I'm using Java, I'm trying to get all the different values from 2d array with recursive function only and without use HashSet ArrayList etc..,
The values will be only [0-9]
i.e:
{{4,2,2,1,4},{4,4,3,1,4},{1,1,4,2,1},{1,4,0,2,2},{4,1,4,1,1}}; -> Returns 5 (Because 4,2,3,1,0)
{{4,6,2,1,4},{4,4,3,1,4},{1,1,4,2,1},{1,4,0,2,2},{4,1,4,1,1}}; -> Returns 6 (Because 4,2,3,1,0,6)
{{4,4,4,4,4}}; -> Returns 1 (4)
What I tried:
public static int numOfColors(int[][] map) {
int colors = 0;
if (map == null || map.length == 0) {
return colors;
} else {
int[] subArr = map[map.length - 1];
for (int i = 0; i < subArr.length; i++) {
int j = i + 1;
for (; j < subArr.length; j++) {
if (subArr[i] == subArr[j]) {
break;
}
}
if (j == subArr.length) {
int k = 0;
for (; k < map.length - 1; k++) {
for (int l = 0; l < map[k].length; l++) {
if (subArr[i] == map[k][l]) {
continue;
}
}
}
if (k == map.length - 1) {
colors++;
}
}
}
int[][] dest = new int[map.length - 1][];
System.arraycopy(map, 0, dest, 0, map.length - 1);
colors += numOfColors(dest);
return colors;
}
}
But this hasn't worked for me, where is the miskate?
Recursion doesn't make much sense here. Just use a simple array as storage, and count the instances of different values, if you know the range (0-9) then a simple int[] will be sufficient.
This should do the trick:
public static int numOfColors(int[][] map){
int[] storage = new int[10];
//iterate through all the values
for(int i = 0; i<map.length; i++){
for(int j = 0; j<map[0].length; j++){
//will throw an Exception if an entry in map is not 0-9
//you might want to check for that
storage[map[i][j]]++;
}
}
int colors = 0;
//now check which values exist.
for(int i = 0; i<storage.length; i++){
if(storage[i] != 0) colors++;
}
return colors;
}
As it was already mentioned by #Cash Lo, you need some kind of storage. So you algorithm could looks something like:
#Test
public void numOfColorsTest() {
int[][] map = new int[][] {{4,2,2,1,4},{4,4,3,1,4},{1,1,4,2,1},{1,4,0,2,2},{4,1,4,1,1}};
System.out.println(String.format("numOfColors: %s", numOfColors(map, new int[0], map.length-1)));
map = new int[][] {{4,6,2,1,4},{4,4,3,1,4},{1,1,4,2,1},{1,4,0,2,2},{4,1,4,1,1}};
System.out.println(String.format("numOfColors: %s", numOfColors(map, new int[0], map.length-1)));
map = new int[][] {{4,4,4,4,4}};
System.out.println(String.format("numOfColors: %s", numOfColors(map, new int[0], map.length-1)));
}
public static int numOfColors(int[][] map, int[] collector, int currentPosition) {
int[] result = collector;
if (currentPosition < 0) {
return collector.length;
}
for (int color : map[currentPosition]) {
boolean found = false;
for (int aResult : result) {
if (aResult == color) {
found = true;
break;
}
}
if (!found) {
int[] newResult = new int[result.length + 1];
System.arraycopy(result, 0, newResult, 0, result.length);
newResult[newResult.length - 1] = color;
result = newResult;
}
}
return numOfColors(map, result, currentPosition-1);
}
I know that this is not the answer but you should always think if your solution makes sense.
In my opinion using recursion here is very bad idea because:
the code isn't readable at all
I haven't checked that but I doubt it's more efficient
recursion is hard to debug
you're making really simple problem complicated
Consider the following code. It does exactly what you need:
Integer[][] array = {{4,2,2,1,4},{4,4,3,1,4},{1,1,4,2,1},{1,4,0,2,2},{4,1,4,1,1}};
int size = Arrays.stream(array)
.flatMap(Arrays::stream)
.collect(Collectors.toSet())
.size();
System.out.println("size = " + size);
If you purposely use recursion in this case the only thing I can recommend is Test Driven Development. Write the algorithm and tests simultaneously.
Related
How can you get a subarray from a bigger array recursively, and without using copyOfRange?
For example if int[] a = {1,2,1,3,1,2,1,1,2}, and int[] b = {1,2}, the correct answer is 3.
This is the only recursive call I have, but I'm not sure what to do beyond this.
I know the base case should be if(a.length < b.length), but I don't understand how to count the occurrences.
The function returns return numSubstring(a,b,low, mid-1) + numSubstring(a,b, mid+1,high);
public static int countSubs(int [] data, int [] sub) {
int cnt = 0;
if (data.length < sub.length) {
return cnt;
}
boolean found = true;
for (int i = 0; i < sub.length; i++) {
if (data[i] != sub[i]) {
found = false;
break;
}
}
if (found) {
cnt++;
}
cnt += countSubs(Arrays.copyOfRange(data, 1, data.length), sub);
return cnt;
}
You are given an array A of integers and an integer k. Implement an algorithm that determines, in linear time, the smallest integer that appears at least k times in A.
