Finding minimum weight and number of edges traversed in a graph - java

I have to find the minimum distance between two vertices and no. of edges traversed in finding that minimum distance in a adirected weighted graph. I did write a code on using Dijkstras algo. But my test cases are failing. What am i missing here.?
Ideal input: given any two vertices A,B
Output: min distance between two nodes, no. of edges traversed
If the node is unreachable then output should be -1, -1.
//This is a java program to find the shortest path between source vertex and destination vertex
import java.util.HashSet;
import java.util.InputMismatchException;
import java.util.Iterator;
import java.util.Scanner;
import java.util.Set;
public class Dijkstras_Shortest_Path
{
private int distances[];
private int Numnodes[];
private int numnodes;
private Set<Integer> settled;
private Set<Integer> unsettled;
private int number_of_nodes;
private int adjacencyMatrix[][];
public Dijkstras_Shortest_Path(int number_of_nodes)
{
this.number_of_nodes = number_of_nodes;
distances = new int[number_of_nodes + 1];
Numnodes=new int[number_of_nodes+1];
settled = new HashSet<Integer>();
unsettled = new HashSet<Integer>();
adjacencyMatrix = new int[number_of_nodes + 1][number_of_nodes + 1];
}
public void dijkstra_algorithm(int adjacency_matrix[][], int source)
{
int evaluationNode;
for (int i = 1; i <= number_of_nodes; i++)
for (int j = 1; j <= number_of_nodes; j++)
adjacencyMatrix[i][j] = adjacency_matrix[i][j];
for (int i = 1; i <= number_of_nodes; i++)
{
distances[i] = Integer.MAX_VALUE;
}
unsettled.add(source);
distances[source] = 0;
while (!unsettled.isEmpty())
{
evaluationNode = getNodeWithMinimumDistanceFromUnsettled();
unsettled.remove(evaluationNode);
settled.add(evaluationNode);
evaluateNeighbours(evaluationNode);
}
}
private int getNodeWithMinimumDistanceFromUnsettled()
{
int min;
int node = 0;
Iterator<Integer> iterator = unsettled.iterator();
node = iterator.next();
min = distances[node];
for (int i = 1; i <= distances.length; i++)
{
if (unsettled.contains(i))
{
if (distances[i] <= min)
{
min = distances[i];
node = i;
}
}
}
return node;
}
private void evaluateNeighbours(int evaluationNode)
{
int edgeDistance = -1;
int newDistance = -1;
int newNodes=1;
for (int destinationNode = 1; destinationNode <= number_of_nodes;
destinationNode++)
{
if (!settled.contains(destinationNode))
{
if (adjacencyMatrix[evaluationNode][destinationNode] !=
Integer.MAX_VALUE)
{
edgeDistance = adjacencyMatrix[evaluationNode]
[destinationNode];
newDistance = distances[evaluationNode] + edgeDistance;
newNodes=Numnodes[evaluationNode]+1;
if (newDistance < distances[destinationNode])
{
distances[destinationNode] = newDistance;
Numnodes[destinationNode]=newNodes;
}
unsettled.add(destinationNode);
}
}
}
}
public static void main(String... arg)
{
int adjacency_matrix[][];
int number_of_vertices;
int number_of_edges;
int source = 0, destination = 0;
Scanner scan = new Scanner(System.in);
try
{
number_of_vertices = scan.nextInt();
number_of_edges=scan.nextInt();
if (number_of_vertices<1||number_of_vertices>10000)
{
System.out.println("Number of vertices out of boundary");
}
if (number_of_edges<1||number_of_edges>10000)
{
System.out.println("Number of edges out of boundary");
}
adjacency_matrix = new int[number_of_vertices + 1]
[number_of_vertices + 1];
for (int i = 1; i <= number_of_vertices; i++)
{
for (int j = 1; j <= number_of_vertices; j++)
{
adjacency_matrix[i][j] = 0;
}
}
for(int i=1;i<=number_of_edges;i++)
{
int node1=scan.nextInt();
int node2=scan.nextInt();
adjacency_matrix[node1][node2]=scan.nextInt();
}
for (int i = 1; i <= number_of_vertices; i++)
{
for (int j = 1; j <= number_of_vertices; j++)
{
if (adjacency_matrix[i][j] == 0)
{
adjacency_matrix[i][j] = Integer.MAX_VALUE;
}
}
}
source = scan.nextInt();
destination = scan.nextInt();
Dijkstras_Shortest_Path dijkstrasAlgorithm = new
Dijkstras_Shortest_Path(
number_of_vertices);
dijkstrasAlgorithm.dijkstra_algorithm(adjacency_matrix, source);
for (int i = 1; i <= dijkstrasAlgorithm.distances.length - 1; i++)
{
if (i == destination)
System.out.println(dijkstrasAlgorithm.distances[i] +" "+
dijkstrasAlgorithm.Numnodes[i]);
}
} catch (InputMismatchException inputMismatch)
{
System.out.println("Wrong Input Format");
}
scan.close();
}
}

