I have come across the #JvmSynthetic annotation in kotlin-stdlib, and I'm wondering what it is for, but, unfortunately, it is undocumented. (UPD: it was at that moment)
As far as I understand, applying it to a program element will add the synthetic modifier to the corresponding bytecode elements. As a consequence, the element becomes invisible from Java:
class MyClass {
#JvmSynthetic
fun f() { }
}
Somewhere in Java code:
MyClass c = new MyClass();
c.f() // Error: cannot resolve method f()
But the same elements are still visible in Kotlin code:
val c = MyClass()
c.f() // OK
Is hiding declarations from non-Kotlin sources a valid use of #JvmSynthetic? Is it the intended use? What are the other appropriate use cases?
Since #JvmSynthetic hides functions from Java, they cannot be overridden in Java either (and when it comes to an abstract member, the calls then result into AbstractMethodError). Given that, can I use #JvmSynthetic to prohibit overriding members of a Kotlin class in Java sources?
In plain Java, synthetic methods are generated by the javac compiler. Normally the compiler must create synthetic methods on nested classes, when fields specified with the private modifier are accessed by the enclosing class.
Given the following class in java:
public final class SyntheticSample
{
public static void main(final String[] args)
{
SyntheticSample.Nested nested = new SyntheticSample.Nested();
out.println("String: " + nested.syntheticString);
}
private static final class Nested
{
private String syntheticString = "I'll become a method!";
}
}
when the SyntheticSample class accesses the nested.syntheticString field, it is indeed calling a static synthetic method generated by the compiler (named something like access$100).
Even if Kotlin exposes a #JvmSynthetic annotation that is able to "force" the creation of synthetic methods, I advice to not using it in normal "user" code. Synthetic methods are low-level tricks made by the compiler, and we should never rely on such things in everyday code. I think it's there to support other parts of the standard library, but you should ask the JetBrains guys directly if you're curious (try on the official Kotlin Discussion Forum)
First, to answer what synthetic methods actually are, let's have a look at the Java language specification:
11. A construct emitted by a Java compiler must be marked as synthetic if it does not correspond to a construct declared explicitly or implicitly in source code, unless the emitted construct is a class initialization method (JVMS ยง2.9).
The #JvmSynthetic annotation does exactly that: prevent access from source code. The method will still appear in reflection and is then marked as synthetic.
More precisely, from the Kotlin documentation (emphasis mine):
#JvmSynthetic
Sets ACC_SYNTHETIC flag on the annotated target in the Java bytecode.
Synthetic targets become inaccessible for Java sources at compile time while still being accessible for Kotlin sources. Marking target as synthetic is a binary compatible change, already compiled Java code will be able to access such target.
This annotation is intended for rare cases when API designer needs to hide Kotlin-specific target from Java API while keeping it a part of Kotlin API so the resulting API is idiomatic for both.
As described in the last paragraph, #JvmSynthetic is a tool for API design, which lets a library writer avoid automatic generation of Java equivalents. Probably the most popular use cases are Kotlin-only features, such as operator overloading, componentN() methods or properties, which may have a more idiomatic way to be exposed in Java.
It is noteworthy that the target of this annotations are property setters/getters, functions and fields -- basically everything that translates in Java to a method.
#Target([
AnnotationTarget.FUNCTION,
AnnotationTarget.PROPERTY_GETTER,
AnnotationTarget.PROPERTY_SETTER,
AnnotationTarget.FIELD])
annotation actual class JvmSynthetic
Related
Is groovy's extension module feature a hybrid form of java's inheritance feature? Why are the extension-module needs to be declared as static?
Short answer is I think yes. It is a bit difficult to answer clearly, since the inheritance for the extension methods is done completely by the runtime (and the static compiler). As such it has nothing to do with how Java does inheritance.
To answer the second question... They are static, because for situations in which you need state you usually use the meta class. Extension methods are initially thought of as convenience methods or to make the API more Groovy. As such, they are a special form of methods added to the meta class. You can see them as simplified version. But that also means they don't have all the abilities. Implementing extension methods, that can keep local state on a per "self"-object basis (basically what fields/properties would do) is actually difficult to do efficient... but you could always use per instance meta classes for this.