I have been struggling with this problem for awhile, coding in Java, I need to use a HashTable to find the smallest integer that appears at least k times, it also must be in linear time.
This is what I attempted but it does not pass any of the tests
private static int problem1(int[] arr, int k)
{
// Implement me!
HashMap<Integer, Integer> table = new HashMap<Integer, Integer>();
int ans = Integer.MAX_VALUE;
for (int i=0; i < arr.length; i++) {
if(table.containsKey(arr[i])) {
table.put(arr[i], table.get(arr[i]) + 1);
if (k <= table.get(arr[i])) {
ans = Math.min(ans, arr[i]);
}
}else{
table.put(arr[i], 1);
}
}
return ans;
}
Here is the empty code with all of the test cases:
import java.io.*;
import java.util.*;
public class Lab5
{
/**
* Problem 1: Find the smallest integer that appears at least k times.
*/
private static int problem1(int[] arr, int k)
{
// Implement me!
return 0;
}
/**
* Problem 2: Find two distinct indices i and j such that A[i] = A[j] and |i - j| <= k.
*/
private static int[] problem2(int[] arr, int k)
{
// Implement me!
int i = -1;
int j = -1;
return new int[] { i, j };
}
// ---------------------------------------------------------------------
// Do not change any of the code below!
private static final int LabNo = 5;
private static final String quarter = "Fall 2020";
private static final Random rng = new Random(123456);
private static boolean testProblem1(int[][] testCase)
{
int[] arr = testCase[0];
int k = testCase[1][0];
int answer = problem1(arr.clone(), k);
Arrays.sort(arr);
for (int i = 0, j = 0; i < arr.length; i = j)
{
for (; j < arr.length && arr[i] == arr[j]; j++) { }
if (j - i >= k)
{
return answer == arr[i];
}
}
return false; // Will never happen.
}
private static boolean testProblem2(int[][] testCase)
{
int[] arr = testCase[0];
int k = testCase[1][0];
int[] answer = problem2(arr.clone(), k);
if (answer == null || answer.length != 2)
{
return false;
}
Arrays.sort(answer);
// Check answer
int i = answer[0];
int j = answer[1];
return i != j
&& j - i <= k
&& i >= 0
&& j < arr.length
&& arr[i] == arr[j];
}
public static void main(String args[])
{
System.out.println("CS 302 -- " + quarter + " -- Lab " + LabNo);
testProblems(1);
testProblems(2);
}
private static void testProblems(int prob)
{
int noOfLines = prob == 1 ? 100000 : 500000;
System.out.println("-- -- -- -- --");
System.out.println(noOfLines + " test cases for problem " + prob + ".");
boolean passedAll = true;
for (int i = 1; i <= noOfLines; i++)
{
int[][] testCase = null;
boolean passed = false;
boolean exce = false;
try
{
switch (prob)
{
case 1:
testCase = createProblem1(i);
passed = testProblem1(testCase);
break;
case 2:
testCase = createProblem2(i);
passed = testProblem2(testCase);
break;
}
}
catch (Exception ex)
{
passed = false;
exce = true;
}
if (!passed)
{
System.out.println("Test " + i + " failed!" + (exce ? " (Exception)" : ""));
passedAll = false;
break;
}
}
if (passedAll)
{
System.out.println("All test passed.");
}
}
private static int[][] createProblem1(int testNo)
{
int size = rng.nextInt(Math.min(1000, testNo)) + 5;
int[] numbers = getRandomNumbers(size, size);
Arrays.sort(numbers);
int maxK = 0;
for (int i = 0, j = 0; i < size; i = j)
{
for (; j < size && numbers[i] == numbers[j]; j++) { }
maxK = Math.max(maxK, j - i);
}
int k = rng.nextInt(maxK) + 1;
shuffle(numbers);
return new int[][] { numbers, new int[] { k } };
}
private static int[][] createProblem2(int testNo)
{
int size = rng.nextInt(Math.min(1000, testNo)) + 5;
int[] numbers = getRandomNumbers(size, size);
int i = rng.nextInt(size);
int j = rng.nextInt(size - 1);
if (i <= j) j++;
numbers[i] = numbers[j];
return new int[][] { numbers, new int[] { Math.abs(i - j) } };
}
private static void shuffle(int[] arr)
{
for (int i = 0; i < arr.length - 1; i++)
{
int rndInd = rng.nextInt(arr.length - i) + i;
int tmp = arr[i];
arr[i] = arr[rndInd];
arr[rndInd] = tmp;
}
}
private static int[] getRandomNumbers(int range, int size)
{
int numbers[] = new int[size];
for (int i = 0; i < size; i++)
{
numbers[i] = rng.nextInt(2 * range) - range;
}
return numbers;
}
}
private static int problem1(int[] arr, int k) {
// Implement me!