Related

How to print the longest continuous sequence whose sum of elements is maximum?

I have a code that outputs a subsequence with the maximum sum, but there is a condition "if there are 2 or more sequences equal in sum, then output the longest of them" (everything needs to be done using a list). I do not understand how to display the one that is longer.In this code the output should be 100 90 8. (the code remembers the very first of these sequences)
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
List<Integer> list = new ArrayList<>();
list.add(1);
list.add(2);
list.add(-5);
list.add(6);
list.add(-3);
list.add(-13434);
list.add(99);
list.add(99);
list.add(-444);
list.add(-7444);
list.add(100);
list.add(90);
list.add(8);
if (list == null || list.size() == 0) {//проверка на пустоту листа
System.out.println("empty array");
return;
}
int maxSumStartIndex = 0;
int maxSumLastIndex = 0;
int maxSum = list.get(0);
int lastSumStartIndex = 0;
int lastSum = list.get(0);
for (int i = 1; i < list.size(); i++) {
lastSum += list.get(i);
if (lastSum < list.get(i)) {
lastSum = list.get(i);
lastSumStartIndex = i;
}
if (maxSum < lastSum) {
maxSumStartIndex = lastSumStartIndex;
maxSumLastIndex = i;
maxSum = lastSum;
}
}
System.out.println("sum( arr[" + maxSumStartIndex + "] .. arr[" + maxSumLastIndex + "] ) = " + maxSum);
for (int i = maxSumStartIndex; i <= maxSumLastIndex; i++) {
System.out.print(list.get(i) + " ");
}
}
}
This works but don't know if its the best approach
int maxSumStartIndex = 0;
int maxSumLastIndex = 0;
int maxSum = list.get(0);
int maxSumLength = 0;
int lastSumStartIndex = 0;
int lastSum = list.get(0);
for (int i = 1; i < list.size(); i++) {
lastSum += list.get(i);
if (lastSum < list.get(i)) {
lastSum = list.get(i);
lastSumStartIndex = i;
}
if (maxSum < lastSum) {
maxSumStartIndex = lastSumStartIndex;
maxSumLastIndex = i;
maxSumLength = maxSumLastIndex - maxSumStartIndex + 1;
maxSum = lastSum;
}
if (maxSum == lastSum) {
if (!(i - lastSumStartIndex + 1 > maxSumLength)) continue;
maxSumStartIndex = lastSumStartIndex;
maxSumLastIndex = i;
maxSumLength = maxSumLastIndex - maxSumStartIndex + 1;
}
}

How do I get rid of these errors in my code? NumberFormatException: for input string: ""

