Recursive function responding different value - java

I wrote a java recursive function to get sum of a number as follows, and the sum should be single digit as well.the problem i am facing here is it should return the else part at the end where as it is giving the after if else condition return statement:
static int recSum(int n){
int sum = 0;
while(n!=0){
sum += n%10;
n = n/10;
}
if(sum>9) {
recSum(sum);
}
else {
return sum;
}
return sum ;
}
Let us say n = 12345 so at the end it needs to return 5 where as it is returning 14. However it is going to the else part but the correct value is not returning. I got the solution with the ternary operator without else loop. but would like to what is the reason for this i am getting the previous sum of 14 rather 5 (5 comes from 14 = 1+4)
Appreciate the response on this

The change you should do is fairly simple: you should remove the last return statement and just return the result of recursive call:
static int recSum(int n){
int sum = 0;
while(n!=0){
sum += n%10;
n = n/10;
}
if(sum>9) {
return recSum(sum);
}
else {
return sum;
}
}

When this function gets to the if statement and calls the function again the 15 is saved on the stack until the current call is finished, when the current call is finished the previous answer was 15 so it's returning that because you dont modify it in anyway after it gets returned.

This is an iterative way (NOT a good way to build recursion in your program)
while (n != 0) {
sum += n % 10;
n = n / 10;
}
This is the correct recursive way and works even for 0 and negative numbers.
static int recSum(int n) {
int sum = 0;
sum = sum + (n % 10);
n = n / 10;
if (n != 0) {
return sum + recSum(n);
} else {
return sum;
}
}

Related

What is wrong of my solution for the Leetcode question Sqrt(x)?

I am trying Leetcode Question - 69. Sqrt(x)
Given a non-negative integer x, compute and return the square root of x.
Since the return type is an integer, the decimal digits are truncated, and only the integer part of the result is returned.
Note: You are not allowed to use any built-in exponent function or operator, such as pow(x, 0.5) or x ** 0.5.
class Solution {
public int mySqrt(int x) {
int ans = 0;
int i=1;
while(i*i<=x){
ans = i;
i++;
}
return ans;
}
}
This is the code I came up with. But the testcase input=2147395600 is not passing.
My Output = 289398
Expected Output = 46340
I'm confused as I have put the condition i*i<=x, then how can ans be more than the sqrt value?
Since you are comparing i * i with the input x, if the input x is too close to Integer.MAX_VALUE (2.147.483.647), like in that test case, i * i will be bigger than the maximum value allowed for an int to have and i*i<=x will be true.
Possible solutions:
Implement a binary search algorithm where max would be the floor(sqrt(Integer.MAX_VALUE)) or 46340.
Implement a algorithm where ans, i and x are declared locally as long type variables and in the return line you return the value cast to int using return (int)ans;
By running the following algorithm you can see the limit of a java int exploding and what happens afterwards.
int x = 2;
while(true) {
System.out.println(x);
x *= 2;
}
Not pretending to be fast, just the idea that (n+1)2=n2 + 2n + 1:
public static int mySqrt(int x) {
int i = 0;
while (x >= 0) {
x -= (i++ << 1) + 1;
}
return i - 1;
}
My JavaScript Solution
var mySqrt = function(x) {
var ans = 1;
if(x === 0){
ans = 0;
} else {
for (let i = 1; i< x;i++){
if(i*i === x){
ans = i;
break;
}
if(i*i >x){
ans = i - 1;
break;
}
}
}
return ans;
};