Map<Integer, Integer> table = new TreeMap<Integer, Integer>();
for (int i = 0; i < arr.length; i++) {
if (table.containsKey(arr[i])) {
table.put(arr[i], table.get(arr[i]) + 1);
} else {
table.put(arr[i], 1);
}
}
for (Map.Entry<Integer,Integer> entry : table.entrySet()) {
//As treemap is sorted, we return the first key with value >=k.
if(entry.getValue()>=k)
return entry.getKey();
}
//Not found
return -1;
}
As others have pointed out, there are a few mistakes. First, the line where you initialize ans,
int ans = 0;
You should initialize ans to Integer.MAX_VALUE so that when you find an integer that appears at least k times for the first time that ans gets set to that integer appropriately. Second, in your for loop, there's no reason to skip the first element while iterating the array so i should be initialized to 0 instead of 1. Also, in that same line, you want to iterate through the entire array, and in your loop's condition right now you have i < k when k is not the length of the array. The length of the array is denoted by arr.length so the condition should instead be i < arr.length. Third, in this line,
if (k < table.get(arr[i])){
where you are trying to check if an integer has occurred at least k times in the array so far while iterating through the array, the < operator should be changed to <= since the keyword here is at least k times, not "more than k times". Fourth, k should never change so you can get rid of this line of code,
k = table.get(arr[i]);
After applying all of those changes, your function should look like this:
private static int problem1(int[] arr, int k)
{
// Implement me!
HashMap<Integer, Integer> table = new HashMap<Integer, Integer>();
int ans = Integer.MAX_VALUE;
for (int i=0; i < arr.length; i++) {
if(table.containsKey(arr[i])) {
table.put(arr[i], table.get(arr[i]) + 1);
if (k <= table.get(arr[i])) {
ans = Math.min(ans, arr[i]);
}
}else{
table.put(arr[i], 1);
}
}
return ans;
}
Pseudo code:
collect frequencies of each number in a Map<Integer, Integer> (number and its count)
set least to a large value
iterate over entries
ignore entry if its value is less than k
if entry key is less than current least, store it as least
return least
One line implementation:
private static int problem1(int[] arr, int k) {
return Arrays.stream(arr).boxed()
.collect(groupingBy(identity(), counting()))
.entrySet().stream()
.filter(entry -> entry.getValue() >= k)
.map(Map.Entry::getKey)
.reduce(MAX_VALUE, Math::min);
}
This was able to pass all the cases! Thank you to everyone who helped!!
private static int problem1(int[] arr, int k)
{
// Implement me!
HashMap<Integer, Integer> table = new HashMap<Integer, Integer>();
int ans = Integer.MAX_VALUE;
for (int i=0; i < arr.length; i++) {
if(table.containsKey(arr[i])) {
table.put(arr[i], table.get(arr[i]) + 1);
}else{
table.put(arr[i], 1);
}
}
Set<Integer> keys = table.keySet();
for(int i : keys){
if(table.get(i) >= k){
ans = Math.min(ans,i);
}
}
if(ans != Integer.MAX_VALUE){
return ans;
}else{
return 0;
}
}
In the codility test NumberOfDiscIntersections I am getting perf 100% and correctness 87% with the one test failing being
overflow
arithmetic overflow tests
got -1 expected 2
I can't see what is causing that given that I am using long which is 64-bit. And even if I can get it to 100% perf 100% correctness I am wondering if there is a better way to do this that is not as verbose in Java.
edit: figured out a much better way to do with with two arrays rather than a pair class
// you can also use imports, for example:
import java.util.*;
// you can use System.out.println for debugging purposes, e.g.
// System.out.println("this is a debug message");
class Solution {
public int solution(int[] A) {
int j = 0;
Pair[] arr = new Pair[A.length * 2];
for (int i = 0; i < A.length; i++) {
Pair s = new Pair(i - A[i], true);
arr[j] = s;
j++;
Pair e = new Pair(i + A[i], false);
arr[j] = e;
j++;
}
Arrays.sort(arr, new Pair(0, true));
long numIntersect = 0;
long currentCount = 0;
for (Pair p: arr) {
if (p.start) {
numIntersect += currentCount;
if (numIntersect > 10000000) {
return -1;
}
currentCount++;
} else {
currentCount--;
}
}
return (int) numIntersect;
}
static private class Pair implements Comparator<Pair> {
private long x;
private boolean start;
public Pair(long x, boolean start) {
this.x = x;
this.start = start;
}
public int compare(Pair p1, Pair p2) {
if (p1.x < p2.x) {
return -1;
} else if (p1.x > p2.x) {
return 1;
} else {
if (p1.start && p2.start == false) {
return -1;
} else if (p1.start == false && p2.start) {
return 1;
} else {
return 0;
}
}
}
}
}
Look at this line:
Pair s = new Pair(i + A[i], true);
This is equivalent with Pair s = new Pair((long)(i + A[i]) , true);
As i is integer, and A[i] is also integer, so this can cause overflow, as value in A[i] can go up to Integer.MAX_VALUE, and the cast to long happened after add operation is completed.