Exception in thread "main" java.lang.NumberFormatException: For input string: ""
at java.lang.NumberFormatException.forInputString(Unknown Source)
at java.lang.Integer.parseInt(Unknown Source)
at java.lang.Integer.parseInt(Unknown Source)
at HelloWorld.main(HelloWorld.java:169)
These errors continue to pop up when I run my code against our sample input. We are given a document with polygons and have to use kruskal's algorithm and build a minimal spanning tree to find the shortest distance to each island without creating a cycle. If anyone can help or give advice on how to get rid of these errors that would be great! I dont understand how there can be a numberformatexception on a string ""....
import java.util.Scanner;
import java.util.ArrayList;
import java.io.File;
import java.io.IOException;
public class HelloWorld {
static class Point {
int x = 0;
int y = 0;
public Point(int x, int y) {
this.x = x;
this.y = y;
}
public String toString() {
return "(x: " + x + " y: " + y + ")";
}
}
static class Polygon {
int numberOfVertices = 0;
ArrayList<Point> points = new ArrayList<Point>();
public Polygon(int numberOfVertices, ArrayList<Point> points) {
this.numberOfVertices = numberOfVertices;
this.points = points;
}
public String toString() {
StringBuilder stringBuilder = new StringBuilder();
for (int i = 0; i < points.size(); i++) {
Point point = this.points.get(i);
stringBuilder.append(point);
}
return stringBuilder.toString();
}
}
static class PQItem implements Comparable<PQItem> {
int node1;
int node2;
double edge;
public PQItem(int node1, int node2, double edge) {
this.node1 = node1;
this.node2 = node2;
this.edge = edge;
}
public int compareTo(PQItem T) {
if (edge - T.edge < 0)
return 1;
else if (edge - T.edge > 0)
return -1;
else
return 0;
}
}
public static void BuildMinimalSpanningTree(int numberOfIslands, ArrayList<Polygon> polygons) {
PriorityQueue q = new PriorityQueue((numberOfIslands * numberOfIslands) / 2);
PQItem Temp;
int[] CheckPad = new int[numberOfIslands];
int FootPrint = 0;
int counter = 0;
double length = 0;
for (int i = 0; i < polygons.size(); i++)
for (int j = 0; j < polygons.size(); j++) {
Temp = new PQItem(i, j, ShortestDistance(polygons.get(i), polygons.get(j)));
}
for (int i = 0; i < polygons.size(); i++)
CheckPad[i] = -1 - i;
while (counter < polygons.size() - 1) {
Temp = (PQItem) q.Remove();
for (int i = 0; i < polygons.size(); i++)
for (int j = 0; j < polygons.size(); j++)
if (CheckPad[Temp.node1] != CheckPad[Temp.node2]) {
if (CheckPad[Temp.node1] < 0 && CheckPad[Temp.node2] < 0) {
CheckPad[Temp.node1] = FootPrint;
CheckPad[Temp.node2] = FootPrint;
FootPrint = FootPrint + 1;
}
else if (CheckPad[Temp.node1] < 0) {
CheckPad[Temp.node1] = CheckPad[Temp.node2];
}
else if (CheckPad[Temp.node2] < 0) {
CheckPad[Temp.node2] = CheckPad[Temp.node1];
}
else {
if (CheckPad[Temp.node1] < CheckPad[Temp.node2]) {
for (i = 0; i < polygons.size(); i++) {
if (CheckPad[i] == CheckPad[Temp.node2])
CheckPad[i] = CheckPad[Temp.node2];
else
for (j = 0; j < polygons.size(); j++)
if (CheckPad[j] == CheckPad[Temp.node2])
CheckPad[j] = CheckPad[Temp.node2];
}
}
System.out.println(Temp.edge);
length += Temp.edge;
counter++;
}
}
}
}
static double ShortestDistance(Polygon polygon1, Polygon polygon2) {
double shortestdistance = 0;
double Temporary = 0;
for (int i = 0; i < polygon1.numberOfVertices; i++)
for (int j = 0; j < polygon2.numberOfVertices; j++) {
Temporary = Math.pow(polygon1.points.get(i).x - polygon2.points.get(j).x, 2)
