Let's say I have this Observable situation:
public void main() {
Observable.fromIterable(Arrays.asList(1, 2, 3, 4, 5))
.flatMap(id -> getEvenOdd(id))
.map(string -> {
// I now want to join string
// AND the last emitted ID integer
return null;
});
}
private Observable<String> getEvenOdd(Integer id) {
if (id % 2 == 0) {
return Observable.just("even");
} else {
return Observable.just("odd");
}
}
The flatmap has transformed Integer into String. How can I now get access to the Integer inside map?
I know that I could add a doOnNext and cache the Integer:
private Integer intCache;
public void main() {
Observable.fromIterable(Arrays.asList(1, 2, 3, 4, 5))
.doOnNext(integer -> intCache = integer)
.flatMap(id -> getEvenOdd(id))
.map(string -> {
return intCache.toString() + " " + string;
});
But this seems a little hacky and expands the scope of the Integer beyond my observable chain.
There is a specialized flatMap for this use-case:
http://reactivex.io/RxJava/2.x/javadoc/io/reactivex/Observable.html#flatMap(io.reactivex.functions.Function,%20io.reactivex.functions.BiFunction)
The second parameter combines the results from the flatmap with the item that caused them to be emitted.
So the updated example is
public void main() {
Observable.fromIterable(Arrays.asList(1, 2, 3, 4, 5))
.flatMap(id -> getEvenOdd(id),
(BiFunction<Integer, String, String>) (integer, string) -> { // LOOK HERE
return string + Integer.toString(integer);
})
.map(joinedStringAndInt -> {
... use joinedStringAndInt
});
}
Where the third type in the BiFunction is the type of the combined value. Here I just chose to combined the String and Integer into another String
As a sidenote, the doOnNext solution is hacky and unsafe if you consider there can be multiple instances of the same Observable accessing the intCache variable.
Another solution is just to use nesting. You can have both the last observable emission and your value from parameter in a nested structure:
public void main() {
Observable.fromIterable(Arrays.asList(1, 2, 3, 4, 5))
.flatMap(id -> getEvenOdd(id)
.map(string -> joinStringAndInt(string, id)))
.map(joinedStringAndInt -> {
// do your stuff here
return something;
});
}
private String joinStringAndInt(String string, Integer number) {
return number.toString() + " " + string;
}
private Observable<String> getEvenOdd(Integer id) {
if (id % 2 == 0) {
return Observable.just("even");
} else {
return Observable.just("odd");
}
}
Related
Is there a Java 8 stream operation that limits a (potentially infinite) Stream until the first element fails to match a predicate?
In Java 9 we can use takeWhile as in the example below to print all the numbers less than 10.
IntStream
.iterate(1, n -> n + 1)
.takeWhile(n -> n < 10)
.forEach(System.out::println);
As there is no such operation in Java 8, what's the best way of implementing it in a general way?
Operations takeWhile and dropWhile have been added to JDK 9. Your example code
IntStream
.iterate(1, n -> n + 1)
.takeWhile(n -> n < 10)
.forEach(System.out::println);
will behave exactly as you expect it to when compiled and run under JDK 9.
JDK 9 has been released. It is available for download here: JDK 9 Releases.
Such an operation ought to be possible with a Java 8 Stream, but it can't necessarily be done efficiently -- for example, you can't necessarily parallelize such an operation, as you have to look at elements in order.
The API doesn't provide an easy way to do it, but what's probably the simplest way is to take Stream.iterator(), wrap the Iterator to have a "take-while" implementation, and then go back to a Spliterator and then a Stream. Or -- maybe -- wrap the Spliterator, though it can't really be split anymore in this implementation.
