Accessing the "_embedded" data in spring data REST interface - java

The project is a visual analysis of business data, MongoDB through Spring Data, REST interface, then d3.js.
On the database level, my data looks like this:
/* 1 */
{
"_id" : ObjectId("58ac466160fb39e5e8dc8b70"),
"dots" : {
"x" : 4,
"y" : 3
}
}
/* 2 */
{
"_id" : ObjectId("58ac468060fb39e5e8dc8b7e"),
"squares" : {
"x" : 12,
"y" : 2
}
}
The REST interface (spring) delivers this:
{
"_embedded" : {
"JSON" : [ {
"squares" : null,
"dots" : {
"dot" : {
"x" : 4,
"y" : 3
}
},
"_links" : {
"self" : {
"href" : "http://localhost:8080/JSON/58ac466160fb39e5e8dc8b70"
},
"jSON" : {
"href" : "http://localhost:8080/JSON/58ac466160fb39e5e8dc8b70"
}
}
}, {
"squares" : {
"square" : {
"x" : 12,
"y" : 2
}
},
"dots" : null,
"_links" : {
"self" : {
"href" : "http://localhost:8080/JSON/58ac468060fb39e5e8dc8b7e"
},
"jSON" : {
"href" : "http://localhost:8080/JSON/58ac468060fb39e5e8dc8b7e"
}
}
} ]
},
"_links" : {
"self" : {
"href" : "http://localhost:8080/JSON"
},
"profile" : {
"href" : "http://localhost:8080/profile/JSON"
}
},
"page" : {
"size" : 20,
"totalElements" : 2,
"totalPages" : 1,
"number" : 0
}
}
Now I'm having trouble accessing this for processing in d3.js for visualization, whatever way I try to access the data, I only get "undefined" with no values back on the console.
Should I reformat to get rid of the "_embedded" part, or to "flatten" the data generally, or do I need a specific way to access it?
As of now, I'm just using "d3.json("/JSON")" to access the interface, but can't extract any data.

Related

Mongo upsert do not return modified object _id on update

Mongodb 4.2.15
I'm tring to use mongo Updates with Aggregation Pipeline
My request is very big but here it's core structure
db.runCommand({
"update": "collectionName",
"updates": [
{
"q": { ... },
"u": [
{
"$project": { ... },
"$set": { ... },
"$set": { ... },
"$project": { ... }
}
],
"multi": false,
"upsert": true
}
]
});
After the first execute I receive a result with newly created object's _id
{
"n" : 1,
"nModified" : 0,
"upserted" : [
{
"index" : 0,
"_id" : ObjectId("619997f11501d6eb40c6f64a")
}
],
"opTime" : {
"ts" : Timestamp(1637455857, 61),
"t" : NumberLong(5)
},
"electionId" : ObjectId("7fffffff0000000000000005"),
"ok" : 1.0,
"$clusterTime" : {
"clusterTime" : Timestamp(1637455857, 61),
"signature" : {
"hash" : { "$binary" : "hA0tf5DXMqTNmnVXdMVnpnAKCU0=", "$type" : "00" },
"keyId" : NumberLong(7018546168816730116)
}
},
"operationTime" : Timestamp(1637455857, 61)
}
After the second execution of the same request there is no modified object's _id
{
"n" : 1,
"nModified" : 1,
"opTime" : {
"ts" : Timestamp(1637456057, 19),
"t" : NumberLong(5)
},
"electionId" : ObjectId("7fffffff0000000000000005"),
"ok" : 1.0,
"$clusterTime" : {
"clusterTime" : Timestamp(1637456057, 19),
"signature" : {
"hash" : { "$binary" : "U2yCP6nXUrjBN9ZiLanyl0rgxww=", "$type" : "00" },
"keyId" : NumberLong(7018546168816730116)
}
},
"operationTime" : Timestamp(1637456057, 19)
}
The thing is that my filter conditions do not contain _id of the object but I need to return it with response. I see no useful request configurations. Any suggestions is it possible to get _id at response on update case?

