sum of two arrays element wise? - java

There is a problem in which two random integer arrays are given, in which numbers from 0 to 9 are present at every index (i.e. single digit integer is present at every index of both given arrays). I need to find the sum of the numbers represented by the input arrays and put the result in another array.
I believe everything is fine with my code as I execute it almost 50 to 60 times for different arrays. But when I submit it in my school's online judge it accepted only 4 test cases and rejected the other two. I can't figure out in which case it will give wrong output. Need a little help guys.
HERE IS MY CODE
public static int[] sumOfTwoArrays(int[] arr1, int[] arr2){
int size1 = arr1.length;
int size2 = arr2.length;
int carry = 0,sum,s,r;
if(size1 == size2) {
int arr3[] = new int[size1+1];
for(int i=arr1.length-1;i>=-1;i--) {
if(i==-1) {
arr3[i+1] = carry;
//System.out.println(i+1+" "+arr3[i+1]);
} else {
sum = arr1[i] + arr2[i];
if(sum>9) {
s =sum;
r = s % 10;
arr3[i+1] = carry + r;
carry = 1;
//System.out.println(i+" "+arr3[i]);
} else {
if(sum==9 && carry==1) {
s =sum+carry;
r = s % 10;
arr3[i+1] = r;
} else {
arr3[i+1] = sum+carry;
carry=0;
}
//System.out.println(i+" "+arr3[i]);
}
}
}
return arr3;
} else if (size1>size2) {
int arr3[] = new int[size1+1];
int diff = arr1.length - arr2.length;
for(int i=arr1.length-1;i>=-1;i--) {
if(i==-1) {
arr3[i+1] = carry;
} else {
if(i>=diff) {
sum = arr1[i] + arr2[i-diff];
if(sum>9) {
s =sum;
r = s % 10;
arr3[i+1] = carry + r;
carry = 1;
} else {
if(sum==9 && carry==1) {
s =sum+carry;
r = s % 10;
arr3[i+1] = r;
} else {
arr3[i+1] = sum+carry;
carry=0;
}
}
} // end of diff i
else {
arr3[i+1] = arr1[i];
carry = 0;
}
}
}
return arr3;
} else {
int arr3[] = new int[size2+1];
int diff = arr2.length - arr1.length;
for(int i=arr2.length-1;i>=-1;i--) {
if(i==-1) {
arr3[i+1] = carry;
} else {
if(i>=diff) {
sum = arr2[i] + arr1[i-diff];
if(sum>9) {
s =sum;
r = s % 10;
arr3[i+1] = carry + r;
carry = 1;
} else {
if(sum==9 && carry==1) {
s =sum+carry;
r = s % 10;
arr3[i+1] = r;
} else {
arr3[i+1] = sum+carry;
carry=0;
}
}
} // end of diff i
else {
arr3[i+1] = arr2[i];
carry = 0;
}
}
}
return arr3;
}
}
Sample input:
int[] arr1 = {8,5,3,9,6};
int[] arr2 = {3,3,3,3,3};
Sample output:
{1,1,8,7,2,9}
Sample input:
int[] arr1 = {8,5,3,9,6};
int[] arr2 = {1,0,5};
Sample output:
{0,8,5,5,0,1}

Well, I have this algorith based on Eran solution (was working to fixe the bug he since corrected), I will shared it since I use less arrays.
public static int[] sum(int[] arr1, int[] arr2){
int carry = 0;
int sum = 0;
int len1 = arr1.length;
int len2 = arr2.length;
int len = Math.max(len1, len2);
int arr3[] = new int[len + 1];
for (int i = 1; i <= len; i++) {
sum =
(len1 - i >= 0 ? arr1[len1-i] : 0)
+ (len2 - i >= 0 ? arr2[len2-i] : 0)
+ carry;
arr3[len-i+1] = sum%10;
carry = sum/10;
}
arr3[0] = carry;
return arr3;
}
The usage of ternary operator is still readable so I find this a good solution.
For a short explanation, we read the arrays from the end, using i to read from right to left but based on the length of the arrays. The ternary operation is used in case of different array size.
EDIT :
Your algorithm doesn't manage correctly the carry value with different sized array.
185 + 16 gives 101.
Simply because you set the values like :
arr3[i+1] = arr1[i];
So you forgot the carry that could occurs in the last operation.

This code is way more complicated than it has to be, which increases the chances of it containing bugs hard to detect.
You don't have to implement the algorithm 3 times (based of whether the first array is smaller, larger or equal to the second array). You can implement it once for two equal sized arrays whose size is Math.max(arr1.length,arr2.length).
That would eliminate 2/3 of your code.
int len = Math.max(arr1.length,arr2.length);
int[] arr11 = new int[len];
int[] arr22 = new int[len];
int arr3[] = new int[len+1];
for(int i=len-1;i>=-1;i--) {
if (i>=len-arr1.length)
arr11[i]=arr1[i-(len-arr1.length)];
if (i>=len-arr2.length)
arr22[i]=arr2[i-(len-arr2.length)];
// now you can use arr11[i] and arr22[i] instead of arr1[i] and arr2[i]
...
}
Besides, instead of sum = arr1[i] + arr2[i]; I suggest you add the carry immediately - sum = arr11[i] + arr22[i] + carry;. Now you only have to check once whether sum > 9.
if(i==-1) {
arr3[i+1] = carry;
} else {
sum = arr11[i] + arr22[i] + carry;
if(sum>9) {
arr3[i+1] = sum % 10;
carry = 1;
} else {
arr3[i+1] = sum;
carry = 0;
}
}
Combining the two snippets, you'll get :
int carry = 0;
int sum = 0;
int len = Math.max(arr1.length,arr2.length);
int[] arr11 = new int[len];
int[] arr22 = new int[len];
int arr3[] = new int[len+1];
for(int i=len-1;i>=-1;i--) {
if(i==-1) {
arr3[i+1] = carry;
} else {
if (i>=len-arr1.length)
arr11[i]=arr1[i-(len-arr1.length)];
if (i>=len-arr2.length)
arr22[i]=arr2[i-(len-arr2.length)];
sum = arr11[i] + arr22[i] + carry;
if(sum>9) {
arr3[i+1] = sum % 10;
carry = 1;
} else {
arr3[i+1] = sum;
carry = 0;
}
}
}
return arr3;
EDIT :
I had a small bug. I was adding 0s in the least significant digits of the smaller array (which are the high indices) instead of the most significant bits (the low indices), which made the result wrong if the arrays had different lengths. I fixed it, though now the part that copies the elements from the original arrays to arr11 and arr22 is less readable.

If that leading 0 in your second sample output is not necessary, you can also use a different approach by transforming the input beforehand, e.g. with a function as follows:
static Integer toNumber(int[] arr) {
return Integer.valueOf(Arrays.stream(arr)
.mapToObj(Integer::toString)
.collect(Collectors.joining()));
}
That way you can just sum up your arrays as if they would be normal integers:
Integer sum = toNumber(arr1) + toNumber(arr2);
Transforming that back to an array can be done as follows:
int[] sumArray = sum.toString().chars()
.map(operand -> Character.digit(operand, 10))
.toArray();
But you don't have that leading 0 now in your output. That code uses Java 8, but the same is also writable without streams (but untested):
static Integer toNumber(int[] arr) {
StringBuilder integerStrBuilder = new StringBuilder();
for (int i = 0; i < arr.length; i++) {
integerStrBuilder.append(Integer.toString(arr[i]));
}
return Integer.valueOf(integerStrBuilder.toString());
}
and for the array:
char[] characters = sum.toString().toCharArray();
int[] sumArray = new int[characters.length];
for (int j = 0; j < characters.length; j++) {
sumArray[j] = Characters.digit(characters[j], 10);
}

int[] firstArray = {1,8,8,8, 8};
int[] secondArray = {1,8,9};
String diffstring1 = "", diffstring2 = "";
for (int i = 0; i < firstArray.length; i++) {
diffstring1 = diffstring1 + String.valueOf(firstArray[i]);
}
for (int i = 0; i < secondArray.length; i++) {
diffstring2 = diffstring2 + String.valueOf(secondArray[i]);
}
int diff = Integer.parseInt(diffstring1) + Integer.parseInt(diffstring2);
String diifffinal = String.valueOf(diff);
int[] third = new int[diifffinal.length()];
for (int j = 0; j < diifffinal.length(); j++) {
char abc = diifffinal.charAt(j);
third[j] = Character.getNumericValue(abc);
Log.d(TAG, "onCreate:---> " + third[j]);
}