For all extensive purposes they are syntactic sugar so that a static method appears to be more OOP like. There is no inheritance because static methods in Java and Groovy do not participate in inheritance (that is classes do not inherit static methods).
The methods need to be static because the compiler does not know how to instantiate the surrounding class of the extension method.
However I believe there are languages that do allow for methods to be defined outside of the enclosing class and do some sort inheritance but not many do not (I believe CLOS and Dylan do). Also they are many languages that appear to allow methods to be added but the type of "object" is actually changed/hidden to some other type. This is called adhoc polymorphism (e.g. Clojure, Haskell, sort of Golang and sort of Scala) but again has nothing to do with inclusional polymorphism (Java inheritance).
Unfortunately the reference documentation and other docs don't define the semantics of extension methods:
Q. Can they override instance methods?
I tested extension methods via use Category methods and metaClass expando methods. Neither approach overrides instance methods. I didn't test extension modules installed via module descriptor.
Q. Can they be overridden by extension methods on subclasses?
I tested that, too. use methods and metaClass extension methods don't get overridden by extension methods on subclasses.
Q. Can they call inherited super methods?
No, since they're implemented via static methods.
Q. Can they call private methods?
Experiments showed that they can, surprisingly.
Q. Can they access private instance variables?
No, since they're implemented via static methods.
Q. Are they callable from Java methods?
Maybe, if the extension module is on the classpath when compiling the calling code. I didn't test it.
Conclusion: Extension methods are not a form of inheritance. They seem to be a dynamic form of Universal Function Call Syntax (UFCS), that is, when the language can't find a method variable.foo(arguments) it looks for a static extension function foo(variable, arguments) to call. [Please correct my hypothesis if wrong!]
You asked why they're defined as static. That seems to match the semantics: A static function that's not involved in inheritance, although its calling syntax makes it look like a convenient method call.
You can write an extension method like an instance method using the #groovy.lang.Category annotation. That does AST transformations at compile time to turn it into a suitable static method.
Also see Groovy traits. That is a form of (mixin) inheritance.
What are the caveats that a developer should be aware of while writing reflective code that works both with Java and Kotlin?
For example, I have an existing library that uses reflection and it works well with Java. However, when I use the same with Kotlin, my reflective code doesn't seem to pick up the annotations on fields.
Here are some of the differences that I noticed.
1. Acquiring a Class instance
// Example 1.1 - Java
Class<?> userClass = User.class; // From a class name
userClass = userInstance.getClass(); // OR from an instance
Getting a Java class instance in Kotlin
// Example 1.2 - Kotlin
val userClass = userInstance.javaClass // From an instance
I'm unable to use the .class facility or the .getClass() method in Kotlin as we do in Java.
2. Delegates
When I use delegated properties in a Kotlin class, the properties that I retrieve have the $delegate suffix. This is a bit contrary to the fields that we get in Java (I do understand Kotlin does not have fields, only properties). How does this affect meta-programming?
However, with delegates I see that most of the methods retain their behavior as they do in Java. Are there any other differences that I have to be aware of?
Making Java and Kotlin interoperable for me would require understanding about 1 discussed above, plus other limitations / differences that Kotlin brings to meta-programming.
For example, I have an existing library that uses reflection and it works well with Java. However, when I use the same with Kotlin, my reflective code doesn't seem to pick up the annotations on fields.
Can it be because the fields are private now?
Anyway, there are issues with annotations on fields at the moment, this will be fixed in on of the upcoming milestones.
Some other relevant issues:
https://youtrack.jetbrains.com/issue/KT-5967
https://youtrack.jetbrains.com/issue/KT-4169
https://youtrack.jetbrains.com/issue/KT-3625
I'm unable to use the .class facility or the .getClass() method in Kotlin as we do in Java.
Only the syntax is different: javaClass<C>() works exactly the same as C.class, and x.javaClass does the same thing as x.getClass()
When I use delegated properties in a Kotlin class, the properties that I retrieve have the $delegate suffix.
Minor correction: the fields have the $delegate suffix, not the properties.
However, with delegates I see that most of the methods retain their behavior as they do in Java. Are there any other differences that I have to be aware of?