Here's an untested implementation of takeWhile on a Spliterator:
static <T> Spliterator<T> takeWhile(
Spliterator<T> splitr, Predicate<? super T> predicate) {
return new Spliterators.AbstractSpliterator<T>(splitr.estimateSize(), 0) {
boolean stillGoing = true;
#Override public boolean tryAdvance(Consumer<? super T> consumer) {
if (stillGoing) {
boolean hadNext = splitr.tryAdvance(elem -> {
if (predicate.test(elem)) {
consumer.accept(elem);
} else {
stillGoing = false;
}
});
return hadNext && stillGoing;
}
return false;
}
};
}
static <T> Stream<T> takeWhile(Stream<T> stream, Predicate<? super T> predicate) {
return StreamSupport.stream(takeWhile(stream.spliterator(), predicate), false);
}
allMatch() is a short-circuiting function, so you can use it to stop processing. The main disadvantage is that you have to do your test twice: once to see if you should process it, and again to see whether to keep going.
IntStream
.iterate(1, n -> n + 1)
.peek(n->{if (n<10) System.out.println(n);})
.allMatch(n->n < 10);
As a follow-up to #StuartMarks answer. My StreamEx library has the takeWhile operation which is compatible with current JDK-9 implementation. When running under JDK-9 it will just delegate to the JDK implementation (via MethodHandle.invokeExact which is really fast). When running under JDK-8, the "polyfill" implementation will be used. So using my library the problem can be solved like this:
IntStreamEx.iterate(1, n -> n + 1)
.takeWhile(n -> n < 10)
.forEach(System.out::println);
takeWhile is one of the functions provided by the protonpack library.
Stream<Integer> infiniteInts = Stream.iterate(0, i -> i + 1);
Stream<Integer> finiteInts = StreamUtils.takeWhile(infiniteInts, i -> i < 10);
assertThat(finiteInts.collect(Collectors.toList()),
hasSize(10));
Update: Java 9 Stream now comes with a takeWhile method.
No needs for hacks or other solutions. Just use that!
I am sure this can be greatly improved upon:
(someone could make it thread-safe maybe)
Stream<Integer> stream = Stream.iterate(0, n -> n + 1);
TakeWhile.stream(stream, n -> n < 10000)
.forEach(n -> System.out.print((n == 0 ? "" + n : "," + n)));
A hack for sure... Not elegant - but it works ~:D
class TakeWhile<T> implements Iterator<T> {
private final Iterator<T> iterator;
private final Predicate<T> predicate;
private volatile T next;
private volatile boolean keepGoing = true;
public TakeWhile(Stream<T> s, Predicate<T> p) {
this.iterator = s.iterator();
this.predicate = p;
}
#Override
public boolean hasNext() {
if (!keepGoing) {
return false;
}
if (next != null) {
return true;
}
if (iterator.hasNext()) {
next = iterator.next();
keepGoing = predicate.test(next);
if (!keepGoing) {
next = null;
}
}
return next != null;
}
#Override
public T next() {
if (next == null) {
if (!hasNext()) {
throw new NoSuchElementException("Sorry. Nothing for you.");
}
}
T temp = next;
next = null;
return temp;
}
public static <T> Stream<T> stream(Stream<T> s, Predicate<T> p) {
TakeWhile tw = new TakeWhile(s, p);
Spliterator split = Spliterators.spliterator(tw, Integer.MAX_VALUE, Spliterator.ORDERED);
return StreamSupport.stream(split, false);
}
}
You can use java8 + rxjava.
import java.util.stream.IntStream;
import rx.Observable;
// Example 1)
IntStream intStream = IntStream.iterate(1, n -> n + 1);
Observable.from(() -> intStream.iterator())
.takeWhile(n ->
{
System.out.println(n);
return n < 10;
}
).subscribe() ;
// Example 2
IntStream intStream = IntStream.iterate(1, n -> n + 1);
Observable.from(() -> intStream.iterator())
.takeWhile(n -> n < 10)
.forEach( n -> System.out.println(n));
Actually there are 2 ways to do it in Java 8 without any extra libraries or using Java 9.