To fix:
Pair s = new Pair((long)i + (long)A[i], true);
Note: I have submitted with my fixed and got 100%
https://codility.com/demo/results/demoRRBY3Q-UXH/
My todays solution. O(N) time complexity. Simple assumption that number of availble pairs in next point of the table is difference between total open circle to that moment (circle) and circles that have been processed before. Maybe it's to simple :)
public int solution04(int[] A) {
final int N = A.length;
final int M = N + 2;
int[] left = new int[M]; // values of nb of "left" edges of the circles in that point
int[] sleft = new int[M]; // prefix sum of left[]
int il, ir; // index of the "left" and of the "right" edge of the circle
for (int i = 0; i < N; i++) { // counting left edges
il = tl(i, A);
left[il]++;
}
sleft[0] = left[0];
for (int i = 1; i < M; i++) {// counting prefix sums for future use
sleft[i]=sleft[i-1]+left[i];
}
int o, pairs, total_p = 0, total_used=0;
for (int i = 0; i < N; i++) { // counting pairs
ir = tr(i, A, M);
o = sleft[ir]; // nb of open till right edge
pairs = o -1 - total_used;
total_used++;
total_p += pairs;
}
if(total_p > 10000000){
total_p = -1;
}
return total_p;
}
int tl(int i, int[] A){
int tl = i - A[i]; // index of "begin" of the circle
if (tl < 0) {
tl = 0;
} else {
tl = i - A[i] + 1;
}
return tl;
}
int tr(int i, int[] A, int M){
int tr; // index of "end" of the circle
if (Integer.MAX_VALUE - i < A[i] || i + A[i] >= M - 1) {
tr = M - 1;
} else {
tr = i + A[i] + 1;
}
return tr;
}
My take on this, O(n):
public int solution(int[] A) {
int[] startPoints = new int[A.length];
int[] endPoints = new int[A.length];
int tempPoint;
int currOpenCircles = 0;
long pairs = 0;
//sum of starting and end points - how many circles open and close at each index?
for(int i = 0; i < A.length; i++){
tempPoint = i - A[i];
startPoints[tempPoint < 0 ? 0 : tempPoint]++;
tempPoint = i + A[i];
if(A[i] < A.length && tempPoint < A.length) //first prevents int overflow, second chooses correct point
endPoints[tempPoint]++;
}
//find all pairs of new circles (combinations), then make pairs with exiting circles (multiplication)
for(int i = 0; i < A.length; i++){
if(startPoints[i] >= 2)
pairs += (startPoints[i] * (startPoints[i] - 1)) / 2;
pairs += currOpenCircles * startPoints[i];
currOpenCircles += startPoints[i];
currOpenCircles -= endPoints[i];
if(pairs > 10000000)
return -1;
}
return (int) pairs;
}
The explanation to Helsing's solution part:
if(startPoints[i] >= 2) pairs += (startPoints[i] * (startPoints[i] - 1)) / 2;
is based on mathematical combinations formula:
Cn,m = n! / ((n-m)!.m!
for pairs, m=2 then:
Cn,2 = n! / ((n-2)!.2
Equal to:
Cn,2 = n.(n-1).(n-2)! / ((n-2)!.2
By simplification:
Cn,2 = n.(n-1) / 2
Not a very good performance, but using streams.
List<Long> list = IntStream.range(0, A.length).mapToObj(i -> Arrays.asList((long) i - A[i], (long) i + A[i]))
.sorted((o1, o2) -> {
int f = o1.get(0).compareTo(o2.get(0));
return f == 0 ? o1.get(1).compareTo(o2.get(1)) : f;
})
.collect(ArrayList<Long>::new,
(acc, val) -> {
if (acc.isEmpty()) {
acc.add(0l);
acc.add(val.get(1));
} else {
Iterator it = acc.iterator();
it.next();
while (it.hasNext()) {
long el = (long) it.next();
if (val.get(0) <= el) {
long count = acc.get(0);
acc.set(0, ++count);
} else {
it.remove();
}
}
acc.add(val.get(1));
}
},
ArrayList::addAll);
return (int) (list.isEmpty() ? 0 : list.get(0) > 10000000 ? -1 : list.get(0));
This one in Python passed all "Correctness tests" and failed all "Performance tests" due to O(n²), so I got 50% score. But it is very simple to understand. I just used the right radius (maximum) and checked if it was bigger or equal to the left radius (minimum) of the next circles. I also avoided to use sort and did not check twice the same circle. Later I will try to improve performance, but the problem here for me was the algorithm. I tried to find a very easy solution to help explain the concept. Maybe this will help someone.
def solution(A):
n = len(A)
cnt = 0
for j in range(1,n):
for i in range(n-j):
if(i+A[i]>=i+j-A[i+j]):
cnt+=1
if(cnt>1e7):
return -1
return cnt
I have an array, let's say: LRU_frame[] = {4,1,0,3}
I have a random() function that spits out a random number. If the random number n is contained in the array LRU_frame, then, n should be on LRU_frame[0] and everything else must be shifted down accordingly.
For example if random() gives me a 0, the new LRU_frame[] = {0,4,1,3}
Another example, if random() gives me a 3, the new LRU_frame[] = {3,4,1,0}
How do I do this for any Array size with any number of elements in it?
