then the change to the variable might not be seen by the thread, so it won't know to terminate. Or imagine if some threads want to update a shared object, but deadlock while trying to lock on it.
If you only have a handful of threads these bugs will probably be obvious because your program will stop working properly. If you have a thread pool that creates more threads as needed, then the obsolete/stuck threads might not be noticed, and will accumulate indefinitely, causing a memory leak. Threads are likely to use other data in your application, so will also prevent anything they directly reference from ever being collected.
As a toy example:
static void leakMe(final Object object) {
new Thread() {
public void run() {
Object o = object;
for (;;) {
try {
sleep(Long.MAX_VALUE);
} catch (InterruptedException e) {}
}
}
}.start();
}
Call System.gc() all you like, but the object passed to leakMe will never die.
The interviewer might have been looking for a circular reference solution:
public static void main(String[] args) {
while (true) {
Element first = new Element();
first.next = new Element();
first.next.next = first;
}
}
This is a classic problem with reference counting garbage collectors. You would then politely explain that JVMs use a much more sophisticated algorithm that doesn't have this limitation.

How frequently is garbage collected? I don't think my objects are being deleted

If I have a class delete itself, should its internal methods stop executing? I have a class B that tells class A to remove B from A's ArrayList. I'm fairly certain B only exists in A's ArrayList, and so when I remove it, it should be deleted, right? (NOTE: I've included a Serializable implementation just in case that would have anything to do with how the VM handles my classes, but I did not write in the read- and writeObject methods here. I doubt it will have anything to do with this issue though.)
public class A implements Serializable, B_Listener {
ArrayList<B> bArray;
public A() {
bArray = new ArrayList<SomeObject>();
bArray.add(new B(bArray.size(), this));
}
#Override
public void deleteAtIndex(int index) {
bArray.remove(index);
}
}
public class B implements Serializable {
B_Listener listener;
int index;
public B(B_Listener listener, int index) {
this.listener = listener;
this.index = index;
}
//This is called at some point in a B's lifetime.
private void selfDestruct() {
listener.deleteAtIndex(index);
Log.w("B.class", "Should this not output? It does.");
}
}
public interface B_Listener {
public void deleteAtIndex(int index);
}
So the Log.w message executes when I don't believe it should. Therefore, I'm afraid I'm creating java's memory leaks. I've looked and looked throughout my code trying to find where B might be held by a pointer, but I've come up with nothing besides what I intended.
So then I'm asking if garbage is collected at a different time than when B is deleted on my end. If this is the case, then is it safe to say for the time being that I in fact am not holding objects I do not intend to hold?
Extra (NOTE: this might be hard to follow, everything above this should suffice for the problem):
I also have this tagged with Android-Views because I'm developing on Android: my B class holds View objects that point to B as a listener. When I removeView, the View manager or whatever Android has should no longer point to the View, I believe, and when I delete B, all its internal Views should also be deleted, meaning they can no longer hold B in existence by their own listener pointers. I'm just talking this out to see if my understanding here is correct.
Of course not.
A method will only "stop executing" if it returns, if an exception is thrown, or if the thread is aborted.
The whole point of garbage collection is that it is invisible to you. Barring special tricks (such as WeakReferences, or checking free memory), it is impossible to tell whether an object has been garbage collected – if you can check whether it exists, that means that you have a reference to it, so it cannot be collected.
Usually there will be two kinds of GC: minor (every second or so) and major (every hour or so, but if you give your VM enough memory it could as well be a week).
Objects are freed in an asynchronous way (it's much more effective to do that in bulk and it helps in keeping the memory unfragmented). They will not be deleted the millisecond they are not accessible.
Garbage collection only makes sense when no active thread is able to access an object, not when no object holds a reference to it. In your code, as long as selfDestruct runs, the thread owns an implicit "this" reference. This causes the object to be, indeed, referenced by a thread - and safe from GC.

How to ensure finalize() is always called (Thinking in Java exercise)