It kinda works
int[] arr1 = {1, 2, 3, 4, 5, 6}, arr2 = {3, 5, 2, 9, 0};
int[] output = new int[Math.max(arr1.length, arr2.length)];
int num1 = 0, num2 = 0;
for (int value : arr1) {
num1 = (num1 * 10) + value;
}
for (int i : arr2) {
num2 = (num2 * 10) + i;
}
int result = (num1 + num2), k = output.length - 1;
while(result > 0){
output[k] = (result % 10);
result = result / 10;
k--;
}
if(k>0){
output[k] = 0;
k--;
}
for(int value: output){
System.out.print(value + " ");
}
}

Related

Returning the different length to maximize profit when cuttting a rod

My program have to display in what different lengths to cut a rod in order to maximize profit.
This is my function for the rod cutting:
It takes as parameter an array lengths (1 to 8), an array profit (1,5,8,9,10,17,17,20), and the length of the rod.
public static void rodCut(int[] lengths, int[] profit, int len){
int lengthInput = lengths.length-1;
int[][] cuttingLength = new int[lengthInput + 1][len + 1];
int[] chosenElement = new int[lengthInput + 1];
int[][] maximum = new int[lengthInput + 1][len + 1];
int numA;
int numB=0;
int a = 1;
while(a <=lengthInput) {
int i=0;
while(i<=len) {
numA = maximum[a - 1][i];
if (i >= lengths[a]) {
numB = profit[a] + maximum[a - 1][i - lengths[a]];
}
maximum[a][i] = Math.max(numA,numB);
if(numA<numB) {
cuttingLength[a][i]=1;
}
else {
cuttingLength[a][i]=0;
}
i++;
numB=0;
}
a++;
}
//we represent the selected element with a 1, else, 0
int z = lengthInput;
int l = len;
while(z>0) {
if (cuttingLength[z][l] > 0){
chosenElement[z] = 1;
l = l - lengths[z];
}
else {
chosenElement[z] = 0;
}
z--;
}
//indicate which length it needs to be cut
int j=1;
String rods = "";
String tmp = "";
while(j<lengthInput+1) {
if (chosenElement[j] == 1) {
tmp+=lengths[j]+", ";
}
j++;
}
rods = tmp.substring(0,tmp.length()-2);
System.out.print("\nLengths to be cut: "+rods+"");
}
I am not getting the desired output when the length is large.
Suppose the length is 40.
The output should be : Lengths to be cut: 2,2,2,2,2,6,6,6,6,6
But i am getting: Lengths to be cut: 1,2,3,4,5,6,7,8

Find the max value of the same length nails after hammered

I'm trying to solve this problem:
Given an array of positive integers, and an integer Y, you are allowed to replace at most Y array-elements with lesser values. Your goal is for the array to end up with as large a subset of identical values as possible. Return the size of this largest subset.
The array is originally sorted in increasing order, but you do not need to preserve that property.
So, for example, if the array is [10,20,20,30,30,30,40,40,40] and Y = 3, the result should be 6, because you can get six 30s by replacing the three 40s with 30s. If the array is [20,20,20,40,50,50,50,50] and Y = 2, the result should be 5, because you can get five 20s by replacing two of the 50s with 20s.
Below is my solution with O(nlogn) time complexity. (is that right?) I wonder if I can further optimize this solution?
Thanks in advance.
public class Nails {
public static int Solutions(int[] A, int Y) {
int N = A.length;
TreeMap < Integer, Integer > nailMap = new TreeMap < Integer, Integer > (Collections.reverseOrder());
for (int i = 0; i < N; i++) {
if (!nailMap.containsKey(A[i])) {
nailMap.put(A[i], 1);
} else {
nailMap.put(A[i], nailMap.get(A[i]) + 1);
}
}
List < Integer > nums = nailMap.values().stream().collect(Collectors.toList());
if (nums.size() == 1) {
return nums.get(0);
}
//else
int max = nums.get(0);
int longer = 0;
for (int j = 0; j < nums.size(); j++) {
int count = 0;
if (Y < longer) {
count = Y + nums.get(j);
} else {
count = longer + nums.get(j);
}
if (max < count) {
max = count;
}
longer += nums.get(j);
}
return max;
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
while (scanner.hasNext()) {
String[] input = scanner.nextLine().replaceAll("\\[|\\]", "").split(",");
System.out.println(Arrays.toString(input));
int[] A = new int[input.length - 1];
int Y = Integer.parseInt(input[input.length - 1]);
for (int i = 0; i < input.length; i++) {
if (i < input.length - 1) {
A[i] = Integer.parseInt(input[i]);
} else {
break;
}
}
int result = Solutions(A, Y);
System.out.println(result);
}
}
}
A C++ implementation would like the following where A is the sorted pin size array and K is the number of times the pins can be hammered.
{1,1,3,3,4,4,4,5,5}, K=2 should give 5 as the answer
{1,1,3,3,4,4,4,5,5,6,6,6,6,6,6}, K=2 should give 6 as the answer
int maxCount(vector<int>& A, int K) {
int n = A.size();
int best = 0;
int count = 1;
for (int i = 0; i < n-K-1; i++) {
if (A[i] == A[i + 1])
count = count + 1;
else
count = 1;
if (count > best)
best = count;
}
int result = max(best+K, min(K+1, n));
return result;
}
Since the array is sorted to begin with, a reasonably straightforward O(n) solution is, for each distinct value, to count how many elements have that value (by iteration) and how many elements have a greater value (by subtraction).
public static int doIt(final int[] array, final int y) {
int best = 0;
int start = 0;
while (start < array.length) {
int end = start;
while (end < array.length && array[end] == array[start]) {
++end;
}
// array[start .. (end-1)] is now the subarray consisting of a
// single value repeated (end-start) times.
best = Math.max(best, end - start + Math.min(y, array.length - end));
start = end; // skip to the next distinct value
}
assert best >= Math.min(y + 1, array.length); // sanity-check
return best;
}
First, iterate through all the nails and create a hash H that stores the number of nails for each size. For [1,2,2,3,3,3,4,4,4], H should be:
size count
1 : 1
2 : 2
3 : 3
4 : 3
Now create an little algorithm to evaluate the maximum sum for each size S, given Y:
BestForSize(S, Y){
total = H[S]
while(Y > 0){
S++
if(Y >= H[S] and S < biggestNailSize){
total += H[S]
Y -= H[S]
}
else{
total += Y
Y = 0
}
}
return total;
}
Your answer should be max(BestForSize(0, Y), BestForSize(1, Y), ..., BestForSize(maxSizeOfNail, Y)).
The complexity is O(n²). A tip to optimize is to start from the end. For example, after you have the maximum value of nails in the size 4, how can you use your answer to find the maximum number of size 3?
Here is my java implementation: First I build a reversed map of each integer and its occurence for example {1,1,1,1,3,3,4,4,5,5} would give {5=2, 4=2, 3=2, 1=4}, then for each integer I calculate the max occurence that we can get of it regarding the K and the occurences of the highest integers in the array.
public static int ourFunction(final int[] A, final int K) {
int length = A.length;
int a = 0;
int result = 0;
int b = 0;
int previousValue = 0;
TreeMap < Integer, Integer > ourMap = new TreeMap < Integer, Integer > (Collections.reverseOrder());
for (int i = 0; i < length; i++) {
if (!ourMap.containsKey(A[i])) {
ourMap.put(A[i], 1);
} else {
ourMap.put(A[i], ourMap.get(A[i]) + 1);
}
}
for (Map.Entry<Integer, Integer> entry : ourMap.entrySet()) {
if( a == 0) {
a++;
result = entry.getValue();
previousValue = entry.getValue();
} else {
if( K < previousValue)
b = K;
else
b = previousValue;
if ( b + entry.getValue() > result )
result = b + entry.getValue();
previousValue += entry.getValue();
}
}
return result;
}
Since the array is sorted, we can have an O(n) solution by iterating and checking if current element is equals to previous element and keeping track of the max length.
static int findMax(int []a,int y) {
int n = a.length,current = 1,max = 0,diff = 0;
for(int i = 1; i< n; i++) {
if(a[i] == a[i-1]) {
current++;
diff = Math.min(y, n-i-1);
max = Math.max(max, current+diff);
}else {
current = 1;
}
}
return max;
}
given int array is not sorted than you should sort
public static int findMax(int []A,int K) {
int current = 1,max = 0,diff = 0;
List<Integer> sorted=Arrays.stream(A).sorted().boxed().collect(Collectors.toList());
for(int i = 1; i< sorted.size(); i++) {
if(sorted.get(i).equals(sorted.get(i-1))) {
current++;
diff = Math.min(K, sorted.size()-i-1);
max = Math.max(max, current+diff);
}else {
current = 1;
}
}
return max;
}
public static void main(String args[]) {
List<Integer> A = Arrays.asList(3,1,5,3,4,4,3,3,5,5,5,1);
int[] Al = A.stream().mapToInt(Integer::intValue).toArray();
int result=findMax(Al, 5);
System.out.println(result);
}

java assign even elements to even index and odd to odd places and if the numbers are not equal add zeros to the places