I know how to shift arrays by adding a new element on LRU_frame[0] but have no idea on how to re-organize the array like I need.
This is the code I have so far and let's assume char a is the random number(casted into char) to use and re-organize the array.
public static void LRU_shiftPageRef(char a) {
for (int i = (LRU_frame.length - 2); i >= 0; i--) {
LRU_frame[i + 1] = LRU_frame[i];
}
LRU_frame[0] = a;
}
You have a good idea, you only need to find the position of the a element in the array and start the cycle from it, instead of LRU_frame.length.
int index = -1;
// find the positon of 'a' in the array
for (int i = 0; i <= (LRU_frame.length - 1); i++) {
if (LRU_frame[i] == a) {
index = i;
break;
}
}
// if it is present, do roughly the same thing as before
if (index > -1) {
for (int i = (index - 1); i >= 0; i--) {
LRU_frame[i + 1] = LRU_frame[i];
}
LRU_frame[0] = a;
}
However if you can use ArrayLists it gets much easier.
// declaration
ArrayList<Integer> LRU_frame = new ArrayList<Integer>();
...
if (LRU_frame.contains(a)) {
LRU_frame.remove((Integer) a);
LRU_frame.add(0, a);
}
I think this could be the sort of thing you are after:
public static void LRU_shiftPageRef(char a) {
int index = indexOf(a);
if (index == -1) {
//not currently in array so create a new array 1 bigger than existing with a in newArray[0] or ignore depending on functionality required.
} else if (index > 0) {
//Set first entry as a and shift existing entries right
char insertChar = a;
char nextChar = LRU_frame[0];
for (int i =0; i < index; i++) {
LRU_frame[i] = insertChar;
insertChar = nextChar;
nextChar = LRU_frame[i+1];
}
LRU_frame[index] = insertChar;
} else {
//do nothing a is already at first position
}
}
public static int indexOf(char a) {
for (int i=0; i < LRU_frame.length; i++) {
if (LRU_frame[i] == a) {
return i;
}
}
return -1;
}
Use Arrays.sort(LRU_frame); to sort the entire array, or Arrays.sort(LRU_frame, fromIndex, toIndex)); to sort part of the array.
Arrays class has other useful methods like copyOfRange.
I have been trying to solve a Java exercise on a Codility web page.
Below is the link to the mentioned exercise and my solution.
https://codility.com/demo/results/demoH5GMV3-PV8
Can anyone tell what can I correct in my code in order to improve the score?
Just in case here is the task description:
A small frog wants to get to the other side of a river. The frog is currently located at position 0, and wants to get to position X. Leaves fall from a tree onto the surface of the river.
You are given a non-empty zero-indexed array A consisting of N integers representing the falling leaves. A[K] represents the position where one leaf falls at time K, measured in minutes.
The goal is to find the earliest time when the frog can jump to the other side of the river. The frog can cross only when leaves appear at every position across the river from 1 to X.
For example, you are given integer X = 5 and array A such that:
A[0] = 1
A[1] = 3
A[2] = 1
A[3] = 4
A[4] = 2
A[5] = 3
A[6] = 5
A[7] = 4
In minute 6, a leaf falls into position 5. This is the earliest time when leaves appear in every position across the river.
Write a function:
class Solution { public int solution(int X, int[] A); }
that, given a non-empty zero-indexed array A consisting of N integers and integer X, returns the earliest time when the frog can jump to the other side of the river.
If the frog is never able to jump to the other side of the river, the function should return −1.
For example, given X = 5 and array A such that:
A[0] = 1
A[1] = 3
A[2] = 1
A[3] = 4
A[4] = 2
A[5] = 3
A[6] = 5
A[7] = 4
the function should return 6, as explained above. Assume that:
N and X are integers within the range [1..100,000];
each element of array A is an integer within the range [1..X].
Complexity:
expected worst-case time complexity is O(N);
expected worst-case space complexity is O(X), beyond input storage (not counting the storage required for input arguments).
Elements of input arrays can be modified.
And here is my solution:
import java.util.ArrayList;
import java.util.List;
class Solution {
public int solution(int X, int[] A) {
int list[] = A;
int sum = 0;
int searchedValue = X;
List<Integer> arrayList = new ArrayList<Integer>();
for (int iii = 0; iii < list.length; iii++) {
if (list[iii] <= searchedValue && !arrayList.contains(list[iii])) {
sum += list[iii];
arrayList.add(list[iii]);
}
if (list[iii] == searchedValue) {
if (sum == searchedValue * (searchedValue + 1) / 2) {
return iii;
}
}
}
return -1;
}
}
You are using arrayList.contains inside a loop, which will traverse the whole list unnecessarily.