If you want to print numbers from 2 to 20 on the console you can do this:
IntStream.iterate(2, (i) -> i + 2).peek(System.out::println).allMatch(i -> i < 20);
or
IntStream.iterate(2, (i) -> i + 2).peek(System.out::println).anyMatch(i -> i >= 20);
The output is in both cases:
2
4
6
8
10
12
14
16
18
20
No one mentioned anyMatch yet. This is the reason for this post.
This is the source copied from JDK 9 java.util.stream.Stream.takeWhile(Predicate). A little difference in order to work with JDK 8.
static <T> Stream<T> takeWhile(Stream<T> stream, Predicate<? super T> p) {
class Taking extends Spliterators.AbstractSpliterator<T> implements Consumer<T> {
private static final int CANCEL_CHECK_COUNT = 63;
private final Spliterator<T> s;
private int count;
private T t;
private final AtomicBoolean cancel = new AtomicBoolean();
private boolean takeOrDrop = true;
Taking(Spliterator<T> s) {
super(s.estimateSize(), s.characteristics() & ~(Spliterator.SIZED | Spliterator.SUBSIZED));
this.s = s;
}
#Override
public boolean tryAdvance(Consumer<? super T> action) {
boolean test = true;
if (takeOrDrop && // If can take
(count != 0 || !cancel.get()) && // and if not cancelled
s.tryAdvance(this) && // and if advanced one element
(test = p.test(t))) { // and test on element passes
action.accept(t); // then accept element
return true;
} else {
// Taking is finished
takeOrDrop = false;
// Cancel all further traversal and splitting operations
// only if test of element failed (short-circuited)
if (!test)
cancel.set(true);
return false;
}
}
#Override
public Comparator<? super T> getComparator() {
return s.getComparator();
}
#Override
public void accept(T t) {
count = (count + 1) & CANCEL_CHECK_COUNT;
this.t = t;
}
#Override
public Spliterator<T> trySplit() {
return null;
}
}
return StreamSupport.stream(new Taking(stream.spliterator()), stream.isParallel()).onClose(stream::close);
}
Here is a version done on ints - as asked in the question.
Usage:
StreamUtil.takeWhile(IntStream.iterate(1, n -> n + 1), n -> n < 10);
Here's code for StreamUtil:
import java.util.PrimitiveIterator;
import java.util.Spliterators;
import java.util.function.IntConsumer;
import java.util.function.IntPredicate;
import java.util.stream.IntStream;
import java.util.stream.StreamSupport;
public class StreamUtil
{
public static IntStream takeWhile(IntStream stream, IntPredicate predicate)
{
return StreamSupport.intStream(new PredicateIntSpliterator(stream, predicate), false);
}
private static class PredicateIntSpliterator extends Spliterators.AbstractIntSpliterator
{
private final PrimitiveIterator.OfInt iterator;
private final IntPredicate predicate;
public PredicateIntSpliterator(IntStream stream, IntPredicate predicate)
{
super(Long.MAX_VALUE, IMMUTABLE);
this.iterator = stream.iterator();
this.predicate = predicate;
}
#Override
public boolean tryAdvance(IntConsumer action)
{
if (iterator.hasNext()) {
int value = iterator.nextInt();
if (predicate.test(value)) {
action.accept(value);
return true;
}
}
return false;
}
}
}
Go to get library abacus-common. It provides the exact API you want and more:
IntStream.iterate(1, n -> n + 1).takeWhile(n -> n < 10).forEach(System.out::println);
Declaration: I'm the developer of AbacusUtil.