+ Math.pow(polygon1.points.get(i).y - polygon2.points.get(j).y, 2);
if (Temporary < shortestdistance)
shortestdistance = Temporary;
}
return Math.sqrt(shortestdistance);
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Please enter the name of the file");
File file = new File(scanner.nextLine());
try {
Scanner fileScanner = new Scanner(file);
int numberOfIslands = Integer.parseInt(fileScanner.nextLine());
ArrayList<Polygon> polygons = new ArrayList<Polygon>();
while (fileScanner.hasNext()) {
String line = fileScanner.nextLine();
String[] numbers = line.split(" ");
ArrayList<Point> points = new ArrayList<Point>();
// PQItem NewItem = new PQItem(Node1, Node2, edge);
// info.Insert(NewItem);
for (int i = 1; i < numbers.length; i += 2) {
Point point = new Point(Integer.parseInt(numbers[i]), Integer.parseInt(numbers[(i + 1)]));
points.add(point);
}
// build tree
Polygon polygon = new Polygon(points.size(), points);
polygons.add(polygon);
// BuildMinSpanTree(numberOfIslands, polygons);
}
for (int i = 0; i < polygons.size(); i++) {
Polygon polygon = polygons.get(i);
System.out.println(polygon);
}
int minimalInterconnect = 0;
int totalLength = 0;
System.out.printf("The minimal interconnect consists of %d bridges with a total length of %d",
minimalInterconnect, totalLength);
} catch (IOException e) {
System.out.println(e);
}
}
HERE IS THE SAMPLE PROGRAM
3
4 0 0 0 1 1 1 1 0
4 2 0 2 1 3 1 3 0
3 4 0 5 0 5 1
public class PriorityQueue {
private Comparable[] HeapArray;
int Last, Limit;
PriorityQueue
public PriorityQueue(int Capacity) {
HeapArray = new Comparable[Capacity + 1];
Last = 0;
Limit = Capacity;
return;
}
// end constructor
public PriorityQueue() {
HeapArray = new Comparable[101];
Last = 0;
Limit = 100;
return;
}
// end constructor
public void Insert(Comparable PQI) {
if (Last == Limit) {
System.out.println("Priority Queue Overflow!");
System.exit(0);
}
// end if
HeapArray[++Last] = PQI;
this.UpHeap(Last);
return;
}
// end public method Insert
private void UpHeap(int k) {
Comparable V;
V = HeapArray[k];
while (k > 1 && HeapArray[k / 2].compareTo(V) < 0) {
HeapArray[k] = HeapArray[k / 2];
k = k / 2;
}
// end while
HeapArray[k] = V;
return;
}
// end private method UpHeap
public Comparable Remove() {
Comparable PQI;
if (Last == 0) {
System.out.println("Priority Queue Underflow!");
System.exit(0);
}
// end if
PQI = HeapArray[1];
HeapArray[1] = HeapArray[Last--];
this.DownHeap(1);
return PQI;
}
// end public method Remove
private void DownHeap(int k) {
Comparable V;
int j;
V = HeapArray[k];
while (k <= Last / 2) {
j = k + k;
if (j < Last && HeapArray[j].compareTo(HeapArray[j + 1]) < 0)
j++;
// end if
if (V.compareTo(HeapArray[j]) >= 0)
break;
// end if
HeapArray[k] = HeapArray[j];
k = j;
}
// end while
HeapArray[k] = V;
return;
}
// end private method DownHeap
public boolean IsEmpty() {
if (Last == 0)
return true;
else
return false;
// end if
}
// end public method IsEmpty
public boolean IsFull() {
if (Last == Limit)
return true;
else
return false;
// end if
}
// end public method IsFull
public int Length() {
return Last;
}
// end public method Length
}
// end class PriorityQueue
Exception in thread "main" java.lang.NumberFormatException: For input string: ""
This is self explanatory. The input is expected as number however the input entered is String ""
The line that reads input and expects the value to be interger :
int numberOfIslands = Integer.parseInt(fileScanner.nextLine());
Provide correct input.
Also you could change the .nextLine() to nextInt()