Here is my solution (I wrote it some time ago, but I believe it scores 100/100):
public int frog(int X, int[] A) {
int steps = X;
boolean[] bitmap = new boolean[steps+1];
for(int i = 0; i < A.length; i++){
if(!bitmap[A[i]]){
bitmap[A[i]] = true;
steps--;
if(steps == 0) return i;
}
}
return -1;
}
Here is my solution. It got me 100/100:
public int solution(int X, int[] A)
{
int[] B = A.Distinct().ToArray();
return (B.Length != X) ? -1 : Array.IndexOf<int>(A, B[B.Length - 1]);
}
100/100
public static int solution (int X, int[] A){
int[]counter = new int[X+1];
int ans = -1;
int x = 0;
for (int i=0; i<A.length; i++){
if (counter[A[i]] == 0){
counter[A[i]] = A[i];
x += 1;
if (x == X){
return i;
}
}
}
return ans;
}
A Java solution using Sets (Collections Framework) Got a 100%
import java.util.Set;
import java.util.TreeSet;
public class Froggy {
public static int solution(int X, int[] A){
int steps=-1;
Set<Integer> values = new TreeSet<Integer>();
for(int i=0; i<A.length;i++){
if(A[i]<=X){
values.add(A[i]);
}
if(values.size()==X){
steps=i;
break;
}
}
return steps;
}
Better approach would be to use Set, because it only adds unique values to the list. Just add values to the Set and decrement X every time a new value is added, (Set#add() returns true if value is added, false otherwise);
have a look,
public static int solution(int X, int[] A) {
Set<Integer> values = new HashSet<Integer>();
for (int i = 0; i < A.length; i++) {
if (values.add(A[i])) X--;
if (X == 0) return i;
}
return -1;
}
do not forget to import,
import java.util.HashSet;
import java.util.Set;
Here's my solution, scored 100/100:
import java.util.HashSet;
class Solution {
public int solution(int X, int[] A) {
HashSet<Integer> hset = new HashSet<Integer>();
for (int i = 0 ; i < A.length; i++) {
if (A[i] <= X)
hset.add(A[i]);
if (hset.size() == X)
return i;
}
return -1;
}
}
Simple solution 100%
public int solution(final int X, final int[] A) {
Set<Integer> emptyPosition = new HashSet<Integer>();
for (int i = 1; i <= X; i++) {
emptyPosition.add(i);
}
// Once all the numbers are covered for position, that would be the
// moment when the frog will jump
for (int i = 0; i < A.length; i++) {
emptyPosition.remove(A[i]);
if (emptyPosition.size() == 0) {
return i;
}
}
return -1;
}
Here's my solution.
It isn't perfect, but it's good enough to score 100/100.
(I think that it shouldn't have passed a test with a big A and small X)
Anyway, it fills a new counter array with each leaf that falls
counter has the size of X because I don't care for leafs that fall farther than X, therefore the try-catch block.
AFTER X leafs fell (because it's the minimum amount of leafs) I begin checking whether I have a complete way - I'm checking that every int in count is greater than 0.
If so, I return i, else I break and try again.
public static int solution(int X, int[] A){
int[] count = new int[X];
for (int i = 0; i < A.length; i++){
try{
count[A[i]-1]++;
} catch (ArrayIndexOutOfBoundsException e){ }
if (i >= X - 1){
for (int j = 0; j< count.length; j++){
if (count[j] == 0){
break;
}
if (j == count.length - 1){
return i;
}
}
}
}
return -1;
}
Here's my solution with 100 / 100.
public int solution(int X, int[] A) {
int len = A.length;
if (X > len) {
return -1;
}
int[] isFilled = new int[X];
int jumped = 0;
Arrays.fill(isFilled, 0);
for (int i = 0; i < len; i++) {
int x = A[i];
if (x <= X) {
if (isFilled[x - 1] == 0) {
isFilled[x - 1] = 1;
jumped += 1;
if (jumped == X) {
return i;
}
}
}
}
return -1;
}
Here's what I have in C#. It can probably still be refactored.
We throw away numbers greater than X, which is where we want to stop, and then we add numbers to an array if they haven't already been added.
When the count of the list has reached the expected number, X, then return the result. 100%
var tempArray = new int[X+1];
var totalNumbers = 0;
for (int i = 0; i < A.Length; i++)
{
if (A[i] > X || tempArray.ElementAt(A[i]) != 0)
continue;
tempArray[A[i]] = A[i];
totalNumbers++;
if (totalNumbers == X)
return i;
}
return -1;
below is my solution. I basically created a set which allows uniques only and then go through the array and add every element to set and keep a counter to get the sum of the set and then using the sum formula of consecutive numbers then I got 100% . Note : if you add up the set using java 8 stream api the solution is becoming quadratic and you get %56 .
public static int solution2(int X, int[] A) {
long sum = X * (X + 1) / 2;
Set<Integer> set = new HashSet<Integer>();
int setSum = 0;
for (int i = 0; i < A.length; i++) {
if (set.add(A[i]))
setSum += A[i];
if (setSum == sum) {
return i;
}
}
return -1;
}
My JavaScript solution that got 100 across the board. Since the numbers are assumed to be in the range of the river width, simply storing booleans in a temporary array that can be checked against duplicates will do. Then, once you have amassed as many numbers as the quantity X, you know you have all the leaves necessary to cross.