If you know the exact amount of repititions that will be performed, you can do
IntStream
.iterate(1, n -> n + 1)
.limit(10)
.forEach(System.out::println);
IntStream.iterate(1, n -> n + 1)
.peek(System.out::println) //it will be executed 9 times
.filter(n->n>=9)
.findAny();
instead of peak you can use mapToObj to return final object or message
IntStream.iterate(1, n -> n + 1)
.mapToObj(n->{ //it will be executed 9 times
if(n<9)
return "";
return "Loop repeats " + n + " times";});
.filter(message->!message.isEmpty())
.findAny()
.ifPresent(System.out::println);
You can't abort a stream except by a short-circuiting terminal operation, which would leave some stream values unprocessed regardless of their value. But if you just want to avoid operations on a stream you can add a transform and filter to the stream:
import java.util.Objects;
class ThingProcessor
{
static Thing returnNullOnCondition(Thing thing)
{ return( (*** is condition met ***)? null : thing); }
void processThings(Collection<Thing> thingsCollection)
{
thingsCollection.stream()
*** regular stream processing ***
.map(ThingProcessor::returnNullOnCondition)
.filter(Objects::nonNull)
*** continue stream processing ***
}
} // class ThingProcessor
That transforms the stream of things to nulls when the things meet some condition, then filters out nulls. If you're willing to indulge in side effects, you could set the condition value to true once some thing is encountered, so all subsequent things are filtered out regardless of their value. But even if not you can save a lot of (if not quite all) processing by filtering values out of the stream that you don't want to process.
Even I was having a similar requirement -- invoke the web-service, if it fails, retry it 3 times. If it fails even after these many trials, send an email notification. After googling a lot, anyMatch() came as a saviour. My sample code as follows. In the following example, if webServiceCall method returns true in the first iteration itself, stream does not iterate further as we have called anyMatch(). I believe, this is what you are looking for.
import java.util.stream.IntStream;
import io.netty.util.internal.ThreadLocalRandom;
class TrialStreamMatch {
public static void main(String[] args) {
if(!IntStream.range(1,3).anyMatch(integ -> webServiceCall(integ))){
//Code for sending email notifications
}
}
public static boolean webServiceCall(int i){
//For time being, I have written a code for generating boolean randomly
//This whole piece needs to be replaced by actual web-service client code
boolean bool = ThreadLocalRandom.current().nextBoolean();
System.out.println("Iteration index :: "+i+" bool :: "+bool);
//Return success status -- true or false
return bool;
}
If you have different problem, different solution may be needed but for your current problem, I would simply go with:
IntStream
.iterate(1, n -> n + 1)
.limit(10)
.forEach(System.out::println);
Might be a bit off topic but this is what we have for List<T> rather than Stream<T>.
First you need to have a take util method. This methods takes first n elements:
static <T> List<T> take(List<T> l, int n) {
if (n <= 0) {
return newArrayList();
} else {
int takeTo = Math.min(Math.max(n, 0), l.size());
return l.subList(0, takeTo);
}
}
it just works like scala.List.take
assertEquals(newArrayList(1, 2, 3), take(newArrayList(1, 2, 3, 4, 5), 3));
assertEquals(newArrayList(1, 2, 3), take(newArrayList(1, 2, 3), 5));
assertEquals(newArrayList(), take(newArrayList(1, 2, 3), -1));
assertEquals(newArrayList(), take(newArrayList(1, 2, 3), 0));
now it will be fairly simple to write a takeWhile method based on take
static <T> List<T> takeWhile(List<T> l, Predicate<T> p) {
return l.stream().
filter(p.negate()).findFirst(). // find first element when p is false
map(l::indexOf). // find the index of that element
map(i -> take(l, i)). // take up to the index
orElse(l); // return full list if p is true for all elements
}
it works like this:
assertEquals(newArrayList(1, 2, 3), takeWhile(newArrayList(1, 2, 3, 4, 3, 2, 1), i -> i < 4));
this implementation iterate the list partially for a few times but it won't add add O(n^2) operations. Hope that's acceptable.