How to print the path traversed in this Dijkstra's algo?

I am not able to print the path traversed using Dijkstra's algorithm. I am getting the right shortest path cost but not able to print the path or nodes that are being traversed for the shortest path.
import java.util.HashSet;
import java.util.InputMismatchException;
import java.util.Iterator;
import java.util.Scanner;
import java.util.Set;
public class DijkstraAlgorithmSet
{
private int distances[];
private Set<Integer> settled;
private Set<Integer> unsettled;
private int number_of_nodes;
private int adjacencyMatrix[][];
public DijkstraAlgorithmSet(int number_of_nodes)
{
this.number_of_nodes = number_of_nodes;
distances = new int[number_of_nodes + 1];
settled = new HashSet<Integer>();
unsettled = new HashSet<Integer>();
adjacencyMatrix = new int[number_of_nodes + 1][number_of_nodes + 1];
}
public void dijkstra_algorithm(int adjacency_matrix[][], int source)
{
int evaluationNode;
for (int i = 1; i <= number_of_nodes; i++)
for (int j = 1; j <= number_of_nodes; j++)
adjacencyMatrix[i][j] = adjacency_matrix[i][j];
for (int i = 1; i <= number_of_nodes; i++)
{
distances[i] = Integer.MAX_VALUE;
}
unsettled.add(source);
distances[source] = 0;
while (!unsettled.isEmpty())
{
evaluationNode = getNodeWithMinimumDistanceFromUnsettled();
unsettled.remove(evaluationNode);
settled.add(evaluationNode);
evaluateNeighbours(evaluationNode);
}
}
private int getNodeWithMinimumDistanceFromUnsettled()
{
int min ;
int node = 0;
Iterator<Integer> iterator = unsettled.iterator();
node = iterator.next();
min = distances[node];
for (int i = 1; i <= distances.length; i++)
{
if (unsettled.contains(i))
{
if (distances[i] <= min)
{
min = distances[i];
node = i;
}
}
}
return node;
}
private void evaluateNeighbours(int evaluationNode)
{
int edgeDistance = -1;
int newDistance = -1;
for (int destinationNode = 1; destinationNode <= number_of_nodes; destinationNode++)
{
if (!settled.contains(destinationNode))
{
if (adjacencyMatrix[evaluationNode][destinationNode] != Integer.MAX_VALUE)
{
edgeDistance = adjacencyMatrix[evaluationNode] [destinationNode];
newDistance = distances[evaluationNode] + edgeDistance;
if (newDistance < distances[destinationNode])
{
distances[destinationNode] = newDistance;
}
unsettled.add(destinationNode);
}
}
}
}
public static void main(String... arg)
{
int adjacency_matrix[][];
int number_of_vertices;
int source = 0;
Scanner scan = new Scanner(System.in);
try
{
System.out.println("Enter the number of vertices");
number_of_vertices = scan.nextInt();
adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
System.out.println("Enter the Weighted Matrix for the graph");
for (int i = 1; i <= number_of_vertices; i++)
{
for (int j = 1; j <= number_of_vertices; j++)
{
adjacency_matrix[i][j] = scan.nextInt();
if (i == j)
{
adjacency_matrix[i][j] = 0;
continue;
}
if (adjacency_matrix[i][j] == 0)
{
adjacency_matrix[i][j] = Integer.MAX_VALUE;
}
}
}
System.out.println("Enter the source ");
source = scan.nextInt();
DijkstraAlgorithmSet dijkstrasAlgorithm = new DijkstraAlgorithmSet(number_of_vertices);
dijkstrasAlgorithm.dijkstra_algorithm(adjacency_matrix, source);
System.out.println("The Shorted Path to all nodes are ");
for (int i = 1; i <= dijkstrasAlgorithm.distances.length - 1; i++)
{
System.out.println(source + " to " + i + " is "+ dijkstrasAlgorithm.distances[i]);
}
} catch (InputMismatchException inputMismatch)
{
System.out.println("Wrong Input Format");
}
scan.close();
}
}
As I understand Djikstra's Algorithm for every node you store the current minimum distance needed to get to that node. What you will want to do is to store the path that corresponds to that distance as well. This is slightly tricky considering you are using an adjacency matrix. What you could do is have a second matrix of the same size with the paths stored, I'll call it call it pathMatrix. So if we know that it takes 5 distance units to get from A (i=0, j=0) to C (i=2, j=2) you would have adjacencyMatrix[2][2] = 5 and pathMatrix[2][2] = [A, B, C]. pathMatrix will be updated at the exact same times that adjacencyMatrix is updated. You will just add the next node to the previous node's current path and set it to the next node's entry in pathMatrix.

Binary Search program in Java

Here is my code for program using Binary Search:
import java.util.Random;
public class QSrt {
int[] arr = new int[20];
public void addElement() {
for (int i = 0; i < arr.length; i++) {
Random rd = new Random();
arr[i] = rd.nextInt(10);
}
}
public void sort(){
for (int i = 0; i < arr.length - 1; i++) {
for (int j = arr.length - 1; j > i; j--) {
if(arr[j] < arr[j-1]){
int t = arr[j];
arr[j] = arr[j-1];
arr[j-1] = t;
}
}
}
}
public int binarySearch(int val){
int first = 0;
int last = arr.length - 1;
int index = -1;
while (first <= last) {
int middle = (first + last)/2;
if(arr[middle] == val){
index = middle;
}else if(arr[middle] < val){
first = middle + 1;
}else{
last = middle - 1;
}
}
return index;
}
public static void main(String[] args) {
QSrt arr = new QSrt();
arr.addElement();
arr.sort();
for(int i = 0; i < arr.arr.length;i++){
System.out.print(arr.arr[i] + " ");
}
System.out.println("");
System.out.println(arr.binarySearch(0));
}
}
But I get a problem: the program only prints elements of sorted array then it keeps running and does not print the index yet
Here is picture:
enter image description here
You need to break out of the loop once the desired value is obtained
if(arr[middle] == val){
index = middle;
return index; //OR just => return middle;
}