The docs here give you a detailed description of how delegated properties are implemented.
Making Java and Kotlin interoperable for me would require understanding about 1 discussed above, plus other limitations / differences that Kotlin brings to meta-programming.
The more your Kotlin code resembles Java code, the smaller is the difference from the reflection point of view. If you write idiomatic Kotlin, e.g. use default parameter values, traits, properties, delegates, top-level functions, extensions etc, the classes you get differ from idiomatic Java, otherwise they are closely aligned.
I am looking for a java equivalent to the C# extension methods feature. Now I have been reading about Java 8's default methods, but as far as I can see, I can only add these to interfaces...
...is there any language feature that will allow me to write an extension method for a final class that doesn't implement an interface? (I'd rather not have to wrap it...)
Java doesn't have extension methods. Default methods are not extension methods. Let's look at each feature.
Default methods
Both Java and C# support this feature
Problems solved:
Many objects may implement the same interface and all of them may use the same implementation for a method. A base class could solve this issue but only if the interface implementors don't already have a base class as neither java nor C# support multiple inheritance.
An API would like to add a method to an interface without breaking the API consumers. Adding a method with a default implementation solves this.
Java's or C#'s default methods are a feature to add a default implementation to an interface. So objects that extend an interface don't have to implement the method, they could just use the default method.
interface IA { default public int AddOne(int i) { return i + 1; } }
Any object that implements IA doesn't have to implement AddOne because there is a default method that would be used.
public class MyClass implements IA { /* No AddOne implementation needed */ }
C# now has this feature in C# 8 (or .Net 5)
C#'s Extension Method
Problems solved:
Ability to add methods to sealed classes.
Ability to add methods to classes from third-party libraries without forcing inheritance.
Ability to add methods to model classes in environments where methods in model classes are not allowed for convention reasons.
The ability for IntelliSense to present these methods to you.
Example: The type string is a sealed class in C#. You cannot inherit from string as it is sealed. But you can add methods you can call from a string.
var a = "mystring";
a.MyExtensionMethed()
Java lacks this feature and would be greatly improved by adding this feature.
Conclusion
There is nothing even similar about Java's default methods and C#'s extension method features. They are completely different and solve completely different problems.
C# extension methods are static and use-site, whereas Java's default methods are virtual and declaration-site.
What I believe you are hoping for is the ability to "monkey-patch" a method into a class you do not control, but Java does not give you that (by design; it was considered and rejected.)
Another benefit of default methods over the C# approach is that they are reflectively discoverable, and in fact from the outside, don't look any different from "regular" interface methods.
One advantage of C#'s extension methods over Java's default methods is that with C#'s reified generics, extension methods are injected into types, not classes, so you can inject a sum() method into List<int>.
Above all, the main philosophical difference between Java's default methods and C#'s extension methods is that C# lets you inject methods into types you do not control (which is surely convenient for developers), whereas Java's extension methods are a first-class part of the API in which they appear (they are declared in the interface, they are reflectively discoverable, etc.) This reflects several design principles; library developers should be able to maintain control of their APIs, and library use should be transparent -- calling method x() on type Y should mean the same thing everywhere.
C# extension methods are just syntactic sugar for static methods that take the extended type as first argument. Java default methods are something completely different. To mimic C# extension methods, just write usual static methods. You will not have the syntatic sugar, however; Java does not have this feature.
Java default methods are real virtual methods. For example, they can be overridden. Consider a class X inheriting from an interface I that declares a default foo() method. If X or any of its super classes declares no own foo() method, then X will get the foo() implementation of I. Now, a subclass Y of X can override X.foo() like a usual method. Thus, default methods are not only syntactic sugar. They are real extensions of the method overriding and inheritance mechanism that cannot be mimicked by other language features.
Default methods even require special VM support, so they are not even a compiler only feature: During class loading, the hierarchy of a class has to be checked to determine which default methods it will inherit. Thus, this decision is made at runtime, not at compile time. The cool thing about it is that you do not have to recompile a class when an interface it inherits gets a new default method: The VM will, at class load time, assign that new method to it.
It is possible to have extension methods with some tricks.