function solution(X, A) {
covered = 0;
tempArray = [];
for (let i = 0; i < A.length; i++) {
if (!tempArray[A[i]]) {
tempArray[A[i]] = true;
covered++
if(covered === X) return i;
}
}
return -1;
}
Here is my answer in Python:
def solution(X, A):
# write your code in Python 3.6
values = set()
for i in range (len(A)):
if A[i]<=X :
values.add(A[i])
if len(values)==X:
return i
return -1
Just tried this problem as well and here is my solution. Basically, I just declared an array whose size is equal to position X. Then, I declared a counter to monitor if the necessary leaves have fallen at the particular spots. The loop exits when these leaves have been met and if not, returns -1 as instructed.
class Solution {
public int solution(int X, int[] A) {
int size = A.length;
int[] check = new int[X];
int cmp = 0;
int time = -1;
for (int x = 0; x < size; x++) {
int temp = A[x];
if (temp <= X) {
if (check[temp-1] > 0) {
continue;
}
check[temp - 1]++;
cmp++;
}
if ( cmp == X) {
time = x;
break;
}
}
return time;
}
}
It got a 100/100 on the evaluation but I'm not too sure of its performance. I am still a beginner when it comes to programming so if anybody can critique the code, I would be grateful.
Maybe it is not perfect but its straightforward. Just made a counter Array to track the needed "leaves" and verified on each iteration if the path was complete. Got me 100/100 and O(N).
public static int frogRiver(int X, int[] A)
{
int leaves = A.Length;
int[] counter = new int[X + 1];
int stepsAvailForTravel = 0;
for(int i = 0; i < leaves; i++)
{
//we won't get to that leaf anyway so we shouldnt count it,
if (A[i] > X)
{
continue;
}
else
{
//first hit!, keep a count of the available leaves to jump
if (counter[A[i]] == 0)
stepsAvailForTravel++;
counter[A[i]]++;
}
//We did it!!
if (stepsAvailForTravel == X)
{
return i;
}
}
return -1;
}
This is my solution. I think it's very simple. It gets 100/100 on codibility.
set.contains() let me eliminate duplicate position from table.
The result of first loop get us expected sum. In the second loop we get sum of input values.
class Solution {
public int solution(int X, int[] A) {
Set<Integer> set = new HashSet<Integer>();
int sum1 = 0, sum2 = 0;
for (int i = 0; i <= X; i++){
sum1 += i;
}
for (int i = 0; i < A.length; i++){
if (set.contains(A[i])) continue;
set.add(A[i]);
sum2 += A[i];
if (sum1 == sum2) return i;
}
return -1;
}
}
Your algorithm is perfect except below code
Your code returns value only if list[iii] matches with searchedValue.
The algorithm must be corrected in such a way that, it returns the value if sum == n * ( n + 1) / 2.
import java.util.ArrayList;
import java.util.List;
class Solution {
public int solution(int X, int[] A) {
int list[] = A;
int sum = 0;
int searchedValue = X;
int sumV = searchedValue * (searchedValue + 1) / 2;
List<Integer> arrayList = new ArrayList<Integer>();
for (int iii = 0; iii < list.length; iii++) {
if (list[iii] <= searchedValue && !arrayList.contains(list[iii])) {
sum += list[iii];
if (sum == sumV) {
return iii;
}
arrayList.add(list[iii]);
}
}
return -1;
}
}
I think you need to check the performance as well. I just ensured the output only
This solution I've posted today gave 100% on codility, but respectivly #rafalio 's answer it requires K times less memory
public class Solution {
private static final int ARRAY_SIZE_LOWER = 1;
private static final int ARRAY_SIZE_UPPER = 100000;
private static final int NUMBER_LOWER = ARRAY_SIZE_LOWER;
private static final int NUMBER_UPPER = ARRAY_SIZE_UPPER;
public static class Set {
final long[] buckets;
public Set(int size) {
this.buckets = new long[(size % 64 == 0 ? (size/64) : (size/64) + 1)];
}
/**
* number should be greater than zero
* #param number
*/
public void put(int number) {
buckets[getBucketindex(number)] |= getFlag(number);
}
public boolean contains(int number) {
long flag = getFlag(number);
// check if flag is stored
return (buckets[getBucketindex(number)] & flag) == flag;
}
private int getBucketindex(int number) {
if (number <= 64) {
return 0;
} else if (number <= 128) {
return 1;
} else if (number <= 192) {
return 2;
} else if (number <= 256) {
return 3;
} else if (number <= 320) {
return 4;
} else if (number <= 384) {
return 5;
} else
return (number % 64 == 0 ? (number/64) : (number/64) + 1) - 1;
}
private long getFlag(int number) {
if (number <= 64) {
return 1L << number;
} else
return 1L << (number % 64);
}
}
public static final int solution(final int X, final int[] A) {
if (A.length < ARRAY_SIZE_LOWER || A.length > ARRAY_SIZE_UPPER) {
throw new RuntimeException("Array size out of bounds");
}
Set set = new Set(X);
int ai;
int counter = X;
final int NUMBER_REAL_UPPER = min(NUMBER_UPPER, X);
for (int i = 0 ; i < A.length; i++) {
if ((ai = A[i]) < NUMBER_LOWER || ai > NUMBER_REAL_UPPER) {
throw new RuntimeException("Number out of bounds");
} else if (ai <= X && !set.contains(ai)) {
counter--;
if (counter == 0) {
return i;
}
set.put(ai);
}
}
return -1;
}
private static int min(int x, int y) {
return (x < y ? x : y);
}
}
This is my solution it got me 100/100 and O(N).