I have another quick solution by implementing this (which is rly unclean in fact, but you get the idea):
public static void main(String[] args) {
System.out.println(StreamUtil.iterate(1, o -> o + 1).terminateOn(15)
.map(o -> o.toString()).collect(Collectors.joining(", ")));
}
static interface TerminatedStream<T> {
Stream<T> terminateOn(T e);
}
static class StreamUtil {
static <T> TerminatedStream<T> iterate(T seed, UnaryOperator<T> op) {
return new TerminatedStream<T>() {
public Stream<T> terminateOn(T e) {
Builder<T> builder = Stream.<T> builder().add(seed);
T current = seed;
while (!current.equals(e)) {
current = op.apply(current);
builder.add(current);
}
return builder.build();
}
};
}
}
Here is my attempt using just Java Stream library.
IntStream.iterate(0, i -> i + 1)
.filter(n -> {
if (n < 10) {
System.out.println(n);
return false;
} else {
return true;
}
})
.findAny();
Im using java 8. I have a class Operator which has 3 fields.
class Operator{
private String type;
private boolean updateRequested;
private boolean deleteRequested;
}
I have list of Operator. I just want to count the updatedRequested and deleteRequested based on type whose value is true and add into the Map which is Map<String,Result>
class Result{
private int deleteReqCount;
private int updateReqCount;
}
Expected result
{
"Cricket":{ deleteReqCount:10, updateReqCount:0}, // count only the value == `true`
"Football":{ deleteReqCount:2, updateReqCount:10}, // count only the value == `true`
}
This question is bit simple and I did using for loops and if condition. But I'm impressed with Stream apis and Collectors framework. I'm a beginner, so tried list.stream().collect(Collectors.groupingBy(g -> g.getType())); but couldn't go further.
Thanks in advance
Here is an implementation using Collectors.toMap
class Operator {
public String type;
public boolean updateRequested;
public boolean deleteRequested;
Operator(String type, boolean updateRequested, boolean deleteRequested) {
this.type = type;
this.updateRequested = updateRequested;
this.deleteRequested = deleteRequested;
}
}
class Result {
public int deleteReqCount;
public int updateReqCount;
Result(int deleteReqCount, int updateReqCount) {
this.deleteReqCount = deleteReqCount;
this.updateReqCount = updateReqCount;
}
#Override
public String toString() {
return "Result{" +
"deleteReqCount=" + deleteReqCount +
", updateReqCount=" + updateReqCount +
'}';
}
}
Map<String, Result> solve(List<Operator> operatorList) {
return operatorList.stream()
.collect(Collectors.toMap(
v -> v.type,
v -> new Result(v.deleteRequested ? 1 : 0, v.updateRequested ? 1 : 0),
(result, result2) -> {
int deleteReqCount = result.deleteReqCount + result2.deleteReqCount;
int updateReqCount = result.updateReqCount + result2.updateReqCount;
return new Result(deleteReqCount, updateReqCount);
}
));
}
List<Operator> operatorList = Arrays.asList(
new Operator("cricket", true, true),
new Operator("cricket", true, false),
new Operator("cricket", true, true),
new Operator("soccer", false, true),
new Operator("soccer", true, true)
);
System.out.println(solve(operatorList));
Output:
{soccer=Result{deleteReqCount=2, updateReqCount=1}, cricket=Result{deleteReqCount=2, updateReqCount=3}}
An update to Sai Kiran's excellent answer:
Map<String, Result> solve(List<Operator> operatorList) {
return operatorList.stream()
.collect(Collectors.toMap(
v -> v.type,
v -> new Result(v.deleteRequested ? 1 : 0, v.updateRequested ? 1 : 0),
(result, result2) -> {
result.updateReqCount += result2.updateReqCount;
result.deleteReqCount += result2.deleteReqCount;
return result;
}
));
}
As per comment by #Andreas,
operators.stream().collect(Collectors.toMap(
Operator::getType,
v -> new Result(v.isDeleteRequested() ? 1 : 0, v.isUpdateRequested() ? 1 : 0),
Result::merge
));
Merge method,
public Result merge(Result result) {
this.updateReqCount+=result.updateReqCount;