You may give a try to Lombok or XTend. Although extension methods don't come with the out of the box Java implementation, both Lombok and XTend offers a fully working solution.
Lombok is a simple standalone code processing framework, which makes most of the criticized Java specific hassle less painful, including extension methods:
https://projectlombok.org/features/experimental/ExtensionMethod.html
Xtend http://www.eclipse.org/xtend/ goes a few lightyears forward, and implements a language which is a combination of the best parts of modern languages such as Scala on top of Java and Java type system. This allows implementing some classes in Xtend and others in Java within the same project. The Xtend code complies to valid Java code, so no JVM magic happens under the hood. On the other hand, it is a little too much if you have only extension methods missing.
JPropel https://github.com/nicholas22/jpropel-light implements LINQ style extension methods in Java using Lombok. It may worth of a peek :)
Are there currently (Java 6) things you can do in Java bytecode that you can't do from within the Java language?
I know both are Turing complete, so read "can do" as "can do significantly faster/better, or just in a different way".
I'm thinking of extra bytecodes like invokedynamic, which can't be generated using Java, except that specific one is for a future version.
After working with Java byte code for quite a while and doing some additional research on this matter, here is a summary of my findings:
Execute code in a constructor before calling a super constructor or auxiliary constructor
In the Java programming language (JPL), a constructor's first statement must be an invocation of a super constructor or another constructor of the same class. This is not true for Java byte code (JBC). Within byte code, it is absolutely legitimate to execute any code before a constructor, as long as:
Another compatible constructor is called at some time after this code block.
This call is not within a conditional statement.
Before this constructor call, no field of the constructed instance is read and none of its methods is invoked. This implies the next item.
Set instance fields before calling a super constructor or auxiliary constructor
As mentioned before, it is perfectly legal to set a field value of an instance before calling another constructor. There even exists a legacy hack which makes it able to exploit this "feature" in Java versions before 6:
class Foo {
public String s;
public Foo() {
System.out.println(s);
}
}
class Bar extends Foo {
public Bar() {
this(s = "Hello World!");
}
private Bar(String helper) {
super();
}
}
This way, a field could be set before the super constructor is invoked which is however not longer possible. In JBC, this behavior can still be implemented.
Branch a super constructor call
In Java, it is not possible to define a constructor call like
class Foo {
Foo() { }
Foo(Void v) { }
}
class Bar() {
if(System.currentTimeMillis() % 2 == 0) {
super();
} else {
super(null);
}
}
Until Java 7u23, the HotSpot VM's verifier did however miss this check which is why it was possible. This was used by several code generation tools as a sort of a hack but it is not longer legal to implement a class like this.
The latter was merely a bug in this compiler version. In newer compiler versions, this is again possible.
Define a class without any constructor
The Java compiler will always implement at least one constructor for any class. In Java byte code, this is not required. This allows the creation of classes that cannot be constructed even when using reflection. However, using sun.misc.Unsafe still allows for the creation of such instances.
Define methods with identical signature but with different return type
In the JPL, a method is identified as unique by its name and its raw parameter types. In JBC, the raw return type is additionally considered.
Define fields that do not differ by name but only by type
A class file can contain several fields of the same name as long as they declare a different field type. The JVM always refers to a field as a tuple of name and type.
Throw undeclared checked exceptions without catching them
The Java runtime and the Java byte code are not aware of the concept of checked exceptions. It is only the Java compiler that verifies that checked exceptions are always either caught or declared if they are thrown.
Use dynamic method invocation outside of lambda expressions
The so-called dynamic method invocation can be used for anything, not only for Java's lambda expressions. Using this feature allows for example to switch out execution logic at runtime. Many dynamic programming languages that boil down to JBC improved their performance by using this instruction. In Java byte code, you could also emulate lambda expressions in Java 7 where the compiler did not yet allow for any use of dynamic method invocation while the JVM already understood the instruction.
Use identifiers that are not normally considered legal
Ever fancied using spaces and a line break in your method's name? Create your own JBC and good luck for code review. The only illegal characters for identifiers are ., ;, [ and /. Additionally, methods that are not named <init> or <clinit> cannot contain < and >.