I am trying to write code to display the even elements to even indexes and odd to odd indexes and if the numbers added numbers are same then add zeros accordingly.
Example:
x = [1,2,3,4]
output: 2 1 4 3
x = [1 1 1 4]
output: 4 1 0 1 0 1
I reached to get even and odd positions but stuck after that.
Below is my code.
import java.util.*;
class ArrayDemo3 {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
System.out.println("Enter Size of Array :: ");
int size = s.nextInt();
int[] x = new int[size];
System.out.println("Array Created having the size :: " + size);
System.out.println("Enter Elements for Array :: ");
for (int i = 0; i < size; i++) {
System.out.println("Enter element no-" + (i + 1) + " ::");
x[i] = s.nextInt();
}
System.out.println("Contents of Array ::");
for (int i = 0; i < size; i++) {
System.out.print(x[i] + " ");
}
for (int i = 0; i < size; i = i + 1) {
int even = 0;
int odd = 1;
if (i < size && x[i] % 2 == 0) {
System.out.print("even : ");
even = even + i;
System.out.print("position" + i + " " + x[i] + " ");
} else {
System.out.print("odd : ");
odd = odd + i;
System.out.print(i + " " + x[i] + " ");
}
if (even < size && odd < size) {
int temp = x[even];
x[even] = x[odd];
x[odd] = temp;
} else {
}
//System.out.print(x[i] + " ");
}
}
}
You can break up your problem in 3 parts:
First create two lists, one containing in encountered order the even numbers and the other the odd numbers:
private static List<List<Integer>> createOddityLists(int... numbers) {
List<Integer> numsList = Arrays.stream(numbers).boxed().collect(Collectors.toList());
List<List<Integer>> numsByOddity = new ArrayList<List<Integer>>();
numsByOddity.add(new ArrayList<>()); // List of odd numbers
numsByOddity.add(new ArrayList<>()); // List of even numbers
numsList.forEach(num -> numsByOddity.get(num % 2).add(num));
return numsByOddity;
}
Pad the shorter of the two lists with zeros (0s) to make it equal length as the other one:
private static void padShorterList(List<List<Integer>> numsByOddity) {
int sizeDiff = numsByOddity.get(0).size() - numsByOddity.get(1).size();
int listIndexToBePadded = sizeDiff < 0 ? 0 : 1;
List<Integer> padding = Collections.nCopies(Math.abs(sizeDiff), 0);
numsByOddity.get(listIndexToBePadded).addAll(padding);
}
Finally join intertwining both lists:
private static List<Integer> joinLists(List<List<Integer>> numsByOddity) {
List<Integer> resultList = new ArrayList<>(numsByOddity.get(1));
for (int idx = 0; idx < numsByOddity.get(0).size(); idx++)
resultList.add(idx * 2, numsByOddity.get(0).get(idx));
return resultList;
}
The following is the full working example:
public class ArrayRearrangement {
public static void main(String[] args) {
// int[] result = rearrange(1, 2, 3, 4);
int[] result = rearrange(1, 1, 1, 4);
System.out.println(Arrays.stream(result).boxed().collect(Collectors.toList()));
}
private static int[] rearrange(int... numbers) {
List<List<Integer>> numsByOddity = createOddityLists(numbers);
padShorterList(numsByOddity);
return joinLists(numsByOddity).stream().mapToInt(i->i).toArray();
}
private static List<List<Integer>> createOddityLists(int... numbers) {
List<Integer> numsList = Arrays.stream(numbers).boxed().collect(Collectors.toList());
List<List<Integer>> numsByOddity = new ArrayList<List<Integer>>();
numsByOddity.add(new ArrayList<>()); // List of odd numbers
numsByOddity.add(new ArrayList<>()); // List of even numbers
numsList.forEach(num -> numsByOddity.get(num % 2).add(num));
return numsByOddity;
}
private static void padShorterList(List<List<Integer>> numsByOddity) {
int sizeDiff = numsByOddity.get(0).size() - numsByOddity.get(1).size();
int listIndexToBePadded = sizeDiff < 0 ? 0 : 1;
List<Integer> padding = Collections.nCopies(Math.abs(sizeDiff), 0);
numsByOddity.get(listIndexToBePadded).addAll(padding);
}
private static List<Integer> joinLists(List<List<Integer>> numsByOddity) {
List<Integer> resultList = new ArrayList<>(numsByOddity.get(1));
for (int idx = 0; idx < numsByOddity.get(0).size(); idx++)
resultList.add(idx * 2, numsByOddity.get(0).get(idx));
return resultList;
}
}
Complete code on GitHub
Hope this helps.
Using arrays something like this we can do. Code needs to be optimised.
public static int[] arrangeInEvenOddOrder(int[] arr)
{
// Create odd and even arrays
int[] oddArr = new int[arr.length];
int[] evenArr = new int[arr.length];
int oCount = 0, eCount = 0;
// populate arrays even and odd
for (int i = 0; i < arr.length; i++) {
if (arr[i] % 2 == 0)
evenArr[eCount++] = arr[i];
else
oddArr[oCount++] = arr[i];
}
int[] resArr = new int[oCount >= eCount?
2*oCount : 2*eCount-1];
// populate elements upto min of the
// two arrays
for (int i =0; i < (oCount <= eCount?
2*oCount : 2*eCount ); i++ )
{
if( i%2 == 0)
resArr[i] = evenArr[i/2];
else
resArr[i] = oddArr[i/2];
}
// populate rest of elements of max array
// and add zeroes
if (eCount > oCount)
{
for (int i=2*oCount,j=0;i<2*eCount-1; i++)
{
if (i%2 == 0)
{
resArr[i] = evenArr[oCount+j];
j++;
}
else
resArr[i] = 0;
}
}
else if (eCount < oCount)
{
for (int i=2*eCount,j=0;i<2*oCount; i++)
{
if ( i%2 != 0)
{
resArr[i] = oddArr[eCount+j];
j++;
}
else
resArr[i] = 0;
}
}
return resArr;
}
Sort element based on index i.e if the element is even, it must be at even position and vise-versa
int sortArrayByEvenOddIndex(int arr[]) {
int n = arr.length;
int res[] = new int[n];
int odd = 1;
int even = 0;
for (int i = 0; i < n; i++) {
if (arr[i] % 2 == 0) {
res[even] = arr[i];
even += 2;
} else {
res[odd] = arr[i];
odd += 2;
}
}
return res;
}