Paypal Server API. No money transfered

I'm integrating paypal in our shopping system.
I'm using the Java Api.
In the current form the process is the following:
The user chooses paypal as payment and clicks on "Pay Order"
The Server sends a an createOrder Request with Capture Intent.
The Server receives a response with links.
The user is redirected to the "approve" link.
After finishing paypal redirects the user to the shop page with the "thanks for your order message".
All this is working as expected.
But no payment is done / no money transfered.
What am I doing wrong here?
Thanks in advance!
For reference the request/response:
Request: {}, {
"application_context" : {
"user_action" : "PAY_NOW",
"landing_page" : "BILLING",
"return_url" : "https://www.foobar.de.localhost:8443/payment/paypal?result=ok&order_id=MGS063464&secret=2E1C1B304178...",
"brand_name" : "<removed>",
"cancel_url" : "https://www.foobar.de.localhost:8443/payment/paypal?result=cancel&order_id=MGS063464",
"shipping_preference" : "SET_PROVIDED_ADDRESS"
},
"purchase_units" : [ {
"amount" : {
"breakdown" : {
"shipping" : {
"value" : "3",
"currency_code" : "EUR"
},
"item_total" : {
"value" : "2.45",
"currency_code" : "EUR"
}
},
"value" : "5.45",
"currency_code" : "EUR"
},
"reference_id" : "MGS063464",
"shipping" : {
"address" : {
"country_code" : "DE",
"address_line_1" : "<removed>",
"admin_area_2" : "<removed>",
"postal_code" : "<removed>"
},
"name" : {
"full_name" : "<removed>"
}
},
"description" : "<removed>,
"items" : [ {
"quantity" : "1",
"name" : "<removed>",
"unit_amount" : {
"value" : "2.45",
"currency_code" : "EUR"
},
"sku" : "OCI08"
} ]
} ],
"intent" : "CAPTURE"
}
Response: {}, {
"create_time" : "2021-03-14T10:52:46Z",
"purchase_units" : [ {
"payee" : {
"email_address" : "<removed>",
"merchant_id" : "L4EC8HB5DTVSC"
},
"amount" : {
"breakdown" : {
"shipping" : {
"value" : "3.00",
"currency_code" : "EUR"
},
"item_total" : {
"value" : "2.45",
"currency_code" : "EUR"
}
},
"value" : "5.45",
"currency_code" : "EUR"
},
"reference_id" : "MGS063464",
"shipping" : {
"address" : {
"country_code" : "DE",
"address_line_1" : "<removed>",
"admin_area_2" : "<removed>",
"postal_code" : "<removed>"
},
"name" : {
"full_name" : "<removed>"
}
},
"description" : "<removed>",
"items" : [ {
"quantity" : "1",
"name" : "<removed>",
"unit_amount" : {
"value" : "2.45",
"currency_code" : "EUR"
},
"sku" : "OCI08"
} ]
} ],
"links" : [ {
"method" : "GET",
"rel" : "self",
"href" : "https://api.sandbox.paypal.com/v2/checkout/orders/5MY66978KX626104P"
}, {
"method" : "GET",
"rel" : "approve",
"href" : "https://www.sandbox.paypal.com/checkoutnow?token=5MY66978KX626104P"
}, {
"method" : "PATCH",
"rel" : "update",
"href" : "https://api.sandbox.paypal.com/v2/checkout/orders/5MY66978KX626104P"
}, {
"method" : "POST",
"rel" : "capture",
"href" : "https://api.sandbox.paypal.com/v2/checkout/orders/5MY66978KX626104P/capture"
} ],
"id" : "5MY66978KX626104P",
"intent" : "CAPTURE",
"status" : "CREATED"
}
You are missing an API call, step 5 should instead be: The Server sends a Capture Order request.
Your final Step 6 should be to thank the buyer only if the capture was successful
See 'Capture Order' in the documentation.
Redirecting to an "approve" link is an old integration method, for old websites. For a modern user experience you should keep your page loaded (not redirect away) by changing your 'Create Order' and 'Capture Order' to be two server routes that return only JSON data (no other HTML or text)
Pair those routes with the following approval flow: https://developer.paypal.com/demo/checkout/#/pattern/server