Reassign final parameters or the this reference
final parameters do not exist in JBC and can consequently be reassigned. Any parameter, including the this reference is only stored in a simple array within the JVM what allows to reassign the this reference at index 0 within a single method frame.
Reassign final fields
As long as a final field is assigned within a constructor, it is legal to reassign this value or even not assign a value at all. Therefore, the following two constructors are legal:
class Foo {
final int bar;
Foo() { } // bar == 0
Foo(Void v) { // bar == 2
bar = 1;
bar = 2;
}
}
For static final fields, it is even allowed to reassign the fields outside of
the class initializer.
Treat constructors and the class initializer as if they were methods
This is more of a conceptional feature but constructors are not treated any differently within JBC than normal methods. It is only the JVM's verifier that assures that constructors call another legal constructor. Other than that, it is merely a Java naming convention that constructors must be called <init> and that the class initializer is called <clinit>. Besides this difference, the representation of methods and constructors is identical. As Holger pointed out in a comment, you can even define constructors with return types other than void or a class initializer with arguments, even though it is not possible to call these methods.
Create asymmetric records*.
When creating a record
record Foo(Object bar) { }
javac will generate a class file with a single field named bar, an accessor method named bar() and a constructor taking a single Object. Additionally, a record attribute for bar is added. By manually generating a record, it is possible to create, a different constructor shape, to skip the field and to implement the accessor differently. At the same time, it is still possible to make the reflection API believe that the class represents an actual record.
Call any super method (until Java 1.1)
However, this is only possible for Java versions 1 and 1.1. In JBC, methods are always dispatched on an explicit target type. This means that for
class Foo {
void baz() { System.out.println("Foo"); }
}
class Bar extends Foo {
#Override
void baz() { System.out.println("Bar"); }
}
class Qux extends Bar {
#Override
void baz() { System.out.println("Qux"); }
}
it was possible to implement Qux#baz to invoke Foo#baz while jumping over Bar#baz. While it is still possible to define an explicit invocation to call another super method implementation than that of the direct super class, this does no longer have any effect in Java versions after 1.1. In Java 1.1, this behavior was controlled by setting the ACC_SUPER flag which would enable the same behavior that only calls the direct super class's implementation.
Define a non-virtual call of a method that is declared in the same class
In Java, it is not possible to define a class
class Foo {
void foo() {
bar();
}
void bar() { }
}
class Bar extends Foo {
#Override void bar() {
throw new RuntimeException();
}
}
The above code will always result in a RuntimeException when foo is invoked on an instance of Bar. It is not possible to define the Foo::foo method to invoke its own bar method which is defined in Foo. As bar is a non-private instance method, the call is always virtual. With byte code, one can however define the invocation to use the INVOKESPECIAL opcode which directly links the bar method call in Foo::foo to Foo's version. This opcode is normally used to implement super method invocations but you can reuse the opcode to implement the described behavior.
Fine-grain type annotations
In Java, annotations are applied according to their #Target that the annotations declares. Using byte code manipulation, it is possible to define annotations independently of this control. Also, it is for example possible to annotate a parameter type without annotating the parameter even if the #Target annotation applies to both elements.
Define any attribute for a type or its members
Within the Java language, it is only possible to define annotations for fields, methods or classes. In JBC, you can basically embed any information into the Java classes. In order to make use of this information, you can however no longer rely on the Java class loading mechanism but you need to extract the meta information by yourself.
Overflow and implicitly assign byte, short, char and boolean values
The latter primitive types are not normally known in JBC but are only defined for array types or for field and method descriptors. Within byte code instructions, all of the named types take the space 32 bit which allows to represent them as int. Officially, only the int, float, long and double types exist within byte code which all need explicit conversion by the rule of the JVM's verifier.
Not release a monitor
A synchronized block is actually made up of two statements, one to acquire and one to release a monitor. In JBC, you can acquire one without releasing it.
Note: In recent implementations of HotSpot, this instead leads to an IllegalMonitorStateException at the end of a method or to an implicit release if the method is terminated by an exception itself.