Why Does my Palindrome Code not work? My reverse variable does what it is supposed to but I dont get true even when it is printing out a palindrome

public class NumberPalindrome {
public static boolean isPalindrome(int number) {
int reverse = 0;
if (number<0){
number=number* -1;
}
while (number > 0) {
int lastDig = number % 10;
reverse = lastDig + reverse;
if (number<10) {break;}
reverse = reverse * 10 ;
number/=10;
}
if (number==reverse) {
return true;
}
return false;
}
}
why does my code not return true when I enter a palindrome number? I tried using it to print out the reverse value and it does it quite well, but just does not seem to get the boolean value straight though.
The problem was modifying the number variable, but then comparing it with the new generated reverse variable as if it was never edited.
Also, you were adding the last digit to the reverse variable before multiplying it by ten.
See the following code in Java:
public static boolean isPalindrome(int number) {
int reverse = 0;
if(number < 0) {
number *= -1;
}
int initialNumber = number;
while(number > 0) {
int lastDigit = number % 10;
reverse = (reverse * 10) + lastDigit;
if(number < 10) {
break;
}
number /= 10;
}
return initialNumber == reverse;
}
There are a few problems here. You need to save the original number for comparison with the the reversed number. The break statement confuses the logic.
To figure this out, I added some print statements to trace the progress. Adding print statements isn't elegant, but it is very useful.
Here is my version, with comments indicating what I changed.
public static boolean isPalindrome (int original)
{
// Need to save the original number for comparison
int number = original;
int reverse = 0;
if (number < 0)
{
number = number * -1;
}
while (number > 0)
{
int lastDig = number % 10;
// Update and shift reverse in one step
reverse = lastDig + reverse * 10;
number /= 10;
// Don't need extra break to terminate the loop
System.out.printf ("Check %d ; Reverse %d%n", number, reverse);
}
System.out.printf ("Final %d ; Reverse %d%n", number, reverse);
// Compare to original and return boolean value directly
return (original == reverse);
}

Program to sum the odd digits recursively

Using recursion, If n is 123, the code should return 4 (i.e. 1+3). But instead it is returning the last digit, in this case 3.
public static int sumOfOddDigits(NaturalNumber n) {
int ans = 0;
if (!n.isZero()) {
int r = n.divideBy10();
sumOfOddDigits(n);
if (r % 2 != 0) {
ans = ans + r;
}
n.multiplyBy10(r);
}
return ans;
}
It isn't clear what NaturalNumber is or why you would prefer it to int, but your algorithm is easy enough to follow with int (and off). First, you want the remainder (or modulus) of division by 10. That is the far right digit. Determine if it is odd. If it is add it to the answer, and then when you recurse divide by 10 and make sure to add the result to the answer. Like,
public static int sumOfOddDigits(int n) {
int ans = 0;
if (n != 0) {
int r = n % 10;
if (r % 2 != 0) {
ans += r;
}
ans += sumOfOddDigits(n / 10);
}
return ans;
}
One problem is that you’re calling multiplyBy on n and not doing anything with the result. NaturalNumber seems likely to be immutable, so the method call has no effect.
But using recursion lets you write declarative code, this kind of imperative logic isn’t needed. instead of mutating local variables you can use the argument list to hold the values to be used in the next iteration:
public static int sumOfOddDigits(final int n) {
return sumOfOddDigits(n, 0);
}
// overload to pass in running total as an argument
public static int sumOfOddDigits(final int n, final int total) {
// base case: no digits left
if (n == 0)
return total;
// n is even: check other digits of n
if (n % 2 == 0)
return sumOfOddDigits(n / 10, total);
// n is odd: add last digit to total,
// then check other digits of n
return sumOfOddDigits(n / 10, n % 10 + total);
}