Elasticsearch mapping not working with numeric

I have written elasticsearch mapping its only only with alphabets. how to do the same for numeric values.
PUT /documents_test8
{
"settings" : {
"analysis" : {
"analyzer" : {
"filename_search" : {
"tokenizer" : "filename",
"filter" : ["lowercase"]
},
"filename_index" : {
"tokenizer" : "filename",
"filter" : ["lowercase","edge_ngram"]
}
},
"tokenizer" : {
"filename" : {
"pattern" : "[^\\p{L}\\d]+",
"type" : "pattern"
}
},
"filter" : {
"edge_ngram" : {
"side" : "front",
"max_gram" : 20,
"min_gram" : 1,
"type" : "edgeNGram"
}
}
}
},
"mappings" : {
"doc" : {
"properties" : {
"filename" : {
"type" : "text",
"search_analyzer" : "filename_search",
"index_analyzer" : "filename_index"
}
}
}
}
}
For numeric, you can define the mapping like this using type as "long"
"type": "long"
And for floating point number, use using type as "float"
"type": "float"

mongo $near command on Nested Array

{
"merchantId" : "M168976258",
"catalogTypeId" : "catalogTypeProduct",
"items" : [
{
"name" : "Product 1",
"location" : {
"type" : "Point",
"coordinates" : [
0,
0
]
}
},
{
"name" : "Product 2",
"location" : {
"type" : "Point",
"coordinates" : [
0,
0
]
}
},
{
"name" : "Product 3",
"location" : {
"type" : "Point",
"coordinates" : [
0,
0
]
}
}
}
I able to Perfrom mongo near command on document which is having single location
using below command
db.abc.find({
location :{
$near : {
$geometry : {
index : "Point" ,
coordinates : [19.1, 72.89]
},
$maxDistance : 10000
}
}
})
but i'm not able to perform on document which having nested array can anybody help me out to find out problem
By running this query i get following error
db.catalogForAdminAndMerchant.find({
"items.location" :{
$near : {
$geometry : {
index : "Point" ,
coordinates : [19.1, 72.89]
},
$maxDistance : 10000
}
}
})
o/p is
planner returned error: unable to find index for $geoNear query
but have created the index
by running db.catalogForAdminAndMerchant.getIndexes() i get
/* 1 */
{
"v" : 1,
"key" : {
"_id" : 1
},
"name" : "_id_",
"ns" : "catalog-db.catalogForAdminAndMerchant"
},
/* 2 */
{
"v" : 1,
"key" : {
"_fts" : "text",
"_ftsx" : 1
},
"name" : "CatalogForAdminAndMerchant_TextIndex",
"ns" : "catalog-db.catalogForAdminAndMerchant",
"weights" : {
"items.name" : 3
},
"default_language" : "english",
"language_override" : "language",
"textIndexVersion" : 3
},
/* 3 */
{
"v" : 2,
"key" : {
"address.items[i].location" : "2dsphere"
},
"name" : "address.items[i].location_2dsphere",
"ns" : "catalog-db.catalogForAdminAndMerchant",
"2dsphereIndexVersion" : 3
}

