I'm writing an annotation processor for an Android project and have run into a situation. I would like to process annotated classes from a library module, i.e. app module depends on library module and needs to process annotated classes from the library module.
However, the annotation processor isn't able to "see" the annotations from the dependency, presumably because the code is already compiled. See here for an issue on another library. A demonstration of the problem with my project is on the branch here. The annotations from sample module are processed but the ones from the lib module are not.
This is all well and good and I'd resigned myself to living without this feature, but it turns out the Android data-binding library can process annotations from modules and even third party libraries. This library, for example, provides #BindingAdapter methods that are processed fine by the app.
I played around with setting retention types on the annotations I use to no avail. The only significant difference I can see is that the data-binding processors target methods while my methods target classes (types), but I don't think that should make a difference from the processor. So I'm thinking it might have something to do with the data-binding processor being part of the Android plugin but I'm not sure how that helps here.
Anyone know how this is done?
Android Data Binding can't process annotations on dependencies, either. Instead, it processes the libraries at the compile time of the library and saves the information to an intermediate file as part of its archive (e.g. jar file). It then loads that intermediate file information from the dependency instead of reading the annotations.
If you save the intermediate information as a resource of the jar file dependency, you can pull it from the jar file pretty easily. If I recall correctly, it should be in your class path and you can use the ClassLoader's getResource() method. My memory may be a little stale on this as it doesn't use the jar file to store the intermediate file information any more.
Related
Is there a way to automatically find out which Java classes are actually loaded (either during compile time, as far as that's possible, or during the runtime of an application), and to throw out all other classes from a JAR to create a smaller JAR? Does that actually make sense in practice?
I am talking about the application classes for an application JAR. Usually there are lots of libraries in an application, and an application rarely needs all features of those libraries. So I suspect that would make a considerably smaller application. In theory that might be done for example via an Java agent that logs which classes and resources are read by one or several runs of an application (or even just by java -verbose:class), and a maven plugin that throws out all other classes from a jar-with-dependencies. Is there already something like that?
Clarification: I am not talking about unused dependencies (JARs that are not used at all), but about removing unused parts of each included JAR.
Well, the Maven Shade Plugin has an option minimizeJar when creating an Uber-JAR for your application:
https://maven.apache.org/plugins/maven-shade-plugin/
But, as others already pointed out, this is quite dangerous, as it regularly fails to detect class accesses which are done via Reflection or other dynamic references.
It may not be a good approach automate, as application can use reflection to initialise objects or one JAR is dependent on another JAR.
Only way that I can think of is to remove each JARs one by one and check if application runs as expected. Then again in this approach all modules of the application has to be tested, since one module can work without particular dependency and other may not.
Better solution is to take care while developing. The application developer must be careful in adding a dependency and removing unwanted dependency after his/her piece of code is done.
Global strategy.
1) Find all the classes that are loaded during runtime.
2) List of all the classes available in the classpath.
3) Reduce your class path by creating copies of jars containing only classes you need.
I have done 1 and 2 part so I can help you.
1) Find out all the classes that are loaded. You need 100 % code coverage (I am not talking about tests, but production). So run all possible scenarios, so all the classes your app needs will be loaded and logged.
To log loaded classes try several approaches. Reflection, –verbose:class flag, also you can learn about java agent. It allows to modify methods during runtime. This is an example of some java agent code or another java agent example
2) To find all the classes available in jar, you can write a program. You need to know all places where application jars are placed. Loop throw these jars (You can use ZipFile), loop through ZipFileEntry entries, and collect all classes.
3) After that write a script or program that reassembles your application. For example, now you can create a new jar file for each library and put there only needed classes.
Also you may use a tool (again, you are a programmer, so write a program), which checks code for classes dependence. You do not want to remove classes if they are used for compilation. When I was a student, I wrote code alanyzer, which builds an oriented graph for classes dependencies.
As #Gokul Nath KP notes, I did this before. I manually change gradle and maven dependencies, removing one by one, and then full regression test. It took me a week (our application was small comparing to modern world enterprise systems created by hundreds of developers).
So, be creative, and in case of success, your project will be used by millions!
I see many Java packages have api, impl and bundle jars (name-api.jar, name-impl.jar, name-bundle.jar). Could someone explain what those mean? Are all three needed by the app?
The idea is that you can separate the dependencies of the application; in an attempt to make applications more portable. The idea is that you can make the application dependent on the api.jar when compiling. Then when you want to run the program you can then switch in the appropriate implementation jar (impl.jar) and the appropriate resource bundle jar (bundle.jar).
As an example suppose the library does some database interaction. You write your code so that it references the api.jar. Now suppose you need it to work with a specific type of database e.g. MySQL - you would then add the impl.jar that is specific to MySQL databases to the classpath to get it to work (if you need a different database later - you only need to switch that jar in the classpath).
The bundle.jar is a bit more obscure and not as common. This could be used to supply configuration setting for the library. For example it could be used to supply language specific settings, or some more specific config. In the case of the database library it might be that the implementation is designed for all versions of MySQL, and the resource bundle jar provides config files that allow it to work for a specific MySQL version.
Often :
name-api.jar contains only the interface of the API.
name-impl.jar provides an implementation of all interfaces in the name-api.jar
name-bundle.jar bundles everything with all the needed classes to run a Java application.
api.jar contains API interfaces. These are interfaces as a contract that the implementation of the API should follow.
impl.jar is the implementation of the api.jar. You can't just have the impl.jar without the api.jar.
bundle.jar is the resources (if I'm not mistaken). Those are resources needed for the implementation code necessary to run.