this.deleteReqCount+=result.deleteReqCount;
return this;
}
For the time when you update to Java 12 or higher, the task can be achieved using Collectors.teeing :
List<Operator> ops = //your operators list
Map<String, Result> myMap =
ops.stream()
.collect(
Collectors.groupingBy(Operator::getType,
Collectors.teeing(
Collectors.filtering(Operator::isUpdateRequested,Collectors.counting()),
Collectors.filtering(Operator::isDeleteRequested,Collectors.counting()),
(updateCount, deleteCount) -> {
return new Result(updateCount.intValue(),deleteCount.intValue());
}
)));
I am having a bunch of methods that return a CompletableFuture and I would like to chain in a specific way
package com.sandbox;
import java.util.Random;
import java.util.concurrent.CompletableFuture;
import java.util.stream.IntStream;
public class SandboxFutures {
public CompletableFuture<Integer> generateRandom(int min, int max) {
return CompletableFuture.supplyAsync(() -> {
if (min >= max) {
throw new IllegalArgumentException("max must be greater than min");
}
Random r = new Random();
return r.nextInt((max - min) + 1) + min;
});
}
public CompletableFuture<String> printEvenOrOdd(int result) {
return CompletableFuture.supplyAsync(() -> {
if (result % 2 == 0)
return "Even";
else
return "Odd";
});
}
public CompletableFuture<Integer> findFactorial(int evenNumber) {
return CompletableFuture.supplyAsync(() -> {
if (evenNumber <= 0) {
return 0;
}
return IntStream.rangeClosed(2, evenNumber).reduce(1, (x,y) -> x*y);
});
}
public CompletableFuture<Integer> convertToNearestEvenInteger(int oddNumber) {
return CompletableFuture.supplyAsync(() -> {
if (oddNumber <= 0) {
return 2;
}
return oddNumber+1;
});
}
}
I am trying to combine them based on the following rules,
Generate a random number between 1 and 100
If the number is even print Even, if it is odd print Odd
If the number is even call the findFactorial with the random number
If the number is odd find the nearest even via convertToNearestEvenInteger
I am not too clear on how to do the conditional chaining and exception handling. Some examples or code snippets may be helpful.
You can use thenCompose():
CompletableFuture<Integer> n = generateRandom(1, 100)
.thenCompose(i -> printEvenOrOdd(i)
.thenCompose(s -> s.equals("Even")
? findFactorial(i)
: convertToNearestEvenInteger(i)));
System.out.println(n.get());
However, when big even numbers are generated, your factorial method can't store anything bigger than int, so you need to update that.
The way printEvenOrOdd is written makes it more difficult than it needs to be. The problem is that it doesn't print the word "Even" or "Odd", it returns it, which means the original result is lost. The rest of the steps rely on having the actual number. To work around it, you could use call printEvenOrOdd and use .thenApply(__ -> result) to restore the original number afterwards. It would look like this:
System.out.println(
generateRandom(1, 100)
.thenCompose(result ->
printEvenOrOdd(result)
.thenAccept(System.out::println)
.thenApply(__ -> result)
)
.thenCompose(result ->
result % 2 == 0
? findFactorial(result)
: convertToNearestEvenInteger(result)
)
.join()
);
A better solution would be to change the definition of printEvenOrOdd to something like:
public CompletableFuture<Integer> printEvenOrOdd(int result) {
return CompletableFuture.supplyAsync(() -> {
System.out.println(result % 2 == 0 ? "Even" : "Odd");
return result;
});
}
That would make it much easier to chain steps 3 and 4:
System.out.println(
generateRandom(1, 100)
.thenApply(this::printEvenOrOdd)
.thenCompose(result ->
result % 2 == 0
? findFactorial(result)
: convertToNearestEvenInteger(result)
)
.join()
);
I'm generating, let's say, the following range:
IntStream.iterate(1, i -> 3*i)
How do I limit the stream to a specific element value e.g. 100 (not elements count with limit())?
Thank you!