Gets documents and total count of them in single query include pagination

I'm new in mongo and use mongodb aggregation framework for my queries. I need to retrieve some records which satisfy certain conditions(include pagination+sorting) and also get total count of records.
Now, I perform next steps:
Create $match operator
{ "$match" : { "year" : "2012" , "author.authorName" : { "$regex" :
"au" , "$options" : "i"}}}
Added sorting and pagination
{ "$sort" : { "some_field" : -1}} , { "$limit" : 10} , { "$skip" : 0}
After querying I receive the expected result: 10 documents with all fields.
For pagination I need to know the total count of records which satisfy these conditions, in my case 25.
I use next query to get count : { "$match" : { "year" : "2012" , "author.authorName" : { "$regex" : "au" , "$options" : "i"}}} , { "$group" : { "_id" : "$all" , "reviewsCount" : { "$sum" : 1}}} , { "$sort" : { "some_field" : -1}} , { "$limit" : 10} , { "$skip" : 0}
But I don't want to perform two separate queries: one for retrieving documents and second for total counts of records which satisfy certain conditions.
I want do it in one single query and get result in next format:
{
"result" : [
{
"my_documets": [
{
"_id" : ObjectId("512f1f47a411dc06281d98c0"),
"author" : {
"authorName" : "author name1",
"email" : "email1#email.com"
}
},
{
"_id" : ObjectId("512f1f47a411dc06281d98c0"),
"author" : {
"authorName" : "author name2",
"email" : "email2#email.com"
}
}, .......
],
"total" : 25
}
],
"ok" : 1
}
I tried modify the group operator : { "$group" : { "_id" : "$all" , "author" : "$author" "reviewsCount" : { "$sum" : 1}}}
But in this case I got : "exception: the group aggregate field 'author' must be defined as an expression inside an object". If add all fields in _id then reviewsCount always = 1 because all records are different.
Nobody know how it can be implement in single query ? Maybe mongodb has some features or operators for this case? Implementation with using two separate query reduces performance for querying thousand or millions records. In my application it's very critical performance issue.
I've been working on this all day and haven't been able to find a solution, so thought i'd turn to the stackoverflow community.
Thanks.
You can try using $facet in the aggregation pipeline as
db.name.aggregate([
{$match:{your match criteria}},
{$facet: {
data: [{$sort: sort},{$skip:skip},{$limit: limit}],
count:[{$group: {_id: null, count: {$sum: 1}}}]
}}
])
In data, you'll get your list with pagination and in the count, count variable will have a total count of matched documents.
Ok, I have one example, but I think it's really crazy query, I put it only for fun, but if this example faster than 2 query, tell us about it in the comments please.
For this question i create collection called "so", and put into this collection 25 documents like this:
{
"_id" : ObjectId("512fa86cd99d0adda2a744cd"),
"authorName" : "author name1",
"email" : "email1#email.com",
"c" : 1
}
My query use aggregation framework:
db.so.aggregate([
{ $group:
{
_id: 1,
collection: { $push : { "_id": "$_id", "authorName": "$authorName", "email": "$email", "c": "$c" } },
count: { $sum: 1 }
}
},
{ $unwind:
"$collection"
},
{ $project:
{ "_id": "$collection._id", "authorName": "$collection.authorName", "email": "$collection.email", "c": "$collection.c", "count": "$count" }
},
{ $match:
{ c: { $lte: 10 } }
},
{ $sort :
{ c: -1 }
},
{ $skip:
2
},
{ $limit:
3
},
{ $group:
{
_id: "$count",
my_documets: {
$push: {"_id": "$_id", "authorName":"$authorName", "email":"$email", "c":"$c" }
}
}
},
{ $project:
{ "_id": 0, "my_documets": "$my_documets", "total": "$_id" }
}
])
Result for this query:
{
"result" : [
{
"my_documets" : [
{
"_id" : ObjectId("512fa900d99d0adda2a744d4"),
"authorName" : "author name8",
"email" : "email8#email.com",
"c" : 8
},
{
"_id" : ObjectId("512fa900d99d0adda2a744d3"),
"authorName" : "author name7",
"email" : "email7#email.com",
"c" : 7
},
{
"_id" : ObjectId("512fa900d99d0adda2a744d2"),
"authorName" : "author name6",
"email" : "email6#email.com",
"c" : 6
}
],
"total" : 25
}
],
"ok" : 1
}
By the end, I think that for big collection 2 query (first for data, second for count) works faster. For example, you can count total for collection like this:
db.so.count()
or like this:
db.so.find({},{_id:1}).sort({_id:-1}).count()
I don't fully sure in first example, but in second example we use only cursor, which means higher speed:
db.so.find({},{_id:1}).sort({_id:-1}).explain()
{
"cursor" : "BtreeCursor _id_ reverse",
"isMultiKey" : false,
"n" : 25,
"nscannedObjects" : 25,
"nscanned" : 25,
"nscannedObjectsAllPlans" : 25,
"nscannedAllPlans" : 25,
"scanAndOrder" : false,
!!!!!>>> "indexOnly" : true, <<<!!!!!
"nYields" : 0,
"nChunkSkips" : 0,
"millis" : 0,
...
}
For completeness (full discussion was on the MongoDB Google Groups) here is the aggregation you want:
db.collection.aggregate(db.docs.aggregate( [
{
"$match" : {
"year" : "2012"
}
},
{
"$group" : {
"_id" : null,
"my_documents" : {
"$push" : {
"_id" : "$_id",
"year" : "$year",
"author" : "$author"
}
},
"reviewsCount" : {
"$sum" : 1
}
}
},
{
"$project" : {
"_id" : 0,
"my_documents" : 1,
"total" : "$reviewsCount"
}
}
] )
By the way, you don't need aggregation framework here - you can just use a regular find. You can get count() from a cursor without having to re-query.

Categories

Resources