java codility training Genomic-range-query

The task is:
A non-empty zero-indexed string S is given. String S consists of N characters from the set of upper-case English letters A, C, G, T.
This string actually represents a DNA sequence, and the upper-case letters represent single nucleotides.
You are also given non-empty zero-indexed arrays P and Q consisting of M integers. These arrays represent queries about minimal nucleotides. We represent the letters of string S as integers 1, 2, 3, 4 in arrays P and Q, where A = 1, C = 2, G = 3, T = 4, and we assume that A < C < G < T.
Query K requires you to find the minimal nucleotide from the range (P[K], Q[K]), 0 ≤ P[i] ≤ Q[i] < N.
For example, consider string S = GACACCATA and arrays P, Q such that:
P[0] = 0 Q[0] = 8
P[1] = 0 Q[1] = 2
P[2] = 4 Q[2] = 5
P[3] = 7 Q[3] = 7
The minimal nucleotides from these ranges are as follows:
(0, 8) is A identified by 1,
(0, 2) is A identified by 1,
(4, 5) is C identified by 2,
(7, 7) is T identified by 4.
Write a function:
class Solution { public int[] solution(String S, int[] P, int[] Q); }
that, given a non-empty zero-indexed string S consisting of N characters and two non-empty zero-indexed arrays P and Q consisting of M integers, returns an array consisting of M characters specifying the consecutive answers to all queries.
The sequence should be returned as:
a Results structure (in C), or
a vector of integers (in C++), or
a Results record (in Pascal), or
an array of integers (in any other programming language).
For example, given the string S = GACACCATA and arrays P, Q such that:
P[0] = 0 Q[0] = 8
P[1] = 0 Q[1] = 2
P[2] = 4 Q[2] = 5
P[3] = 7 Q[3] = 7
the function should return the values [1, 1, 2, 4], as explained above.
Assume that:
N is an integer within the range [1..100,000];
M is an integer within the range [1..50,000];
each element of array P, Q is an integer within the range [0..N − 1];
P[i] ≤ Q[i];
string S consists only of upper-case English letters A, C, G, T.
Complexity:
expected worst-case time complexity is O(N+M);
expected worst-case space complexity is O(N),
beyond input storage
(not counting the storage required for input arguments).
Elements of input arrays can be modified.
My solution is:
class Solution {
public int[] solution(String S, int[] P, int[] Q) {
final char c[] = S.toCharArray();
final int answer[] = new int[P.length];
int tempAnswer;
char tempC;
for (int iii = 0; iii < P.length; iii++) {
tempAnswer = 4;
for (int zzz = P[iii]; zzz <= Q[iii]; zzz++) {
tempC = c[zzz];
if (tempC == 'A') {
tempAnswer = 1;
break;
} else if (tempC == 'C') {
if (tempAnswer > 2) {
tempAnswer = 2;
}
} else if (tempC == 'G') {
if (tempAnswer > 3) {
tempAnswer = 3;
}
}
}
answer[iii] = tempAnswer;
}
return answer;
}
}
It is not optimal, I believe it's supposed to be done within one loop, any hint how can I achieve it?
You can check quality of your solution here https://codility.com/train/ test name is Genomic-range-query.
Here is the solution that got 100 out of 100 in codility.com. Please read about prefix sums to understand the solution:
public static int[] solveGenomicRange(String S, int[] P, int[] Q) {
//used jagged array to hold the prefix sums of each A, C and G genoms
//we don't need to get prefix sums of T, you will see why.
int[][] genoms = new int[3][S.length()+1];
//if the char is found in the index i, then we set it to be 1 else they are 0
//3 short values are needed for this reason
short a, c, g;
for (int i=0; i<S.length(); i++) {
a = 0; c = 0; g = 0;
if ('A' == (S.charAt(i))) {
a=1;
}
if ('C' == (S.charAt(i))) {
c=1;
}
if ('G' == (S.charAt(i))) {
g=1;
}
//here we calculate prefix sums. To learn what's prefix sums look at here https://codility.com/media/train/3-PrefixSums.pdf
genoms[0][i+1] = genoms[0][i] + a;
genoms[1][i+1] = genoms[1][i] + c;
genoms[2][i+1] = genoms[2][i] + g;
}
int[] result = new int[P.length];
//here we go through the provided P[] and Q[] arrays as intervals
for (int i=0; i<P.length; i++) {
int fromIndex = P[i];
//we need to add 1 to Q[i],
//because our genoms[0][0], genoms[1][0] and genoms[2][0]
//have 0 values by default, look above genoms[0][i+1] = genoms[0][i] + a;
int toIndex = Q[i]+1;
if (genoms[0][toIndex] - genoms[0][fromIndex] > 0) {
result[i] = 1;
} else if (genoms[1][toIndex] - genoms[1][fromIndex] > 0) {
result[i] = 2;
} else if (genoms[2][toIndex] - genoms[2][fromIndex] > 0) {
result[i] = 3;
} else {
result[i] = 4;
}
}
return result;
}
Simple, elegant, domain specific, 100/100 solution in JS with comments!
function solution(S, P, Q) {
var N = S.length, M = P.length;
// dictionary to map nucleotide to impact factor
var impact = {A : 1, C : 2, G : 3, T : 4};
// nucleotide total count in DNA
var currCounter = {A : 0, C : 0, G : 0, T : 0};
// how many times nucleotide repeats at the moment we reach S[i]
var counters = [];
// result
var minImpact = [];
var i;
// count nucleotides
for(i = 0; i <= N; i++) {
counters.push({A: currCounter.A, C: currCounter.C, G: currCounter.G});
currCounter[S[i]]++;
}
// for every query
for(i = 0; i < M; i++) {
var from = P[i], to = Q[i] + 1;
// compare count of A at the start of query with count at the end of equry
// if counter was changed then query contains A
if(counters[to].A - counters[from].A > 0) {
minImpact.push(impact.A);
}
// same things for C and others nucleotides with higher impact factor
else if(counters[to].C - counters[from].C > 0) {
minImpact.push(impact.C);
}
else if(counters[to].G - counters[from].G > 0) {
minImpact.push(impact.G);
}
else { // one of the counters MUST be changed, so its T
minImpact.push(impact.T);
}
}
return minImpact;
}
Java, 100/100, but with no cumulative/prefix sums! I stashed the last occurrence index of lower 3 nucelotides in a array "map". Later I check if the last index is between P-Q. If so it returns the nuclotide, if not found, it's the top one (T):
class Solution {
int[][] lastOccurrencesMap;
public int[] solution(String S, int[] P, int[] Q) {
int N = S.length();
int M = P.length;
int[] result = new int[M];
lastOccurrencesMap = new int[3][N];
int lastA = -1;
int lastC = -1;
int lastG = -1;
for (int i = 0; i < N; i++) {
char c = S.charAt(i);
if (c == 'A') {
lastA = i;
} else if (c == 'C') {
lastC = i;
} else if (c == 'G') {
lastG = i;
}
lastOccurrencesMap[0][i] = lastA;
lastOccurrencesMap[1][i] = lastC;
lastOccurrencesMap[2][i] = lastG;
}
for (int i = 0; i < M; i++) {
int startIndex = P[i];
int endIndex = Q[i];
int minimum = 4;
for (int n = 0; n < 3; n++) {
int lastOccurence = getLastNucleotideOccurrence(startIndex, endIndex, n);
if (lastOccurence != 0) {
minimum = n + 1;
break;
}
}
result[i] = minimum;
}
return result;
}
int getLastNucleotideOccurrence(int startIndex, int endIndex, int nucleotideIndex) {
int[] lastOccurrences = lastOccurrencesMap[nucleotideIndex];
int endValueLastOccurenceIndex = lastOccurrences[endIndex];
if (endValueLastOccurenceIndex >= startIndex) {
return nucleotideIndex + 1;
} else {
return 0;
}
}
}
Here is the solution, supposing someone is still interested.
class Solution {
public int[] solution(String S, int[] P, int[] Q) {
int[] answer = new int[P.length];
char[] chars = S.toCharArray();
int[][] cumulativeAnswers = new int[4][chars.length + 1];
for (int iii = 0; iii < chars.length; iii++) {
if (iii > 0) {
for (int zzz = 0; zzz < 4; zzz++) {
cumulativeAnswers[zzz][iii + 1] = cumulativeAnswers[zzz][iii];
}
}
switch (chars[iii]) {
case 'A':
cumulativeAnswers[0][iii + 1]++;
break;
case 'C':
cumulativeAnswers[1][iii + 1]++;
break;
case 'G':
cumulativeAnswers[2][iii + 1]++;
break;
case 'T':
cumulativeAnswers[3][iii + 1]++;
break;
}
}
for (int iii = 0; iii < P.length; iii++) {
for (int zzz = 0; zzz < 4; zzz++) {
if ((cumulativeAnswers[zzz][Q[iii] + 1] - cumulativeAnswers[zzz][P[iii]]) > 0) {
answer[iii] = zzz + 1;
break;
}
}
}
return answer;
}
}
In case anyone cares about C:
#include <string.h>
struct Results solution(char *S, int P[], int Q[], int M) {
int i, a, b, N, *pA, *pC, *pG;
struct Results result;
result.A = malloc(sizeof(int) * M);
result.M = M;
// calculate prefix sums
N = strlen(S);
pA = malloc(sizeof(int) * N);
pC = malloc(sizeof(int) * N);
pG = malloc(sizeof(int) * N);
pA[0] = S[0] == 'A' ? 1 : 0;
pC[0] = S[0] == 'C' ? 1 : 0;
pG[0] = S[0] == 'G' ? 1 : 0;
for (i = 1; i < N; i++) {
pA[i] = pA[i - 1] + (S[i] == 'A' ? 1 : 0);
pC[i] = pC[i - 1] + (S[i] == 'C' ? 1 : 0);
pG[i] = pG[i - 1] + (S[i] == 'G' ? 1 : 0);
}
for (i = 0; i < M; i++) {
a = P[i] - 1;
b = Q[i];
if ((pA[b] - pA[a]) > 0) {
result.A[i] = 1;
} else if ((pC[b] - pC[a]) > 0) {
result.A[i] = 2;
} else if ((pG[b] - pG[a]) > 0) {
result.A[i] = 3;
} else {
result.A[i] = 4;
}
}
return result;
}
Here is my solution Using Segment Tree O(n)+O(log n)+O(M) time
public class DNAseq {
public static void main(String[] args) {
String S="CAGCCTA";
int[] P={2, 5, 0};
int[] Q={4, 5, 6};
int [] results=solution(S,P,Q);
System.out.println(results[0]);