Bellman Ford detecting negative cycle of shortest length

Solving this Arbitage problem of UVA http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=40 but I am stuck with finding the negative cycle of shortest length(length here is number of vertices).Here is my code that successfully detects the negative cycle
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
public class _104 {
public static void main(String[] args) throws NumberFormatException,
IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(
System.in));
String input;
while ((input = reader.readLine()) != null) {
int n = Integer.parseInt(input);
double[][] cost = new double[n + 1][n + 1];
double[] spEstimate = new double[n + 1];
int parent[] = new int[n + 1];
for (int i = 0; i < n + 1; i++) {
spEstimate[i] = Double.MAX_VALUE;
cost[0][i] = 0;
cost[i][0] = Double.MAX_VALUE;
parent[i] = Integer.MAX_VALUE;
}
spEstimate[0] = 0.0;
parent[0] = 0;
for (int i = 1; i < n + 1; i++) {
String[] line = reader.readLine().split("\\s+");
for (int j = 1; j < n + 1; j++) {
if (i == j) {
cost[i][j] = 0;
} else if (i < j) {
cost[i][j] = -(Math
.log(Double.parseDouble(line[j - 2])) / Math
.log(2));
} else {
cost[i][j] = -(Math
.log(Double.parseDouble(line[j - 1])) / Math
.log(2));
}
}
}
int save = 1, s = 1;
boolean flag = BellmanFord(n, cost, spEstimate, parent);
display(cost);
// Relax all edges once more
boolean brk = true;
for (int i = 0; i < cost.length && brk; i++) {
for (int j = 0; j < cost.length && brk; j++) {
//relax(i, j, spEstimate, cost[i][j], parent);
}
}
ArrayList<Integer> path = new ArrayList<Integer>();
while (parent[save] != s) {
path.add(save);
save = parent[save];
}
if (flag) {
System.out.println("no arbitrage sequence exists");
} else {
path.add(0, path.get(path.size() - 1));
for (int i = path.size() - 1; i >= 0; --i) {
System.out.println(path.get(i));
}
}
}
reader.close();
}
public static boolean BellmanFord(int n, double[][] cost, double[] sp,
int[] parent) {
for (int k = 0; k < n - 1; k++) {
for (int i = 0; i < cost.length; i++) {
for (int j = 0; j < cost.length; j++) {
relax(i, j, sp, cost[i][j], parent);
}
}
}
// Relax all edges once more to detect cycle
for (int i = 0; i < cost.length; i++) {
for (int j = 0; j < cost.length; j++) {
if (sp[j] > (sp[i] + cost[i][j])) {
return false;
}
}
}
return true;
}
static void relax(int i, int j, double[] sp, double cij, int[] parent) {
if (sp[j] > (sp[i] + cij)) {
sp[j] = sp[i] + cij;
System.out.println("relaxed " + i + " " + j + " " + cij + " "
+ sp[i] + " " + sp[j]);
parent[j] = i;
}
}
static void display(double[][] cost) {
System.out.println("Display Cost");
for (int i = 0; i < cost.length; i++) {
for (int j = 0; j < cost.length; j++) {
System.out.print(cost[i][j] + "\t");
}
System.out.println();
}
}
static void display(double[] sp) {
for (int i = 0; i < sp.length; i++) {
System.out.println(sp[i]);
}
}
}
You can do it like that:
Fix the start vertex of the cycle(let's call it v).
Run Ford-Bellman algorithm assuming that dist[i] = 0 if i = v and INF otherwise.
If there is a negative cycle that contains v, after k iterations of the outer loop in Ford-Bellman algorithm dist[v] will become negative. So you can easily find such smallest k by simply checking if dist[v] is still non-negative or not after each iteration.
The smallest k among all v is the answer.
It is possible to solve this problem by considering cycles of increasing length as opposed to finding negative cycles as described by kraskevich. The worst case complexity for both approaches is O(n^4). This approach resembles Floyd-Warshall where you consider increasing lengths instead of intermediate vertices.
You can find a detailed explanation that includes diagrams and code here.

Categories

Resources