public int solution(int X, int[] A) {
Map<Integer, Integer> leaves = new HashMap<>();
for (int i = A.length - 1; i >= 0 ; i--)
{
leaves.put(A[i] - 1, i);
}
return leaves.size() != X ? -1 : Collections.max(leaves.values());
}
This is my solution
public func FrogRiverOne(_ X : Int, _ A : inout [Int]) -> Int {
var B = [Int](repeating: 0, count: X+1)
for i in 0..<A.count {
if B[A[i]] == 0 {
B[A[i]] = i+1
}
}
var time = 0
for i in 1...X {
if( B[i] == 0 ) {
return -1
} else {
time = max(time, B[i])
}
}
return time-1
}
A = [1,2,1,4,2,3,5,4]
print("FrogRiverOne: ", FrogRiverOne(5, &A))
Actually I re-wrote this exercise without seeing my last answer and came up with another solution 100/100 and O(N).
public int solution(int X, int[] A) {
Set<Integer> leaves = new HashSet<>();
for(int i=0; i < A.length; i++) {
leaves.add(A[i]);
if (leaves.contains(X) && leaves.size() == X) return i;
}
return -1;
}
I like this one better because it is even simpler.
This one works good on codality 100% out of 100%. It's very similar to the marker array above but uses a map:
public int solution(int X, int[] A) {
int index = -1;
Map<Integer, Integer> map = new HashMap();
for (int i = 0; i < A.length; i++) {
if (!map.containsKey(A[i])) {
map.put(A[i], A[i]);
X--;
if (X == 0) {index = i;break;}
}
}
return index;
}
%100 with js
function solution(X, A) {
let leafSet = new Set();
for (let i = 0; i < A.length; i += 1) {
if(A[i] <= 0)
continue;
if (A[i] <= X )
leafSet.add(A[i]);
if (leafSet.size == X)
return i;
}
return -1;
}
With JavaScript following solution got 100/100.
Detected time complexity: O(N)
function solution(X, A) {
let leaves = new Set();
for (let i = 0; i < A.length; i++) {
if (A[i] <= X) {
leaves.add(A[i])
if (leaves.size == X) {
return i;
}
}
}
return -1;
}
100% Solution using Javascript.
function solution(X, A) {
if (A.length === 0) return -1
if (A.length < X) return -1
let steps = X
const leaves = {}
for (let i = 0; i < A.length; i++) {
if (!leaves[A[i]]) {
leaves[A[i]] = true
steps--
}
if (steps === 0) {
return i
}
}
return -1
}
C# Solution with 100% score:
using System;
using System.Collections.Generic;
class Solution {
public int solution(int X, int[] A) {
// go through the array
// fill a hashset, until the size of hashset is X
var set = new HashSet<int>();
int i = 0;
foreach (var a in A)
{
if (a <= X)
{
set.Add(a);
}
if (set.Count == X)
{
return i;
}
i++;
}
return -1;
}
}
https://app.codility.com/demo/results/trainingXE7QFJ-TZ7/
I have a very simple solution (100% / 100%) using HashSet. Lots of people check unnecessarily whether the Value is less than or equal to X. This task cannot be otherwise.
public static int solution(int X, int[] A) {
Set<Integer> availableFields = new HashSet<>();
for (int i = 0; i < A.length; i++) {
availableFields.add(A[i]);
if (availableFields.size() == X){
return i;
}
}
return -1;
}
public static int solutions(int X, int[] A) {
Set<Integer> values = new HashSet<Integer>();
for (int i = 0; i < A.length; i++) {
if (values.add(A[i])) {
X--;
}
if (X == 0) {
return i;
}
}
return -1;
}
This is my solution. It uses 3 loops but is constant time and gets 100/100 on codibility.
class FrogLeap
{
internal int solution(int X, int[] A)
{
int result = -1;
long max = -1;
var B = new int[X + 1];
//initialize all entries in B array with -1
for (int i = 0; i <= X; i++)
{
B[i] = -1;
}
//Go through A and update B with the location where that value appeared
for (int i = 0; i < A.Length; i++)
{
if( B[A[i]] ==-1)//only update if still -1
B[A[i]] = i;
}
//start from 1 because 0 is not valid
for (int i = 1; i <= X; i++)
{
if (B[i] == -1)
return -1;
//The maxValue here is the earliest time we can jump over
if (max < B[i])
max = B[i];
}
result = (int)max;
return result;
}
}
Short and sweet C++ code. Gets perfect 100%... Drum roll ...
#include <set>
int solution(int X, vector<int> &A) {
set<int> final;
for(unsigned int i =0; i< A.size(); i++){
final.insert(A[i]);
if(final.size() == X) return i;
}
return -1;
}