}
static class segmentNode{
int l;
int r;
int min;
segmentNode left;
segmentNode right;
}
public static segmentNode buildTree(int[] arr,int l,int r){
if(l==r){
segmentNode n=new segmentNode();
n.l=l;
n.r=r;
n.min=arr[l];
return n;
}
int mid=l+(r-l)/2;
segmentNode le=buildTree(arr,l,mid);
segmentNode re=buildTree(arr,mid+1,r);
segmentNode root=new segmentNode();
root.left=le;
root.right=re;
root.l=le.l;
root.r=re.r;
root.min=Math.min(le.min,re.min);
return root;
}
public static int getMin(segmentNode root,int l,int r){
if(root.l>r || root.r<l){
return Integer.MAX_VALUE;
}
if(root.l>=l&& root.r<=r) {
return root.min;
}
return Math.min(getMin(root.left,l,r),getMin(root.right,l,r));
}
public static int[] solution(String S, int[] P, int[] Q) {
int[] arr=new int[S.length()];
for(int i=0;i<S.length();i++){
switch (S.charAt(i)) {
case 'A':
arr[i]=1;
break;
case 'C':
arr[i]=2;
break;
case 'G':
arr[i]=3;
break;
case 'T':
arr[i]=4;
break;
default:
break;
}
}
segmentNode root=buildTree(arr,0,S.length()-1);
int[] result=new int[P.length];
for(int i=0;i<P.length;i++){
result[i]=getMin(root,P[i],Q[i]);
}
return result;
} }
Here is a C# solution, the basic idea is pretty much the same as the other answers, but it may be cleaner:
using System;
class Solution
{
public int[] solution(string S, int[] P, int[] Q)
{
int N = S.Length;
int M = P.Length;
char[] chars = {'A','C','G','T'};
//Calculate accumulates
int[,] accum = new int[3, N+1];
for (int i = 0; i <= 2; i++)
{
for (int j = 0; j < N; j++)
{
if(S[j] == chars[i]) accum[i, j+1] = accum[i, j] + 1;
else accum[i, j+1] = accum[i, j];
}
}
//Get minimal nucleotides for the given ranges
int diff;
int[] minimums = new int[M];
for (int i = 0; i < M; i++)
{
minimums[i] = 4;
for (int j = 0; j <= 2; j++)
{
diff = accum[j, Q[i]+1] - accum[j, P[i]];
if (diff > 0)
{
minimums[i] = j+1;
break;
}
}
}
return minimums;
}
}
Here is my solution. Got %100 . Of course I needed to first check and study a little bit prefix sums.
public int[] solution(String S, int[] P, int[] Q){
int[] result = new int[P.length];
int[] factor1 = new int[S.length()];
int[] factor2 = new int[S.length()];
int[] factor3 = new int[S.length()];
int[] factor4 = new int[S.length()];
int factor1Sum = 0;
int factor2Sum = 0;
int factor3Sum = 0;
int factor4Sum = 0;
for(int i=0; i<S.length(); i++){
switch (S.charAt(i)) {
case 'A':
factor1Sum++;
break;
case 'C':
factor2Sum++;
break;
case 'G':
factor3Sum++;
break;
case 'T':
factor4Sum++;
break;
default:
break;
}
factor1[i] = factor1Sum;
factor2[i] = factor2Sum;
factor3[i] = factor3Sum;
factor4[i] = factor4Sum;
}
for(int i=0; i<P.length; i++){
int start = P[i];
int end = Q[i];
if(start == 0){
if(factor1[end] > 0){
result[i] = 1;
}else if(factor2[end] > 0){
result[i] = 2;
}else if(factor3[end] > 0){
result[i] = 3;
}else{
result[i] = 4;
}
}else{
if(factor1[end] > factor1[start-1]){
result[i] = 1;
}else if(factor2[end] > factor2[start-1]){
result[i] = 2;
}else if(factor3[end] > factor3[start-1]){
result[i] = 3;
}else{
result[i] = 4;
}
}
}
return result;
}
If someone is still interested in this exercise, I share my Python solution (100/100 in Codility)
def solution(S, P, Q):
count = []
for i in range(3):
count.append([0]*(len(S)+1))
for index, i in enumerate(S):
count[0][index+1] = count[0][index] + ( i =='A')
count[1][index+1] = count[1][index] + ( i =='C')
count[2][index+1] = count[2][index] + ( i =='G')
result = []
for i in range(len(P)):
start = P[i]
end = Q[i]+1
if count[0][end] - count[0][start]:
result.append(1)
elif count[1][end] - count[1][start]:
result.append(2)
elif count[2][end] - count[2][start]:
result.append(3)
else:
result.append(4)
return result
This is my JavaScript solution that got 100% across the board on Codility:
function solution(S, P, Q) {
let total = [];
let min;
for (let i = 0; i < P.length; i++) {
const substring = S.slice(P[i], Q[i] + 1);
if (substring.includes('A')) {
min = 1;
} else if (substring.includes('C')) {
min = 2;
} else if (substring.includes('G')) {
min = 3;
} else if (substring.includes('T')) {
min = 4;
}
total.push(min);
}
return total;
}
import java.util.Arrays;
import java.util.HashMap;
class Solution {
static HashMap<Character, Integer > characterMapping = new HashMap<Character, Integer>(){{
put('A',1);
put('C',2);
put('G',3);
put('T',4);
}};
public static int minimum(int[] arr) {
if (arr.length ==1) return arr[0];
int smallestIndex = 0;
for (int index = 0; index<arr.length; index++) {
if (arr[index]<arr[smallestIndex]) smallestIndex=index;
}
return arr[smallestIndex];
}
public int[] solution(String S, int[] P, int[] Q) {
final char[] characterInput = S.toCharArray();
final int[] integerInput = new int[characterInput.length];
for(int counter=0; counter < characterInput.length; counter++) {
integerInput[counter] = characterMapping.get(characterInput[counter]);
}
int[] result = new int[P.length];
//assuming P and Q have the same length
for(int index =0; index<P.length; index++) {
if (P[index]==Q[index]) {
result[index] = integerInput[P[index]];
break;
}
final int[] subArray = Arrays.copyOfRange(integerInput, P[index], Q[index]+1);
final int minimumValue = minimum(subArray);
result[index]= minimumValue;
}
return result;
}
}
Here's 100% Scala solution:
def solution(S: String, P: Array[Int], Q: Array[Int]): Array[Int] = {
val resp = for(ind <- 0 to P.length-1) yield {
val sub= S.substring(P(ind),Q(ind)+1)
var factor = 4
if(sub.contains("A")) {factor=1}
else{
if(sub.contains("C")) {factor=2}
else{
if(sub.contains("G")) {factor=3}
}
}
factor
}
return resp.toArray
}
And performance: https://codility.com/demo/results/trainingEUR4XP-425/
Hope this helps.
public int[] solution(String S, int[] P, int[] K) {
// write your code in Java SE 8
char[] sc = S.toCharArray();
int[] A = new int[sc.length];
int[] G = new int[sc.length];
int[] C = new int[sc.length];
int prevA =-1,prevG=-1,prevC=-1;
for(int i=0;i<sc.length;i++){
if(sc[i]=='A')
prevA=i;
else if(sc[i] == 'G')
prevG=i;
else if(sc[i] =='C')
prevC=i;
A[i] = prevA;
G[i] = prevG;
C[i] = prevC;
//System.out.println(A[i]+ " "+G[i]+" "+C[i]);
}
int[] result = new int[P.length];
for(int i=0;i<P.length;i++){
//System.out.println(A[P[i]]+ " "+A[K[i]]+" "+C[P[i]]+" "+C[K[i]]+" "+P[i]+" "+K[i]);
if(A[K[i]] >=P[i] && A[K[i]] <=K[i]){
result[i] =1;
}
else if(C[K[i]] >=P[i] && C[K[i]] <=K[i]){
result[i] =2;
}else if(G[K[i]] >=P[i] && G[K[i]] <=K[i]){
result[i] =3;
}
else{
result[i]=4;
}
}
return result;
}
Python Solution with explanation
The idea is to hold an auxiliary array per nucleotide X, with position i (ignoring zero) is how many times X has occurred as of now. And so if we need the number of occurrences of X from position f to position t, we could take the following equation:
aux(t) - aux(f)
Time complexity is:
O(N+M)
def solution(S, P, Q):
n = len(S)
m = len(P)
aux = [[0 for i in range(n+1)] for i in [0,1,2]]
for i,c in enumerate(S):
aux[0][i+1] = aux[0][i] + ( c == 'A' )
aux[1][i+1] = aux[1][i] + ( c == 'C' )
aux[2][i+1] = aux[2][i] + ( c == 'G' )
result = []
for i in range(m):
fromIndex , toIndex = P[i] , Q[i] +1
if aux[0][toIndex] - aux[0][fromIndex] > 0:
r = 1
elif aux[1][toIndex] - aux[1][fromIndex] > 0:
r = 2
elif aux[2][toIndex] - aux[2][fromIndex] > 0:
r = 3
else:
r = 4
result.append(r)
return result
This is a Swift 4 solution to the same problem. It is based on #codebusta's solution above:
public func solution(_ S : inout String, _ P : inout [Int], _ Q : inout [Int]) -> [Int] {
var impacts = [Int]()
var prefixSum = [[Int]]()
for _ in 0..<3 {
let array = Array(repeating: 0, count: S.count + 1)
prefixSum.append(array)
}
for (index, character) in S.enumerated() {
var a = 0
var c = 0
var g = 0
switch character {
case "A":
a = 1
case "C":
c = 1
case "G":
g = 1
default:
break
}
prefixSum[0][index + 1] = prefixSum[0][index] + a
prefixSum[1][index + 1] = prefixSum[1][index] + c
prefixSum[2][index + 1] = prefixSum[2][index] + g
}
for tuple in zip(P, Q) {
if prefixSum[0][tuple.1 + 1] - prefixSum[0][tuple.0] > 0 {
impacts.append(1)
}
else if prefixSum[1][tuple.1 + 1] - prefixSum[1][tuple.0] > 0 {
impacts.append(2)
}
else if prefixSum[2][tuple.1 + 1] - prefixSum[2][tuple.0] > 0 {
impacts.append(3)
}
else {
impacts.append(4)
}
}
return impacts
}
Here is python solution with little explanation hope it helps some one.
Python codility 100%
def solution(S, P, Q):
"""
https://app.codility.com/demo/results/training8QBVFJ-EQB/
100%
Idea is consider solution as single dimensional array and use concept of prefix some ie.
stores the value in array for p,c and g based on frequency
array stores the frequency of p,c and g for all positions
Example -
# [0, 0, 1, 1, 1, 1, 1, 2] - prefix some of A - represents the max occurrence of A as 2 in array
# [0, 1, 1, 1, 2, 3, 3, 3] - prefix some of C - represents the max occurrence of A as 3 in array
# [0, 0, 0, 1, 1, 1, 1, 1] - prefix some of G - represents the max occurrence of A as 1 in array
# To find the query answers we can just use prefix some and find the distance between position
S = CAGCCTA