I'm slowly working through Bruce Eckel's Thinking in Java 4th edition, and the following problem has me stumped:
Create a class with a finalize( ) method that prints a message. In main( ), create an object of your class. Modify the previous exercise so that your finalize( ) will always be called.
This is what I have coded:
public class Horse {
boolean inStable;
Horse(boolean in){
inStable = in;
}
public void finalize(){
if (!inStable) System.out.print("Error: A horse is out of its stable!");
}
}
public class MainWindow {
public static void main(String[] args) {
Horse h = new Horse(false);
h = new Horse(true);
System.gc();
}
}
It creates a new Horse object with the boolean inStable set to false. Now, in the finalize() method, it checks to see if inStable is false. If it is, it prints a message.
Unfortunately, no message is printed. Since the condition evaluates to true, my guess is that finalize() is not being called in the first place. I have run the program numerous times, and have seen the error message print only a couple of times. I was under the impression that when System.gc() is called, the garbage collector will collect any objects that aren't referenced.
Googling a correct answer gave me this link, which gives much more detailed, complicated code. It uses methods I haven't seen before, such as System.runFinalization(), Runtime.getRuntime(), and System.runFinalizersOnExit().
Is anybody able to give me a better understanding of how finalize() works and how to force it to run, or walk me through what is being done in the solution code?
When the garbage collector finds an object that is eligible for collection but has a finalizer it does not deallocate it immediately. The garbage collector tries to complete as quickly as possible, so it just adds the object to a list of objects with pending finalizers. The finalizer is called later on a separate thread.
You can tell the system to try to run pending finalizers immediately by calling the method System.runFinalization after a garbage collection.
But if you want to force the finalizer to run, you have to call it yourself. The garbage collector does not guarantee that any objects will be collected or that the finalizers will be called. It only makes a "best effort". However it is rare that you would ever need to force a finalizer to run in real code.
Outside of toy scenarios, it's generally not possible to ensure that a finalize will always be called on objects to which no "meaningful" references exist, because the garbage collector has no way of knowing which references are "meaningful". For example, an ArrayList-like object might have a "clear" method which sets its count to zero, and makes all elements within the backing array eligible to be overwritten by future Add calls, but doesn't actually clear the elements in that backing array. If the object has an array of size 50, and its Count is 23, then there may be no execution path by which code could ever examine the references stored in the last 27 slots of the array, but there would be no way for the garbage-collector to know that. Consequently, the garbage-collector would never call finalize on objects in those slots unless or until the container overwrote those array slots, the container abandoned the array (perhaps in favor of a smaller one), or all rooted references to the container itself were destroyed or otherwise ceased to exist.
There are various means to encourage the system to call finalize on any objects for which no strong rooted references happen to exist (which seems to be the point of the question, and which other answers have already covered), but I think it's important to note the distinction between the set of objects to which strong rooted references exist, and the set of objects that code may be interested in. The two sets largely overlap, but each set can contain objects not in the other. Objects' finalizers` run when the GC determines that the objects would no longer exist but for the existence of finalizers; that may or may not coincide with the time code they cease being of interest to anyone. While it would be helpful if one could cause finalizers to run on all objects that have ceased to be of interest, that is in general not possible.
A call to garabage collecter (System.gc()) method suggests that the Java Virtual Machine expend effort toward recycling unused objects in order to make the memory they currently occupy available for quick reuse (i.e its just a suggestion to the jvm, and does not bind it to perform the action then and there, it may or may not do the same). When control returns from the method call, the Java Virtual Machine has made a best effort to reclaim space from all discarded objects. finalize() is called by the garbage collector on an object when garbage collection determines that there are no more references to the object
run new constructor() and System.gc() more than twice.
public class Horse {
boolean inStable;
Horse(boolean in){
inStable = in;
}
public void finalize(){
if (!inStable) System.out.print("Error: A horse is out of its stable!");
}
}
public class MainWindow {
public static void main(String[] args) {
for (int i=0;i<100;i++){
Horse h = new Horse(false);
h = new Horse(true);
System.gc();
}
}
}
Here's what worked for me (partially, but it does illustrate the idea):
class OLoad {
public void finalize() {
System.out.println("I'm melting!");
}
}
public class TempClass {
public static void main(String[] args) {
new OLoad();
System.gc();
}
}
The line new OLoad(); does the trick, as it creates an object with no reference attached. This helps System.gc() run the finalize() method as it detects an object with no reference. Saying something like OLoad o1 = new OLoad(); will not work as it will create a reference that lives until the end of main(). Unfortunately, this works most of the time. As others pointed out, there's no way to ensure finalize() will be always called, except to call it yourself.

When is a Java local variable eligible for GC?