UPDATE the function can be arbitrary
If you can’t use Java 9 yet, you can use the following reimplementation of the three-arg IntStream.iterate:
public static IntStream iterate(int seed, IntPredicate hasNext, IntUnaryOperator next) {
Objects.requireNonNull(next); Objects.requireNonNull(hasNext);
return StreamSupport.intStream(
new Spliterators.AbstractIntSpliterator(
Long.MAX_VALUE, Spliterator.ORDERED|Spliterator.NONNULL) {
private IntUnaryOperator op = i -> { op = next; return i; };
private int value = seed;
#Override
public boolean tryAdvance(IntConsumer action) {
Objects.requireNonNull(action);
if(op == null) return false;
int t = op.applyAsInt(value);
if(!hasNext.test(t)) { op = null; return false; }
action.accept(value = t);
return true;
}
#Override
public void forEachRemaining(IntConsumer action) {
Objects.requireNonNull(action);
IntUnaryOperator first = op;
if(first == null) return;
op = null;
for(int t = first.applyAsInt(value); hasNext.test(t); t = next.applyAsInt(t))
action.accept(t);
}
}, false);
}
It works similar to Java 9’s IntStream.iterate, except that you have to change the class you’re invoking the static method on (or adapt the import static statement):
iterate(1, i -> i < 100, i -> i*3).forEach(System.out::println);
1
3
9
27
81
A new method
Stream<T> iterate(T seed,Predicate<? super T> hasNext,UnaryOperator<T> next)
was introduced in Java-9. So starting with that version it is possible to do something like this:
IntStream.iterate(1, i -> i < 100, i -> 3*i)
Which will produce 1 3 9 27 81
As addition to other answers, if you can use java-9 already, there is another possibility using Stream#takeWhile taking a Predicate as parameter.
Tested in jshell
jshell> IntStream.iterate(1, i -> 3 * i).takeWhile(i -> i < 100).toArray();
$3 ==> int[5] { 1, 3, 9, 27, 81 }
IntStream.range(0, N).forEach(this::doSomething);
int[] arr = IntStream.range(start, end).toArray();
I was looking through some code and came across this method that takes an HTML Header value (i.e. Content-Disposition=inline;filename=foo.bar) and parses it into a map separated by the semi-colon's into key=value pairs. At first it looked like a good candidate for optimization using a stream, but after I implemented it, the fact that I can't reuse the computed String.indexOf('=') value means the string must be scanned 3 times, which is actually less optimal than the original. I'm perfectly aware that there are many instances where Streams aren't the right tool for the job, but I was wondering if I had just missed some technique that could allow the Stream to be as performant/more performant than the initial code.
/**
* Convert a Header Value String into a Map
*
* #param value The Header Value
* #return The data Map
*/
private static Map<String,String> headerMap (String value) {
int eq;
Map<String,String> map = new HashMap<>();
for(String entry : value.split(";")) {
if((eq = entry.indexOf('=')) != -1) {
map.put(entry.substring(0,eq),entry.substring(eq + 1));
}
}
return map;
return Stream.of(value.split(";")).filter(entry -> entry.indexOf('=') != -1).collect(Collectors.));
} //headerMap
My attempt at Streaming it:
/**
* Convert a Header Value String into a Map
*
* #param value The Header Value
* #return The data Map
*/
private static Map<String,String> headerMap (String value) {
return Stream.of(value.split(";")).filter(entry -> entry.indexOf('=') != -1).collect(Collectors.toMap(entry -> entry.substring(0,entry.indexOf('=')),entry -> entry.substring(entry.substring(entry.indexOf('=') + 1))));
} //headerMap
This solution looks for '=' only once:
private static Map<String, String> headerMap(String value) {
return Stream.of(value.split(";"))
.map(s -> s.split("=", 2))
.filter(arr -> arr.length == 2)
.collect(Collectors.toMap(arr -> arr[0], arr -> arr[1]));
}
Note that here the fast-path for String.split is used, thus regular expression is not actually created.