P[0] = 2 Q[0] = 4
P[1] = 5 Q[1] = 5
P[2] = 0 Q[2] = 6
Given a non-empty zero-indexed string S consisting of N characters and two non-empty zero-indexed arrays P and Q consisting
of M integers, returns an array consisting of M integers specifying the consecutive answers to all queries.
The part of the DNA between positions 2 and 4 contains nucleotide G and C (twice), whose impact factors are 3 and 2 respectively, so the answer is 2.
The part between positions 5 and 5 contains a single nucleotide T, whose impact factor is 4, so the answer is 4.
The part between positions 0 and 6 (the whole string) contains all nucleotide, in particular nucleotide A whose impact factor is 1, so the answer is 1.
N is an integer within the range [1..100,000];
M is an integer within the range [1..50,000];
each element of arrays P, Q is an integer within the range [0..N − 1];
P[K] ≤ Q[K], where 0 ≤ K < M;
string S consists only of upper-case English letters A, C, G, T.
Ref - https://github.com/ghanan94/codility-lesson-solutions/blob/master/Lesson%2005%20-%20Prefix%20Sums/PrefixSums.pdf
:return: return the values [2, 4, 1]
"""
# two d array - column size is 3 for a,c,g - not taking size 4 since that will be part of else ie. don`t need to calculate
# row size is the length of DNA sequence
prefix_sum_two_d_array = [[0 for i in range(len(S) + 1)] for j in range(3)]
# find the prefix some of all nucleotide in given sequence
for i, nucleotide in enumerate(S):
# store prefix some of each
# nucleotide == 'A -> 1 if true 0 if false
# [0, 0, 1, 1, 1, 1, 1, 2] - prefix some of A - represents the max occurrence of A as 2 in array
prefix_sum_two_d_array[0][i + 1] = prefix_sum_two_d_array[0][i] + (nucleotide == 'A')
# store prefix some of c
# [0, 1, 1, 1, 2, 3, 3, 3] - prefix some of C - represents the max occurrence of A as 3 in array
prefix_sum_two_d_array[1][i + 1] = prefix_sum_two_d_array[1][i] + (nucleotide == 'C')
# store prefix some of g
# [0, 0, 0, 1, 1, 1, 1, 1] - prefix some of G - represents the max occurrence of A as 1 in array
prefix_sum_two_d_array[2][i + 1] = prefix_sum_two_d_array[2][i] + (nucleotide == 'G')
#print(prefix_sum_two_d_array)
# now to find the query answers we can just use prefix some and find the distance between position
query_answers = []
for position in range(len(P)):
# for each query of p
# find the start index from p
start_index = P[position]
# find the end index from Q
end_index = Q[position] + 1
# find the value from prefix some array - just subtract end index and start index to find the value
if prefix_sum_two_d_array[0][end_index] - prefix_sum_two_d_array[0][start_index]:
query_answers.append(1)
elif prefix_sum_two_d_array[1][end_index] - prefix_sum_two_d_array[1][start_index]:
query_answers.append(2)
elif prefix_sum_two_d_array[2][end_index] - prefix_sum_two_d_array[2][start_index]:
query_answers.append(3)
else:
query_answers.append(4)
return query_answers
result = solution("CAGCCTA", [2, 5, 0], [4, 5, 6])
print("Sol " + str(result))
# Sol [2, 4, 1]
My 100% JavaScript solution with O(N + M) time complexity and no use of advanced built-in methods such as .includes, .substring, etc:
function solution(S, P, Q) {
// initialize prefix sums for A, C, G (you don't need T)
const A = [0];
const C = [0];
const G = [0];
// calculate prefix sums for A, C, G
for (let i = 0, len = S.length; i < len; i++) {
A.push(A[i] + Number("A" === S[i]));
C.push(C[i] + Number("C" === S[i]));
G.push(G[i] + Number("G" === S[i]));
}
// calculate the result using prefix sums
const result = [];
for (let i = 0, len = P.length; i < len; i++) {
const from = P[i];
const to = Q[i] + 1;
if (A[to] - A[from] > 0) {
result.push(1);
} else if (C[to] - C[from] > 0) {
result.push(2);
} else if (G[to] - G[from] > 0) {
result.push(3);
} else {
result.push(4); // this is why you don't need T
}
}
return result;
}
pshemek's solution constrains itself to the space complexity (O(N)) - even with the 2-d array and the answer array because a constant (4) is used for the 2-d array. That solution also fits in with the computational complexity - whereas mine is O (N^2) - though the actual computational complexity is much lower because it skips over entire ranges that include minimal values.
I gave it a try - but mine ends up using more space - but makes more intuitive sense to me (C#):
public static int[] solution(String S, int[] P, int[] Q)
{
const int MinValue = 1;
Dictionary<char, int> stringValueTable = new Dictionary<char,int>(){ {'A', 1}, {'C', 2}, {'G', 3}, {'T', 4} };
char[] inputArray = S.ToCharArray();
int[,] minRangeTable = new int[S.Length, S.Length]; // The meaning of this table is [x, y] where x is the start index and y is the end index and the value is the min range - if 0 then it is the min range (whatever that is)
for (int startIndex = 0; startIndex < S.Length; ++startIndex)
{
int currentMinValue = 4;
int minValueIndex = -1;
for (int endIndex = startIndex; (endIndex < S.Length) && (minValueIndex == -1); ++endIndex)
{
int currentValue = stringValueTable[inputArray[endIndex]];
if (currentValue < currentMinValue)
{
currentMinValue = currentValue;
if (currentMinValue == MinValue) // We can stop iterating - because anything with this index in its range will always be minimal
minValueIndex = endIndex;
else
minRangeTable[startIndex, endIndex] = currentValue;
}
else
minRangeTable[startIndex, endIndex] = currentValue;
}
if (minValueIndex != -1) // Skip over this index - since it is minimal
startIndex = minValueIndex; // We would have a "+ 1" here - but the "auto-increment" in the for statement will get us past this index
}
int[] result = new int[P.Length];
for (int outputIndex = 0; outputIndex < result.Length; ++outputIndex)
{
result[outputIndex] = minRangeTable[P[outputIndex], Q[outputIndex]];
if (result[outputIndex] == 0) // We could avoid this if we initialized our 2-d array with 1's
result[outputIndex] = 1;
}
return result;
}
In pshemek's answer - the "trick" in the second loop is simply that once you've determined you've found a range with the minimal value - you don't need to continue iterating. Not sure if that helps.
The php 100/100 solution:
function solution($S, $P, $Q) {
$S = str_split($S);
$len = count($S);
$lep = count($P);
$arr = array();
$result = array();
$clone = array_fill(0, 4, 0);
for($i = 0; $i < $len; $i++){
$arr[$i] = $clone;
switch($S[$i]){
case 'A':
$arr[$i][0] = 1;
break;
case 'C':
$arr[$i][1] = 1;
break;
case 'G':
$arr[$i][2] = 1;
break;
default:
$arr[$i][3] = 1;
break;
}
}
for($i = 1; $i < $len; $i++){
for($j = 0; $j < 4; $j++){
$arr[$i][$j] += $arr[$i - 1][$j];
}
}
for($i = 0; $i < $lep; $i++){
$x = $P[$i];
$y = $Q[$i];
for($a = 0; $a < 4; $a++){
$sub = 0;
if($x - 1 >= 0){
$sub = $arr[$x - 1][$a];
}
if($arr[$y][$a] - $sub > 0){
$result[$i] = $a + 1;
break;
}
}
}
return $result;
}
This program has got score 100 and performance wise has got an edge over other java codes listed above!
The code can be found here.
public class GenomicRange {
final int Index_A=0, Index_C=1, Index_G=2, Index_T=3;
final int A=1, C=2, G=3, T=4;
public static void main(String[] args) {
GenomicRange gen = new GenomicRange();
int[] M = gen.solution( "GACACCATA", new int[] { 0,0,4,7 } , new int[] { 8,2,5,7 } );
System.out.println(Arrays.toString(M));
}
public int[] solution(String S, int[] P, int[] Q) {
int[] M = new int[P.length];
char[] charArr = S.toCharArray();
int[][] occCount = new int[3][S.length()+1];
int charInd = getChar(charArr[0]);
if(charInd!=3) {
occCount[charInd][1]++;
}
for(int sInd=1; sInd<S.length(); sInd++) {
charInd = getChar(charArr[sInd]);
if(charInd!=3)
occCount[charInd][sInd+1]++;
occCount[Index_A][sInd+1]+=occCount[Index_A][sInd];
occCount[Index_C][sInd+1]+=occCount[Index_C][sInd];
occCount[Index_G][sInd+1]+=occCount[Index_G][sInd];
}
for(int i=0;i<P.length;i++) {
int a,c,g;
if(Q[i]+1>=occCount[0].length) continue;
a = occCount[Index_A][Q[i]+1] - occCount[Index_A][P[i]];
c = occCount[Index_C][Q[i]+1] - occCount[Index_C][P[i]];
g = occCount[Index_G][Q[i]+1] - occCount[Index_G][P[i]];
M[i] = a>0? A : c>0 ? C : g>0 ? G : T;
}
return M;
}
private int getChar(char c) {
return ((c=='A') ? Index_A : ((c=='C') ? Index_C : ((c=='G') ? Index_G : Index_T)));
}
}
Here's a simple javascript solution which got 100%.
function solution(S, P, Q) {
var A = [];
var C = [];
var G = [];
var T = [];
var result = [];
var i = 0;
S.split('').forEach(function(a) {
if (a === 'A') {
A.push(i);
} else if (a === 'C') {
C.push(i);
} else if (a === 'G') {
G.push(i);
} else {
T.push(i);
}
i++;
});
function hasNucl(typeArray, start, end) {
return typeArray.some(function(a) {
return a >= P[j] && a <= Q[j];
});
}
for(var j=0; j<P.length; j++) {
if (hasNucl(A, P[j], P[j])) {
result.push(1)
} else if (hasNucl(C, P[j], P[j])) {
result.push(2);