Given the following program:
import java.io.*;
import java.util.*;
public class GCTest {
public static void main(String[] args) throws Exception {
List cache = new ArrayList();
while (true) {
cache.add(new GCTest().run());
System.out.println("done");
}
}
private byte[] run() throws IOException {
Test test = new Test();
InputStream is = test.getInputStream();
ByteArrayOutputStream baos = new ByteArrayOutputStream();
byte[] buff = new byte[256];
int len = 0;
while (-1 != (len = is.read())) {
baos.write(buff, 0, len);
}
return baos.toByteArray();
}
private class Test {
private InputStream is;
public InputStream getInputStream() throws FileNotFoundException {
is = new FileInputStream("GCTest.class");
return is;
}
protected void finalize() throws IOException {
System.out.println("finalize");
is.close();
is = null;
}
}
}
would you expect the finalize to ever be called when the while loop in the run method is still executing and the local variable test is still in scope?
More importantly, is this behaviour defined anywhere? Is there anything by Sun that states that it is implementation-defined?
This is kind of the reverse of the way this question has been asked before on SO where people are mainly concerned with memory leaks. Here we have the GC aggressively GCing a variable we still have an interest in. You might expect that because test is still "in scope" that it would not be GC'd.
For the record, it appears that sometimes the test "works" (i.e. eventually hits an OOM) and sometimes it fails, depending on the JVM implementation.
Not defending the way this code is written BTW, it's just a question that came up at work.
While the object won't be garbage collected if it is still in scope, the JIT compiler might take it out of scope if the variable isn't actually used any further in the code (hence the differing behavior you are seeing) even though when you read the source code the variable still seems to be "in scope."
I don't understand why you care if an object is garbage collected if you don't reference it anymore in code, but if you want to ensure objects stay in memory, the best way is to reference them directly in a field of a class, or even better in a static field. If a static field references the object, it won't get garbage collected.
Edit: Here is the explicit documentation you are looking for.
> I'm assuming an object cannot die before a local reference to it has gone out of scope.
This can not be assumed. Neither the
Java spec nor the JVM spec guarantees
this.
Just because a variable is in scope,
doesn't mean the object it points to
is reachable. Usually it is the case
that an object pointed to by an
in-scope variable is reachable, but
yours is a case where it is not. The
compiler can determine at jit time
which variables are dead and does not
include such variables in the oop-map.
Since the object pointed to by "nt"
can [sic - should be cannot] be
reached from any live variable, it is
eligible for collection.
I recommend that you and your co-worker read the The Truth About Garbage Collection.
Right at the start, it says this:
The specification for the Java
platform makes very few promises about
how garbage collection actually works. [elided]
While it can seem confusing, the fact
that the garbage collection model is
not rigidly defined is actually
important and useful-a rigidly defined
garbage collection model might be
impossible to implement on all
platforms. Similarly, it might
preclude useful optimizations and hurt
the performance of the platform in the
long term.
In your example, the test variable becomes "invisible" (see A.3.3 of above) in the while loop. At this point some JVMs will continue to view the variable as containing a "hard reference", and other JVMs will treat it as if the variable has been nulled. Either behaviour is acceptable for a compliant JVM
Quoting from the JLS edition 3 (section 12.6.1 paragraph 2):
A reachable object is any object that
can be accessed in any potential
continuing computation from any live
thread.
Notice that reachability is not defined in terms of scopes at all. The quoted text continues as follows:
Optimizing transformations of
a program can be designed that reduce
the number of objects that are
reachable to be less than those which
would naively be considered reachable.
For example, a compiler or code
generator may choose to set a variable
or parameter that will no longer be
used to null to cause the storage for
such an object to be potentially
reclaimable sooner.
(My emphasis added.) This means that an object object may be garbage collected and finalization may occur earlier or later than you would expect. It is also worth noting that some JVMs take more than one GC cycles before unreachable objects are finalized.
The bottom line is that a program that depends on finalization happening earlier or later is inherently non-portable, and to my mind buggy.
Slightly off-topic, but finalize() should never be used to close() a file. The language does not guarantee that finalize() will ever get called. Always use a try ... finally construct to guarantee file closure, database cleanup, etc.
What are you observing that you find strange? Each time you execute run(), you create a new instance of Test. Once run completes, that instance of test is out of scope and eligible for garbage collection. Of course "eligible for garbage collection" and "is garbage collected" are not the same thing. I'd expect that if you run this program, you'd see a bunch of finalize messages scroll by as invocations of run complete. As the only console output I see is these messages, I don't see how you would know which instance of Test is being finalized when you see each message. You might get more interesting results if you added a println at the beginning of each invocation of run, and maybe even added a counter to the Test object that gets incremented each time a new one is created, and which is output with the finalize message. Then you could see what was really happening. (Well, maybe you're running this with a debugger, but that could also obscure more.)
As test is only used once, it can be removed immediately after the call to it. Even if the each call to read used a call to getInputStream instead of using the local is variable, use of the object could be optimised away. FIleInputStream cannot be finalised prematurely due to its use of locking. Finalisers are difficult.
In any case, your finaliser is pointless. The underlying FileInputStream will close itself on finalisation anyway.
In theory Test must not be in the scope since it is at the method level run() and the local variables should be garbage collected as you come out of the method.However you are storing the results in list, and i have read it somehere that lists are prone for storing weak references that are not garbage collected easily (depending on jvm implementation).

Categories

Resources