Note that using Guava you can do this in quite clean way even prior to Java-8:
private static Map<String, String> headerMap(String value) {
return Splitter.on( ';' ).withKeyValueSeparator( '=' ).split( value );
}
In general I would advise you against manual parsing of HTTP headers. There are many caveats there. See, for example, how it's implemented in Apache HTTP library. Use libraries.
I came up with the following code:
private static Map<String, String> headerMap(String value) {
return Stream.of(value.split(";"))
.filter(entry -> entry.indexOf('=') != -1)
.map(entry -> {
int i = entry.indexOf('=');
return new String[] { entry.substring(0, i), entry.substring(i + 1) };
})
.collect(Collectors.toMap(array -> array[0], array -> array[1]));
}
It only scans for the entry two times, by storing the key and value inside an array of size 2. I'm not sure it will be as performant as the for loop since we are creating another Object to serve just as a holder.
Another solution that scans the entry only one time is this, although I'm not very found of it:
private static Map<String, String> headerMap(String value) {
return Stream.of(value.split(";"))
.map(entry -> {
int i = entry.indexOf('=');
if (i == -1) {
return null;
}
return new String[] { entry.substring(0, i), entry.substring(i + 1) };
})
.filter(Objects::nonNull)
.collect(Collectors.toMap(array -> array[0], array -> array[1]));
}
I realized a JMH benchmark to test this. Following is the benchmark code:
#Warmup(iterations = 5, time = 1000, timeUnit = TimeUnit.MILLISECONDS)
#Measurement(iterations = 10, time = 1000, timeUnit = TimeUnit.MILLISECONDS)
#BenchmarkMode(Mode.AverageTime)
#OutputTimeUnit(TimeUnit.MICROSECONDS)
#Fork(3)
#State(Scope.Benchmark)
public class StreamTest {
private static final String VALUE = "Accept=text/plain;"
+ "Accept-Charset=utf-8;"
+ "Accept-Encoding=gzip, deflate;"
+ "Accept-Language=en-US;"
+ "Accept-Datetime=Thu, 31 May 2007 20:35:00 GMT;"
+ "Cache-Control=no-cache;"
+ "Connection=keep-alive;"
+ "Content-Length=348;"
+ "Content-Type=application/x-www-form-urlencoded;"
+ "Date=Tue, 15 Nov 1994 08:12:31 GMT;"
+ "Expect=100-continue;"
+ "Max-Forwards=10;"
+ "Pragma=no-cache";
#Benchmark
public void loop() {
int eq;
Map<String, String> map = new HashMap<>();
for (String entry : VALUE.split(";")) {
if ((eq = entry.indexOf('=')) != -1) {
map.put(entry.substring(0, eq), entry.substring(eq + 1));
}
}
}
#Benchmark
public void stream1() {
Stream.of(VALUE.split(";"))
.filter(entry -> entry.indexOf('=') != -1)
.map(entry -> {
int i = entry.indexOf('=');
return new String[] { entry.substring(0, i), entry.substring(i + 1) };
})
.collect(Collectors.toMap(array -> array[0], array -> array[1]));
}
#Benchmark
public void stream2() {
Stream.of(VALUE.split(";"))
.map(entry -> {
int i = entry.indexOf('=');
if (i == -1) {
return null;
}
return new String[] { entry.substring(0, i), entry.substring(i + 1) };
})
.filter(Objects::nonNull)
.collect(Collectors.toMap(array -> array[0], array -> array[1]));
}
public static void main(String[] args) throws Exception {
Main.main(args);
}
}
and this is the result (Code i5 3230M CPU # 2.60 GHz, Windows 10, Oracle JDK 1.8.0_25):
Benchmark Mode Cnt Score Error Units
StreamTest.loop avgt 30 1,541 ± 0,038 us/op
StreamTest.stream1 avgt 30 1,633 ± 0,042 us/op
StreamTest.stream2 avgt 30 1,604 ± 0,058 us/op
What this demonstrates is that both the streams solution and the for loop are actually equivalent in terms of performance.