} else if (hasNucl(G, P[j], P[j])) {
result.push(3);
} else {
result.push(4);
}
}
return result;
}
perl 100/100 solution:
sub solution {
my ($S, $P, $Q)=#_; my #P=#$P; my #Q=#$Q;
my #_A = (0), #_C = (0), #_G = (0), #ret =();
foreach (split //, $S)
{
push #_A, $_A[-1] + ($_ eq 'A' ? 1 : 0);
push #_C, $_C[-1] + ($_ eq 'C' ? 1 : 0);
push #_G, $_G[-1] + ($_ eq 'G' ? 1 : 0);
}
foreach my $i (0..$#P)
{
my $from_index = $P[$i];
my $to_index = $Q[$i] + 1;
if ( $_A[$to_index] - $_A[$from_index] > 0 )
{
push #ret, 1;
next;
}
if ( $_C[$to_index] - $_C[$from_index] > 0 )
{
push #ret, 2;
next;
}
if ( $_G[$to_index] - $_G[$from_index] > 0 )
{
push #ret, 3;
next;
}
push #ret, 4
}
return #ret;
}
Java 100/100
class Solution {
public int[] solution(String S, int[] P, int[] Q) {
int qSize = Q.length;
int[] answers = new int[qSize];
char[] sequence = S.toCharArray();
int[][] occCount = new int[3][sequence.length+1];
int[] geneImpactMap = new int['G'+1];
geneImpactMap['A'] = 0;
geneImpactMap['C'] = 1;
geneImpactMap['G'] = 2;
if(sequence[0] != 'T') {
occCount[geneImpactMap[sequence[0]]][0]++;
}
for(int i = 0; i < sequence.length; i++) {
occCount[0][i+1] = occCount[0][i];
occCount[1][i+1] = occCount[1][i];
occCount[2][i+1] = occCount[2][i];
if(sequence[i] != 'T') {
occCount[geneImpactMap[sequence[i]]][i+1]++;
}
}
for(int j = 0; j < qSize; j++) {
for(int k = 0; k < 3; k++) {
if(occCount[k][Q[j]+1] - occCount[k][P[j]] > 0) {
answers[j] = k+1;
break;
}
answers[j] = 4;
}
}
return answers;
}
}
In ruby (100/100)
def interval_sum x,y,p
p[y+1] - p[x]
end
def solution(s,p,q)
#Hash of arrays with prefix sums
p_sums = {}
respuesta = []
%w(A C G T).each do |letter|
p_sums[letter] = Array.new s.size+1, 0
end
(0...s.size).each do |count|
%w(A C G T).each do |letter|
p_sums[letter][count+1] = p_sums[letter][count]
end if count > 0
case s[count]
when 'A'
p_sums['A'][count+1] += 1
when 'C'
p_sums['C'][count+1] += 1
when 'G'
p_sums['G'][count+1] += 1
when 'T'
p_sums['T'][count+1] += 1
end
end
(0...p.size).each do |count|
x = p[count]
y = q[count]
if interval_sum(x, y, p_sums['A']) > 0 then
respuesta << 1
next
end
if interval_sum(x, y, p_sums['C']) > 0 then
respuesta << 2
next
end
if interval_sum(x, y, p_sums['G']) > 0 then
respuesta << 3
next
end
if interval_sum(x, y, p_sums['T']) > 0 then
respuesta << 4
next
end
end
respuesta
end
simple php 100/100 solution
function solution($S, $P, $Q) {
$result = array();
for ($i = 0; $i < count($P); $i++) {
$from = $P[$i];
$to = $Q[$i];
$length = $from >= $to ? $from - $to + 1 : $to - $from + 1;
$new = substr($S, $from, $length);
if (strpos($new, 'A') !== false) {
$result[$i] = 1;
} else {
if (strpos($new, 'C') !== false) {
$result[$i] = 2;
} else {
if (strpos($new, 'G') !== false) {
$result[$i] = 3;
} else {
$result[$i] = 4;
}
}
}
}
return $result;
}
Here's my Java (100/100) Solution:
class Solution {
private ImpactFactorHolder[] mHolder;
private static final int A=0,C=1,G=2,T=3;
public int[] solution(String S, int[] P, int[] Q) {
mHolder = createImpactHolderArray(S);
int queriesLength = P.length;
int[] result = new int[queriesLength];
for (int i = 0; i < queriesLength; ++i ) {
int value = 0;
if( P[i] == Q[i]) {
value = lookupValueForIndex(S.charAt(P[i])) + 1;
} else {
value = calculateMinImpactFactor(P[i], Q[i]);
}
result[i] = value;
}
return result;
}
public int calculateMinImpactFactor(int P, int Q) {
int minImpactFactor = 3;
for (int nucleotide = A; nucleotide <= T; ++nucleotide ) {
int qValue = mHolder[nucleotide].mOcurrencesSum[Q];
int pValue = mHolder[nucleotide].mOcurrencesSum[P];
// handling special cases when the less value is assigned on the P index
if( P-1 >= 0 ) {
pValue = mHolder[nucleotide].mOcurrencesSum[P-1] == 0 ? 0 : pValue;
} else if ( P == 0 ) {
pValue = mHolder[nucleotide].mOcurrencesSum[P] == 1 ? 0 : pValue;
}
if ( qValue - pValue > 0) {
minImpactFactor = nucleotide;
break;
}
}
return minImpactFactor + 1;
}
public int lookupValueForIndex(char nucleotide) {
int value = 0;
switch (nucleotide) {
case 'A' :
value = A;
break;
case 'C' :
value = C;
break;
case 'G':
value = G;
break;
case 'T':
value = T;
break;
default:
break;
}
return value;
}
public ImpactFactorHolder[] createImpactHolderArray(String S) {
int length = S.length();
ImpactFactorHolder[] holder = new ImpactFactorHolder[4];
holder[A] = new ImpactFactorHolder(1,'A', length);
holder[C] = new ImpactFactorHolder(2,'C', length);
holder[G] = new ImpactFactorHolder(3,'G', length);
holder[T] = new ImpactFactorHolder(4,'T', length);
int i =0;
for(char c : S.toCharArray()) {
int nucleotide = lookupValueForIndex(c);
++holder[nucleotide].mAcum;
holder[nucleotide].mOcurrencesSum[i] = holder[nucleotide].mAcum;
holder[A].mOcurrencesSum[i] = holder[A].mAcum;
holder[C].mOcurrencesSum[i] = holder[C].mAcum;
holder[G].mOcurrencesSum[i] = holder[G].mAcum;
holder[T].mOcurrencesSum[i] = holder[T].mAcum;
++i;
}
return holder;
}
private static class ImpactFactorHolder {
public ImpactFactorHolder(int impactFactor, char nucleotide, int length) {
mImpactFactor = impactFactor;
mNucleotide = nucleotide;
mOcurrencesSum = new int[length];
mAcum = 0;
}
int mImpactFactor;
char mNucleotide;
int[] mOcurrencesSum;
int mAcum;
}
}
Link: https://codility.com/demo/results/demoJFB5EV-EG8/
I'm looking forward to implement a Segment Tree similar to #Abhishek Kumar solution
My C++ solution
vector<int> solution(string &S, vector<int> &P, vector<int> &Q) {
vector<int> impactCount_A(S.size()+1, 0);
vector<int> impactCount_C(S.size()+1, 0);
vector<int> impactCount_G(S.size()+1, 0);
int lastTotal_A = 0;
int lastTotal_C = 0;
int lastTotal_G = 0;
for (int i = (signed)S.size()-1; i >= 0; --i) {
switch(S[i]) {
case 'A':
++lastTotal_A;
break;
case 'C':
++lastTotal_C;
break;
case 'G':
++lastTotal_G;
break;
};
impactCount_A[i] = lastTotal_A;
impactCount_C[i] = lastTotal_C;
impactCount_G[i] = lastTotal_G;
}
vector<int> results(P.size(), 0);
for (int i = 0; i < P.size(); ++i) {
int pIndex = P[i];
int qIndex = Q[i];
int numA = impactCount_A[pIndex]-impactCount_A[qIndex+1];
int numC = impactCount_C[pIndex]-impactCount_C[qIndex+1];
int numG = impactCount_G[pIndex]-impactCount_G[qIndex+1];
if (numA > 0) {
results[i] = 1;
}
else if (numC > 0) {
results[i] = 2;
}
else if (numG > 0) {
results[i] = 3;
}
else {
results[i] = 4;
}
}
return results;
}
/* 100/100 solution C++.
Using prefix sums. Firstly converting chars to integer in nuc variable. Then in a bi-dimensional vector we account the occurrence in S of each nucleoside x in it's respective prefix_sum[s][x]. After we just have to find out the lower nucluoside that occurred in each interval K.
*/
.
vector solution(string &S, vector &P, vector &Q) {
int n=S.size();
int m=P.size();
vector<vector<int> > prefix_sum(n+1,vector<int>(4,0));
int nuc;
//prefix occurrence sum
for (int s=0;s<n; s++) {
nuc = S.at(s) == 'A' ? 1 : (S.at(s) == 'C' ? 2 : (S.at(s) == 'G' ? 3 : 4) );
for (int u=0;u<4;u++) {
prefix_sum[s+1][u] = prefix_sum[s][u] + ((u+1)==nuc?1:0);
}
}
//find minimal impact factor in each interval K
int lower_impact_factor;
for (int k=0;k<m;k++) {
lower_impact_factor=4;
for (int u=2;u>=0;u--) {
if (prefix_sum[Q[k]+1][u] - prefix_sum[P[k]][u] != 0)
lower_impact_factor = u+1;
}
P[k]=lower_impact_factor;
}
return P;
}
static public int[] solution(String S, int[] P, int[] Q) {
// write your code in Java SE 8
int A[] = new int[S.length() + 1], C[] = new int[S.length() + 1], G[] = new int[S.length() + 1];
int last_a = 0, last_c = 0, last_g = 0;
int results[] = new int[P.length];
int p = 0, q = 0;
for (int i = S.length() - 1; i >= 0; i -= 1) {
switch (S.charAt(i)) {
case 'A': {
last_a += 1;
break;
}
case 'C': {
last_c += 1;
break;
}
case 'G': {
last_g += 1;
break;
}
}
A[i] = last_a;
G[i] = last_g;
C[i] = last_c;
}
for (int i = 0; i < P.length; i++) {
p = P[i];
q = Q[i];
if (A[p] - A[q + 1] > 0) {
results[i] = 1;
} else if (C[p] - C[q + 1] > 0) {
results[i] = 2;
} else if (G[p] - G[q + 1] > 0) {
results[i] = 3;
} else {
results[i] = 4;
}
}
return results;
}
scala solution 100/100
import scala.annotation.switch
import scala.collection.mutable
object Solution {
def solution(s: String, p: Array[Int], q: Array[Int]): Array[Int] = {
val n = s.length
def arr = mutable.ArrayBuffer.fill(n + 1)(0L)
val a = arr
val c = arr
val g = arr
val t = arr
for (i <- 1 to n) {
def inc(z: mutable.ArrayBuffer[Long]): Unit = z(i) = z(i - 1) + 1L
def shift(z: mutable.ArrayBuffer[Long]): Unit = z(i) = z(i - 1)
val char = s(i - 1)
(char: #switch) match {
case 'A' => inc(a); shift(c); shift(g); shift(t);
case 'C' => shift(a); inc(c); shift(g); shift(t);
case 'G' => shift(a); shift(c); inc(g); shift(t);
case 'T' => shift(a); shift(c); shift(g); inc(t);
}
}
val r = mutable.ArrayBuffer.fill(p.length)(0)
for (i <- p.indices) {
val start = p(i)
val end = q(i) + 1
r(i) =
if (a(start) != a(end)) 1
else if (c(start) != c(end)) 2
else if (g(start) != g(end)) 3
else if (t(start) != t(end)) 4
else 0
}
r.toArray
}
}

