an alternative to all and any from python to Java? - java

I'm tryin' to code how to find out a determinant in a matrix with Java 8. There are some particular cases for that work. For instance, when a matrix is an upper triangular. I coded this work with Python 3.6 using this code:
def is_upper_triangular(a, order):
for i in range(1, order):
if all(a[i][j] == 0 for j in range(order)):
return True
return False
This is very easy and clean code, so I've thought to code with Java, but I don't find any "all" method with Java to use it. I've found some information about that in this web page with negative solution. Is there any alternative to solve my problem.
Here's my java code for now:
public static double detMatrix(double[][] matriz) {
if(matriz.length == 1)
return matriz[0][0];
if(matriz.length == 2)
return matriz[0][0] * matriz[1][1] - matriz[1][0] * matriz[0][1];
double det = 0;
for(int i=0; i<matriz.length; i++){
double[][] nm = new double[matriz.length-1][matriz.length-1];
for(int j=0; j<matriz.length; j++){
if(j != i){
for(int k=1; k<matriz.length; k++){
int indice = -1;
if(j<i)
indice = j;
else if(j>i)
indice = j - 1;
nm[indice][k-1] = matriz[j][k];
}
}
}
if(i % 2 == 0)
det += matriz[i][0] * detMatrix(nm);
else
det -= matriz[i][0] * detMatrix(nm);
}
return det;
}
Thanks

I know you are asking for a specific keyword feature in Java, but different programming languages afford different approaches.
For example, instead of an all operator, why not simply use Arrays.fill(...)? The python that looks like
for i in range(1, order):
if all(a[i][j] == 0 for j in range(order))
would look like
for (int i = 0; i < a.length, i++) {
Arrays.fill(a[i], i+1, a[i].length, 0);
}
Likewise, the any operation in Python might look like it is doing more with less, but really it collapses down to
for (Element element : allElements() {
if (element satisifies condition) {
... statements ...
}
}
With Java, the above loop can work, but it makes the inefficiency apparent. If you really don't like to see what your code is doing, you can hide this in a method.
public List<int> findFives(int[][] a) {
...
}

Well, it seems java works with Streams, but Streams is a hard option beause, it seems, it converts any matrix in an Array 1D, and this is very difficult when i want to search all 0's under main diagonal matrix. I suppose some people know to solve it but i don't know about that.
Other problem with that is we have to load some java packages. So i've found another solution without to load extra java packages. Here is:
public static double [][] transMatrix(double [][] mat) {
double[][] matrizT = new double[mat[0].length][mat.length];
for(int i=0; i<mat.length; i++)
for (int j = 0; j<mat[i].length; j++)
matrizT[j][i] = mat[i][j];
return matrizT;
}
public static boolean isUpper(double[][] mat) {
int p = 0;
for(int i=0;i<mat.length;i++)
{
for(int j=0;j<i;j++)
{
if(mat[i][j]!=0)
p = 1; break;
}
}
return p == 0;
}
public static double productDiag(double[][] mat) {
double prod;
prod = 1.;
for(int i=0;i<mat.length;i++)
for(int j=0; j<mat[0].length;j++)
if(i==j)
prod *= mat[i][j];
return prod;
}
public static double detMatrix(double[][] matrix) {
if(matrix.length == 1)
return matrix[0][0];
if(matrix.length == 2)
return matrix[0][0] * matrix[1][1] - matrix[1][0] * matrix[0][1];
if(isUpper(matrix) || isUpper(transMatrix(matrix))
|| (isUpper(matrix) && isUpper(transMatrix(matrix)))){
return productDiag(matrix);
}
double det = 0;
for(int i=0; i<matrix.length; i++){
double[][] minor = new double[matrix.length-1][matrix.length-1];
for(int j=0; j<matrix.length; j++){
if(j != i){
for(int k=1; k<matrix.length; k++){
int index = -1;
if(j<i)
index = j;
else if(j>i)
index = j - 1;
minor[index][k-1] = matrix[j][k];
}
}
}
if(i % 2 == 0)
det += matrix[i][0] * detMatrix(minor);
else
det -= matrix[i][0] * detMatrix(minor);
}
return det;
}
Thanks everybody for your help.