Add more than one return statement to a type initializer
In Java, even a trivial type initializer such as
class Foo {
static {
return;
}
}
is illegal. In byte code, the type initializer is treated just as any other method, i.e. return statements can be defined anywhere.
Create irreducible loops
The Java compiler converts loops to goto statements in Java byte code. Such statements can be used to create irreducible loops, which the Java compiler never does.
Define a recursive catch block
In Java byte code, you can define a block:
try {
throw new Exception();
} catch (Exception e) {
<goto on exception>
throw Exception();
}
A similar statement is created implicitly when using a synchronized block in Java where any exception while releasing a monitor returns to the instruction for releasing this monitor. Normally, no exception should occur on such an instruction but if it would (e.g. the deprecated ThreadDeath), the monitor would still be released.
Call any default method
The Java compiler requires several conditions to be fulfilled in order to allow a default method's invocation:
The method must be the most specific one (must not be overridden by a sub interface that is implemented by any type, including super types).
The default method's interface type must be implemented directly by the class that is calling the default method. However, if interface B extends interface A but does not override a method in A, the method can still be invoked.
For Java byte code, only the second condition counts. The first one is however irrelevant.
Invoke a super method on an instance that is not this
The Java compiler only allows to invoke a super (or interface default) method on instances of this. In byte code, it is however also possible to invoke the super method on an instance of the same type similar to the following:
class Foo {
void m(Foo f) {
f.super.toString(); // calls Object::toString
}
public String toString() {
return "foo";
}
}
Access synthetic members
In Java byte code, it is possible to access synthetic members directly. For example, consider how in the following example the outer instance of another Bar instance is accessed:
class Foo {
class Bar {
void bar(Bar bar) {
Foo foo = bar.Foo.this;
}
}
}
This is generally true for any synthetic field, class or method.
Define out-of-sync generic type information
While the Java runtime does not process generic types (after the Java compiler applies type erasure), this information is still attcheched to a compiled class as meta information and made accessible via the reflection API.
The verifier does not check the consistency of these meta data String-encoded values. It is therefore possible to define information on generic types that does not match the erasure. As a concequence, the following assertings can be true:
Method method = ...
assertTrue(method.getParameterTypes() != method.getGenericParameterTypes());
Field field = ...
assertTrue(field.getFieldType() == String.class);
assertTrue(field.getGenericFieldType() == Integer.class);
Also, the signature can be defined as invalid such that a runtime exception is thrown. This exception is thrown when the information is accessed for the first time as it is evaluated lazily. (Similar to annotation values with an error.)
Append parameter meta information only for certain methods
The Java compiler allows for embedding parameter name and modifier information when compiling a class with the parameter flag enabled. In the Java class file format, this information is however stored per-method what makes it possible to only embed such method information for certain methods.
Mess things up and hard-crash your JVM
As an example, in Java byte code, you can define to invoke any method on any type. Usually, the verifier will complain if a type does not known of such a method. However, if you invoke an unknown method on an array, I found a bug in some JVM version where the verifier will miss this and your JVM will finish off once the instruction is invoked. This is hardly a feature though, but it is technically something that is not possible with javac compiled Java. Java has some sort of double validation. The first validation is applied by the Java compiler, the second one by the JVM when a class is loaded. By skipping the compiler, you might find a weak spot in the verifier's validation. This is rather a general statement than a feature, though.
Annotate a constructor's receiver type when there is no outer class
Since Java 8, non-static methods and constructors of inner classes can declare a receiver type and annotate these types. Constructors of top-level classes cannot annotate their receiver type as they most not declare one.
class Foo {
class Bar {
Bar(#TypeAnnotation Foo Foo.this) { }
}
Foo() { } // Must not declare a receiver type
}
Since Foo.class.getDeclaredConstructor().getAnnotatedReceiverType() does however return an AnnotatedType representing Foo, it is possible to include type annotations for Foo's constructor directly in the class file where these annotations are later read by the reflection API.