I've never seen such an arrangement.
If the designer packaged the app into three JARs, then I'd say all three are needed.
But you should recognize that it's just a choice made by the designer. It's possible that s/he could have just created a single JAR with everything in it and you'd be none the wiser.
I'm guessing now, but if you were to open those JARs you'd see only interfaces in the API JAR, implementations of those interfaces in the impl JAR, and resource bundles and other .properties files in the bundle JAR. Try it and see. You'll learn something.
I am working on a desktop application, I use Hibernate and HSQLDB. When I make my application a runnable jar file, it has a bigger fize size than I think. I see that the biggest part is from Hibernate and its dependencies. I am not sure if I need all of the Hibernate features. Is there a way to get rid of the parts of Hibernate and its dependency libraries which I don't use?
Under the /lib/ folder in Hibernate zip you will see a folder called /required/. For very basic Hibernate apps thats all you will need though you may need additional JARs for things such as JPA. I would start by only including the JARs in the lib/required/ directory, see if your project works, and if it doesn't add what you need to get your project working again.
perhaps you could use a tool to analyse your classes and dependencies (for e.g. http://www.dependency-analyzer.org/). Here is another post about it: How do I find out what jar files are actually used when compiling a java project.
the other way is to remove some jars (or even single class files) and try whether your application is still working or not. but i think this is not a very good way...
I can't think of a better tool for this than ProGuard.
ProGuard is a free Java class file shrinker, optimizer, obfuscator, and preverifier. It detects and removes unused classes, fields, methods, and attributes. It optimizes bytecode and removes unused instructions. It renames the remaining classes, fields, and methods using short meaningless names. Finally, it preverifies the processed code for Java 6 or for Java Micro Edition.
I have a Java project that expects external modules to be registered with it. These modules:
Implement a particular interface in the main project
Are packaged into a uni-jar (along with any dependencies)
Contain some human-readable meta-information (like the module name).
My main project needs to be able to load at runtime (e.g. using its own classloader) any of these external modules. My question is: what's the best way of registering these modules with the main project (I'd prefer to keep this vanilla Java, and not use any third-party frameworks/libraries for this isolated issue)?
My current solution is to keep a single .properties file in the main project with key=name, value=class |delimiter| human-readable-name (or coordinate two .properties files in order to avoid the delimiter parsing). At runtime, the main project loads in the .properties file and uses any entries it finds to drive the classloader.
This feels hokey to me. Is there a better way to this?
The standard approach in Java is to define a Service Provider.
Let all module express their metadata via a standard xml file. Call it "my-module-data.xml".
On your main container startup it looks for a classpath*:my-module-data.xml" (which can have a FrontController class) and delegates to the individual modules FrontController class to do whatever it wants :)
Also google for Spring-OSGI and their doco can be helpful here.
Expanding on #ZZ Coder...
The Service Provider pattern mentioned, and used internally within the JDK is now a little more formalized in JDK 6 with ServiceLoader. The concept is further expanded up by the Netbeans Lookup API.
The underlying infrastructure is identical. That is, both API use the same artifacts, the same way. The NetBeans version is just a more flexible and robust API (allowing alternative lookup services, for example, as well as the default one).
Of course, it would be remiss to not mention the dominant, more "heavyweight" standards of EJB, Spring, and OSGi.
How do you determine what jars are needed for such and such feature of a framework? For example, what jars would be needed out of all those available for Spring in order to support only dependency injection?
There are tools that create minimal JARs by figuring out which classes are actually used in an application by statically analyzing the code, then creating a new JAR containing only those classes. (I recall using Zelix Classmaster to do this, but there are many alternatives.)
The problem with using these tools for a DI framework like Spring include:
The existing only trace static dependencies. If you dynamically load classes, you have to specifically tell the analyser about each one. DI frameworks in general, and Spring in particular is replete with dynamic loading, including dynamic loading that is opaque to application code.
The existing tools work by creating a new output JAR, not by telling you which of the input JARs are not used. While repackaging the JARs is OK if you are creating a shrink-wrapped application from a closed-source codebase, it is undesirable in general, and potentially problematic with some open-source licenses. Certainly you don't want to do this with Spring.
In theory, someone could write a tool to help. In practice, the tool would need to (for example) know how to extract dynamic class dependencies from Spring configurations expressed in annotations, XML and from bean descriptors created at runtime from higher order configuration (SpringSecurity does this for example). That is a big ask. And even then you have the problem that a "small" change to the wirings made on the installation platform could fail due to a required JARs having been left out by the JAR pruning process.
In my view, the more practical alternatives are:
If you use Maven / Ivy to manage your dependencies, look at the dependency graphs, strip out dependencies that appear to be no longer needed ... and test, test, test.
Manually strip out JARs that appear to be unused ... and test, test, test.
Don't worry about it. A moderate level of unused JAR cruft might add a second or three to deployment and webapp startup times, but that generally doesn't matter. (But if it does ... see above.)
This is why some older Java projects end up having 600 Jars and a 200 MB war file, for a 10,000 line application. Kind of a pain if you don't manage it carefully...
You should really ask the framework provider or read the documentation. Statically analyzing what jars are required might not be enough in some cases(dynamic loading) and sometimes you might end up with too many jars.
I once did some ftp helper stuff to a sort of "utility" library. It depended on some apache ftp jar. If you never used the ftp features in the library you would not need the ftp jar but statical analysis of the code might say you need it. This is something you should documents.