MedianCalc() method give me IndexOutOfBounds Exception

I have this method to get the median value,
public double getMedian(double[] numberList) {
int factor = numberList.length;
double[] first = new double[(int) factor / 2];
double[] last = new double[first.length];
double[] middleNumbers = new double[1];
for (int i = 0; i < first.length; i++) {
first[i] = numberList[i];
}
for (int i = numberList.length; i >= last.length; i--) {
last[i] = numberList[i];
}
for (int i = 0; i <= numberList.length; i++) {
if (numberList[i] != first[i] || numberList[i] != last[i])
middleNumbers[i] = numberList[i];
}
if (numberList.length % 2 == 0) {
double total = middleNumbers[0] + middleNumbers[1];
return total / 2;
} else {
return middleNumbers[0];
}
}
but give me an IndexOutOfBounds Exception.
Could someone help me to fix the error?
You should be using i < numberList.length, not i <= numberList.length; the legal indexes of an array are [0, array.length-1], i.e. array.length is not a legal index
Simplified Answer
If you only want the median value, simply use your if-else on numberList, there is no need for any sub-arrays:
public double getMedian(double[] numberList) {
int middle = numberList.length / 2;
if (numberList.length % 2 == 0) {
double total = numberList[middle - 1] + numberList[middle]
return total / 2;
} else {
return numberList[middle];
}
}
Original Answer
As I stated under Zim-Zam's answer, this loop doesn't use the correct indices either:
for (int i = numberList.length; i >= last.length; i--) {
last[i] = numberList[i];
}
last can only have 0 through numberList.length / 2 (rounded down).
It looks like you want two split numberList into first and last, simply use:
int[] first = Arrays.copyOfRange(numberList, 0, factor);
int[] last = Arrays.copyOfRange(numberList, factor, numberList.length);
Instead of your for-loops.

Categories

Resources