All digits in int are divisible by certain int

I am trying to figure out how to count all numbers between two ints(a and b), where all of the digits are divisible with another int(k) and 0 counts as divisible.Here is what I've made so far, but it is looping forever.
for (int i = a; i<=b; i++){
while (i < 10) {
digit = i % 10;
if(digit % k == 0 || digit == 0){
count ++;
}
i = i / 10;
}
}
Also I was thinking about comparing if all of the digits were divisible by counting them and comparing with number of digits int length = (int)Math.Log10(Math.Abs(number)) + 1;
Any help would be appreciated. Thank you!
Once you get in to your while block you're never going to get out of it. The while condition is when i less than 10. You're dividing i by 10 at the end of the whole block. i will never have a chance of getting above 10.
Try this one
public class Calculator {
public static void main(String[] args) {
int a = 2;
int b = 150;
int k = 3;
int count = 0;
for (int i = a; i <= b; i++) {
boolean isDivisible = true;
int num = i;
while (num != 0) {
int digit = num % 10;
if (digit % k != 0) {
isDivisible = false;
break;
}
num /= 10;
}
if (isDivisible) {
count++;
System.out.println(i+" is one such number.");
}
}
System.out.println("Total " + count + " numbers are divisible by " + k);
}
}
Ok, so there are quite a few things going on here, so we'll take this a piece at a time.
for (int i = a; i <= b; i++){
// This line is part of the biggest problem. This will cause the
// loop to skip entirely when you start with a >= 10. I'm assuming
// this is not the case, as you are seeing an infinite loop - which
// will happen when a < 10, for reasons I'll show below.
while (i < 10) {
digit = i % 10;
if(digit % k == 0 || digit == 0){
count ++;
// A missing line here will cause you to get incorrect
// results. You don't terminate the loop, so what you are
// actually counting is every digit that is divisible by k
// in every number between a and b.
}
// This is the other part of the biggest problem. This line
// causes the infinite loop because you are modifying the
// variable you are using as the loop counter. Mutable state is
// tricky like that.
i = i / 10;
}
}
It's possible to re-write this with minimal changes, but there are some improvements you can make that will provide a more readable result. This code is untested, but does compile, and should get you most of the way there.
// Extracting this out into a function is often a good idea.
private int countOfNumbersWithAllDigitsDivisibleByN(final int modBy, final int start, final int end) {
int count = 0;
// I prefer += to ++, as each statement should do only one thing,
// it's easier to reason about
for (int i = start; i <= end; i += 1) {
// Pulling this into a separate function prevents leaking
// state, which was the bulk of the issue in the original.
// Ternary if adds 1 or 0, depending on the result of the
// method call. When the methods are named sensibly, I find
// this can be more readable than a regular if construct.
count += ifAllDigitsDivisibleByN(modBy, i) ? 1 : 0;
}
return count;
}
private boolean ifAllDigitsDivisibleByN(final int modBy, final int i) {
// For smaller numbers, this won't make much of a difference, but
// in principle, there's no real reason to check every instance of
// a particular digit.
for(Integer digit : uniqueDigitsInN(i)) {
if ( !isDigitDivisibleBy(modBy, digit) ) {
return false;
}
}
return true;
}
// The switch to Integer is to avoid Java's auto-boxing, which
// can get expensive inside of a tight loop.
private boolean isDigitDivisibleBy(final Integer modBy, final Integer digit) {
// Always include parens to group sub-expressions, forgetting the
// precedence rules between && and || is a good way to introduce
// bugs.
return digit == 0 || (digit % modBy == 0);
}
private Set<Integer> uniqueDigitsInN(final int number) {
// Sets are an easy and efficient way to cull duplicates.
Set<Integer> digitsInN = new HashSet<>();
for (int n = number; n != 0; n /= 10) {
digitsInN.add(n % 10);
}
return digitsInN;
}