Related

Dynamic edit distance

I tried to make a dynamic algorithm to calculate the distance between two strings. For example, if I have "casa" and "cara", the output should be 2 (1 insert + 1 deletion), but I get 1. This is the algorithm:
public static int distance(String word1, String word2) {
int dp[][] = new int[m+1][n+1];
for (int i=0; i<=m; i++) {
for (int j=0; j<=n; j++) {
if (i==0)
dp[i][j] = j;
else if (j==0)
dp[i][j] = i;
else if (str1.charAt(i-1) == str2.charAt(j-1))
dp[i][j] = dp[i-1][j-1];
else {
int rep=dp[i-1][j-1];
int ins=dp[i][j-1];
int del=dp[i-1][j];
dp[i][j] = 1 + Math.min(rep, Math.min(ins, del));
}
}
}
return dp[m][n];
}
Could you please find me which code causes the bug?
Why the output of this algorithm is 1 instead of 2 using the strings "casa" and "cara"?

Solving Project Euler 15 efficiency issue [duplicate]

I have the following programm calculating the binomial coefficient of two integers. But I want to change the programm, that it calculates and saves only the necessary coefficients for the solution.
The problem is that I have really no idea how to it, right now.
The Code
public static long binomialIteration(int n, int k)
{
if(k<0 || n<k)
{
return 0;
}
long[][] h= new long[n+1][n+1];
for(int i=0; i<=n; i++)
{
h[i][0]=h[i][i]=1;
}
for(int i=1;i<=n;i++)
{
for(int j=0; j<=i; j++)
{
h[i][j] = (j==0 ? 0: h[i-1][j-1]) + (i == j ? 0 : h[i-1][j]);
}
}
return h[n][k];
}
Do you want to keep your code afterall?
Because you can also compute the binominal coefficient recursively, which would reduce your function to these 4 lines:
static long binomi(int n, int k) {
if ((n == k) || (k == 0))
return 1;
else
return binomi(n - 1, k) + binomi(n - 1, k - 1);
}
What about this Code from this site
private static long binomial(int n, int k)
{
if (k>n-k)
k=n-k;
long b=1;
for (int i=1, m=n; i<=k; i++, m--)
b=b*m/i;
return b;
}
You don't say which coefficients youi need. If you need C(N,n) for some fixed N, you could translate the C code below, which uses a one dimensional array.
After the call, C[n] will hold the binomial coefficient C(N,n) for 0<=m<=N, as long as N is at most 66 -- if you need bigger N you will need to use an integral type with more bits.
static int64_t* pascals_triangle( int N)
{
int n,k;
int64_t* C = calloc( N+1, sizeof *C);
for( n=0; n<=N; ++n)
{ C[n] = 1;
k = n;
while( --k>0)
{ C[k] += C[k-1];
}
}
return C;
}