Use unused / legacy byte code instructions
Since others named it, I will include it as well. Java was formerly making use of subroutines by the JSR and RET statements. JBC even knew its own type of a return address for this purpose. However, the use of subroutines did overcomplicate static code analysis which is why these instructions are not longer used. Instead, the Java compiler will duplicate code it compiles. However, this basically creates identical logic which is why I do not really consider it to achieve something different. Similarly, you could for example add the NOOP byte code instruction which is not used by the Java compiler either but this would not really allow you to achieve something new either. As pointed out in the context, these mentioned "feature instructions" are now removed from the set of legal opcodes which does render them even less of a feature.
As far as I know there are no major features in the bytecodes supported by Java 6 that are not also accessible from Java source code. The main reason for this is obviously that the Java bytecode was designed with the Java language in mind.
There are some features that are not produced by modern Java compilers, however:
The ACC_SUPER flag:
This is a flag that can be set on a class and specifies how a specific corner case of the invokespecial bytecode is handled for this class. It is set by all modern Java compilers (where "modern" is >= Java 1.1, if I remember correctly) and only ancient Java compilers produced class files where this was un-set. This flag exists only for backwards-compatibility reasons. Note that starting with Java 7u51, ACC_SUPER is ignored completely due to security reasons.
The jsr/ret bytecodes.
These bytecodes were used to implement sub-routines (mostly for implementing finally blocks). They are no longer produced since Java 6. The reason for their deprecation is that they complicate static verification a lot for no great gain (i.e. code that uses can almost always be re-implemented with normal jumps with very little overhead).
Having two methods in a class that only differ in return type.
The Java language specification does not allow two methods in the same class when they differ only in their return type (i.e. same name, same argument list, ...). The JVM specification however, has no such restriction, so a class file can contain two such methods, there's just no way to produce such a class file using the normal Java compiler. There's a nice example/explanation in this answer.
Here are some features that can be done in Java bytecode but not in Java source code:
Throwing a checked exception from a method without declaring that the method throws it. The checked and unchecked exceptions are a thing which is checked only by the Java compiler, not the JVM. Because of this for example Scala can throw checked exceptions from methods without declaring them. Though with Java generics there is a workaround called sneaky throw.
Having two methods in a class that only differ in return type, as already mentioned in Joachim's answer: The Java language specification does not allow two methods in the same class when they differ only in their return type (i.e. same name, same argument list, ...). The JVM specification however, has no such restriction, so a class file can contain two such methods, there's just no way to produce such a class file using the normal Java compiler. There's a nice example/explanation in this answer.
GOTO can be used with labels to create your own control structures (other than for while etc)
You can override the this local variable inside a method
Combining both of these you can create create tail call optimised bytecode (I do this in JCompilo)
As a related point you can get parameter name for methods if compiled with debug (Paranamer does this by reading the bytecode
Maybe section 7A in this document is of interest, although it's about bytecode pitfalls rather than bytecode features.
In Java language the first statement in a constructor must be a call to the super class constructor. Bytecode does not have this limitation, instead the rule is that the super class constructor or another constructor in the same class must be called for the object before accessing the members. This should allow more freedom such as:
Create an instance of another object, store it in a local variable (or stack) and pass it as a parameter to super class constructor while still keeping the reference in that variable for other use.
Call different other constructors based on a condition. This should be possible: How to call a different constructor conditionally in Java?
I have not tested these, so please correct me if I'm wrong.
Something you can do with byte code, rather than plain Java code, is generate code which can loaded and run without a compiler. Many systems have JRE rather than JDK and if you want to generate code dynamically it may be better, if not easier, to generate byte code instead of Java code has to be compiled before it can be used.
I wrote a bytecode optimizer when I was a I-Play, (it was designed to reduce the code size for J2ME applications). One feature I added was the ability to use inline bytecode (similar to inline assembly language in C++). I managed to reduce the size of a function that was part of a library method by using the DUP instruction, since I need the value twice. I also had zero byte instructions (if you are calling a method that takes a char and you want to pass an int, that you know does not need to be cast I added int2char(var) to replace char(var) and it would remove the i2c instruction to reduce the size of the code. I also made it do float a = 2.3; float b = 3.4; float c = a + b; and that would be converted to fixed point (faster, and also some J2ME did not support floating point).
In Java, if you attempt to override a public method with a protected method (or any other reduction in access), you get an error: "attempting to assign weaker access privileges". If you do it with JVM bytecode, the verifier is fine with it, and you can call these methods via the parent class as if they were public.