Very simple prime number test - I think I'm not understanding the for loop

I am practicing past exam papers for a basic java exam, and I am finding it difficult to make a for loop work for testing whether a number is prime. I don't want to complicate it by adding efficiency measures for larger numbers, just something that would at least work for 2 digit numbers.
At the moment it always returns false even if n IS a prime number.
I think my problem is that I am getting something wrong with the for loop itself and where to put the "return true;" and "return false;"... I'm sure it's a really basic mistake I'm making...
public boolean isPrime(int n) {
int i;
for (i = 2; i <= n; i++) {
if (n % i == 0) {
return false;
}
}
return true;
}
The reason I couldn't find help elsewhere on stackoverflow is because similar questions were asking for a more complicated implementation to have a more efficient way of doing it.
Your for loop has a little problem. It should be: -
for (i = 2; i < n; i++) // replace `i <= n` with `i < n`
Of course you don't want to check the remainder when n is divided by n. It will always give you 1.
In fact, you can even reduce the number of iterations by changing the condition to: - i <= n / 2. Since n can't be divided by a number greater than n / 2, except when we consider n, which we don't have to consider at all.
So, you can change your for loop to: -
for (i = 2; i <= n / 2; i++)
You can stop much earlier and skip through the loop faster with:
public boolean isPrime(long n) {
// fast even test.
if(n > 2 && (n & 1) == 0)
return false;
// only odd factors need to be tested up to n^0.5
for(int i = 3; i * i <= n; i += 2)
if (n % i == 0)
return false;
return true;
}
Error is i<=n
for (i = 2; i<n; i++){
You should write i < n, because the last iteration step will give you true.
public class PrimeNumberCheck {
private static int maxNumberToCheck = 100;
public PrimeNumberCheck() {
}
public static void main(String[] args) {
PrimeNumberCheck primeNumberCheck = new PrimeNumberCheck();
for(int ii=0;ii < maxNumberToCheck; ii++) {
boolean isPrimeNumber = primeNumberCheck.isPrime(ii);
System.out.println(ii + " is " + (isPrimeNumber == true ? "prime." : "not prime."));
}
}
private boolean isPrime(int numberToCheck) {
boolean isPrime = true;
if(numberToCheck < 2) {
isPrime = false;
}
for(int ii=2;ii<numberToCheck;ii++) {
if(numberToCheck%ii == 0) {
isPrime = false;
break;
}
}
return isPrime;
}
}
With this code number divisible by 3 will be skipped the for loop code initialization.
For loop iteration will also skip multiples of 3.
private static boolean isPrime(int n) {
if ((n > 2 && (n & 1) == 0) // check is it even
|| n <= 1 //check for -ve
|| (n > 3 && (n % 3 == 0))) { //check for 3 divisiable
return false;
}
int maxLookup = (int) Math.sqrt(n);
for (int i = 3; (i+2) <= maxLookup; i = i + 6) {
if (n % (i+2) == 0 || n % (i+4) == 0) {
return false;
}
}
return true;
}
You could also use some simple Math property for this in your for loop.
A number 'n' will be a prime number if and only if it is divisible by itself or 1.
If a number is not a prime number it will have two factors:
n = a * b
you can use the for loop to check till sqrt of the number 'n' instead of going all the way to 'n'. As in if 'a' and 'b' both are greater than the sqrt of the number 'n', a*b would be greater than 'n'. So at least one of the factors must be less than or equal to the square root.
so your loop would be something like below:
for(int i=2; i<=Math.sqrt(n); i++)
By doing this you would drastically reduce the run time complexity of the code.
I think it would come down to O(n/2).
One of the fastest way is looping only till the square root of n.
private static boolean isPrime(int n){
int square = (int)Math.ceil((Math.sqrt(n)));//find the square root
HashSet<Integer> nos = new HashSet<>();
for(int i=1;i<=square;i++){
if(n%i==0){
if(n/i==i){
nos.add(i);
}else{
nos.add(i);
int rem = n/i;
nos.add(rem);
}
}
}
return nos.size()==2;//if contains 1 and n then prime
}
You are checking i<=n.So when i==n, you will get 0 only and it will return false always.Try i<=(n/2).No need to check until i<n.
The mentioned above algorithm treats 1 as prime though it is not.
Hence here is the solution.
static boolean isPrime(int n) {
int perfect_modulo = 0;
boolean prime = false;
for ( int i = 1; i <= n; i++ ) {
if ( n % i == 0 ) {
perfect_modulo += 1;
}
}
if ( perfect_modulo == 2 ) {
prime = true;
}
return prime;
}
Doing it the Java 8 way is nicer and cleaner
private static boolean isPrimeA(final int number) {
return IntStream
.rangeClosed(2, number/2)
.noneMatch(i -> number%i == 0);
}

Categories

Resources