Let's say I have:
class A {
Integer b;
void c() {}
}
Why does Java have this syntax: A.class, and doesn't have a syntax like this: b.field, c.method?
Is there any use that is so common for class literals?
The A.class syntax looks like a field access, but in fact it is a result of a special syntax rule in a context where normal field access is simply not allowed; i.e. where A is a class name.
Here is what the grammar in the JLS says:
Primary:
ParExpression
NonWildcardTypeArguments (
ExplicitGenericInvocationSuffix | this Arguments)
this [Arguments]
super SuperSuffix
Literal
new Creator
Identifier { . Identifier }[ IdentifierSuffix]
BasicType {[]} .class
void.class
Note that there is no equivalent syntax for field or method.
(Aside: The grammar allows b.field, but the JLS states that b.field means the contents of a field named "field" ... and it is a compilation error if no such field exists. Ditto for c.method, with the addition that a field c must exist. So neither of these constructs mean what you want them to mean ... )
Why does this limitation exist? Well, I guess because the Java language designers did not see the need to clutter up the language syntax / semantics to support convenient access to the Field and Method objects. (See * below for some of the problems of changing Java to allow what you want.)
Java reflection is not designed to be easy to use. In Java, it is best practice use static typing where possible. It is more efficient, and less fragile. Limit your use of reflection to the few cases where static typing simply won't work.
This may irk you if you are used to programming to a language where everything is dynamic. But you are better off not fighting it.
Is there any use that is so common for class literals?
I guess, the main reason they supported this for classes is that it avoids programs calling Class.forName("some horrible string") each time you need to do something reflectively. You could call it a compromise / small concession to usability for reflection.
I guess the other reason is that the <type>.class syntax didn't break anything, because class was already a keyword. (IIRC, the syntax was added in Java 1.1.)
* If the language designers tried to retrofit support for this kind of thing there would be all sorts of problems:
The changes would introduce ambiguities into the language, making compilation and other parser-dependent tasks harder.
The changes would undoubtedly break existing code, whether or not method and field were turned into keywords.
You cannot treat b.field as an implicit object attribute, because it doesn't apply to objects. Rather b.field would need to apply to field / attribute identifiers. But unless we make field a reserved word, we have the anomalous situation that you can create a field called field but you cannot refer to it in Java sourcecode.
For c.method, there is the problem that there can be multiple visible methods called c. A second issue that if there is a field called c and a method called c, then c.method could be a reference to an field called method on the object referred to by the c field.
I take it you want this info for logging and such. It is most unfortunate that such information is not available although the compiler has full access to such information.
One with a little creativity you can get the information using reflection. I can't provide any examples for asthere are little requirements to follow and I'm not in the mood to completely waste my time :)
I'm not sure if I fully understand your question. You are being unclear in what you mean by A.class syntax. You can use the reflections API to get the class from a given object by:
A a = new A()
Class c = a.getClass()
or
Class c = A.class;
Then do some things using c.
The reflections API is mostly used for debugging tools, since Java has support for polymorphism, you can always know the actual Class of an object at runtime, so the reflections API was developed to help debug problems (sub-class given, when super-class behavior is expected, etc.).
The reason there is no b.field or c.method, is because they have no meaning and no functional purpose in Java. You cannot create a reference to a method, and a field cannot change its type at runtime, these things are set at compile-time. Java is a very rigid language, without much in the way of runtime-flexibility (unless you use dynamic class loading, but even then you need some information on the loaded objects). If you have come from a flexible language like Ruby or Javascript, then you might find Java a little controlling for your tastes.
However, having the compiler help you figure our potential problems in your code is very helpful.
In java, Not everything is an object.
You can have
A a = new A()
Class cls = a.getClass()
or directly from the class
A.class
With this you get the object for the class.
With reflection you can get methods and fields but this gets complicated. Since not everything is an object. This is not a language like Scala or Ruby where everything is an object.
Reflection tutorial : http://download.oracle.com/javase/tutorial/reflect/index.html
BTW: You did not specify the public/private/protected , so by default your things are declared package private. This is package level protected access http://download.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html