Java Array Manipulation and Recursion

So I have spent a considerable amount of time struggling to comprehend what is wrong with my code. I have an example program that I compared mine to, which works. My code is structured differently (it's all in one method, as requested by my professor) than the example (which uses two methods). I'm supposed to create a a recursive, divide-and-conquer solution to count inversions in an int array.
I am lost on why the example program maintains the manipulations to the input array throughout the recursion, while mine does not. I know Java is pass-by-value, so I am confused why the example works. Any help with me understanding the differences in these solutions would be greatly appreciated! Thanks!
Example code with two methods - merge and invCounter:
public static long merge(int[] arr, int[] left, int[] right) {
int i = 0, j = 0, count = 0;
while (i < left.length || j < right.length) {
if (i == left.length) {
arr[i+j] = right[j];
j++;
} else if (j == right.length) {
arr[i+j] = left[i];
i++;
} else if (left[i] <= right[j]) {
arr[i+j] = left[i];
i++;
} else {
arr[i+j] = right[j];
count += left.length-i;
j++;
}
}
return count;
}
//the recursive function
public static long invCounter(int[] arr) {
int sum = 0;
if (arr.length < 2)
return 0;
int m = (arr.length + 1) / 2;
int left[] = Arrays.copyOfRange(arr, 0, m);
int right[] = Arrays.copyOfRange(arr, m, arr.length);
sum += invCounter(left);
sum += invCounter(right);
sum += merge(arr, left, right);
return sum;
}
My single-method implementation (attempt):
public static int invCounter(int ranking[]) {
int sum = 0;
int result[] = new int[ranking.length];
int resIndx = 0;
if (ranking.length < 2) {
return 0; //base case
}
//divide
int left[] = Arrays.copyOfRange(ranking, 0, ranking.length/2);
int right[] = Arrays.copyOfRange(ranking, ranking.length/2,
ranking.length);
sum += invCounter(left);
sum += invCounter(right);
int i = 0, j = 0;
while (i < left.length || j < right.length) {
if (i == left.length) {
//i empty, just add j
result[resIndx++] = right[j++];
}
else if (j == right.length) {
//j empty, just add i
result[resIndx++] = left[i++];
}
else if (right[j] < left[i]) {
//inversion
result[resIndx++] = right[j++];
sum += left.length - i;
}
else {
//no inversion
result[resIndx++] = left[i++];
}
}
ranking = Arrays.copyOf(result, result.length);
return sum;
}
Why is the example program able to maintain an updated array through the recursion while mine is not?
UPDATE (10/22/15):
So I discovered that I am able to get the correct results if I replace result with ranking and just modify this array directly. My question now though is why can't I use the result array to temporarily store the results and then copy them into the ranking (argument) array at the end? This seems to me like it would be doing the same exact thing as putting the values in earlier, however the changes to ranking aren't reflected if I change it at the end.
Your method doesn't modify the rankings parameter, instead it creates a new int array (result), and you work on it. Try directly set value on the rankings array, not on result array, or simply set the result variable to the rankings.
public static int invCounter(int ranking[]) {
int sum = 0;
int result[] = ranking;
//other code...
Edit: Or you can copy it's content, but not with Arrays.copyOf, because it first CREATES a new array and then copy into it. Use instead System.arrayCopy which copies into an EXISTING array:
System.arrayCopy(result, 0, rankings, 0, result.length();

Codility PermCheck Solution isn't working on a few data sets

Trying to solve codility lessons for practice and working on this.
Written my code in Java and tested the code on a wide range of inputs, however the code fails for extreme_min_max, single and double in the codility test results.
Assumption given:
N is an integer within the range [1..100,000].
Each element of array A is an integer within the range [1..1,000,000,000].
Explanation of my code:
1. Sort the given array.
2. Iterate over each element in the array to find the difference between every consecutive pair. If the difference is not 1, Then its not a perm hence return 0. In case there is only one element in the array, return 1.
Can anyone please help me find out the bug(s) in my code?
My code:
public int solution(int[] A)
{
if(A.length == 1)
return 1;
Arrays.sort(A);
for (int i = 0; i < A.length-1; i++)
{
long diff = Math.abs(A[i] - A[i+1]);
if(diff!=1)
return 0;
}
return 1;
}
Here is simple and better implementation which runs in O(N) time complexity and takes O(N) space complexity.
public int solution(int[] A)
{
int size = A.length;
int hashArray[] = new int[size+1];
for (int i = 0; i < size; i++)
{
if(A[i]>size)
return 0;
else
hashArray[A[i]]+=1;
}
for(int i=1;i<=size;i++)
if(hashArray[i]!=1)
return 0;
return 1;
}
Try this in C# (Score 100%) :
using System;
using System.Linq;
class Solution {
public int solution(int[] A) {
if (A.Any(x => x == 0)) { return 0; }
var orderSelect = A.OrderBy(x => x).GroupBy(x => x);
if (orderSelect.Any(x => x.Count() > 1)) { return 0; }
var res = Enumerable.Range(1, A.Length).Except(A);
return res.Any() ? 0 : 1;
}
}
Pretty simple:
Your code doesn't check this condition:
A permutation is a sequence containing each element from 1 to N once, and only once.
Ensure that the first element after sorting is 1, and everything should work.
I'm not big on Java syntax, but what you want to do here is:
Create an array temp the length of A - initialized to 0.
Go over A and do temp[A[i]]++.
Go over temp, and if any place in the array is not 1, return false.
If duplicate exists - return 0 I have implemented with 100% pass
https://codility.com/demo/results/trainingWX2E92-ASF/
public static int permCheck(int A[]){
Set<Integer> bucket = new HashSet<Integer>();
int max = 0;
int sum=0;
for(int counter=0; counter<A.length; counter++){
if(max<A[counter]) max=A[counter];
if(bucket.add(A[counter])){
sum=sum+A[counter];
}
else{
return 0;
}
}
System.out.println(max+"->"+sum);
int expectedSum = (max*(max+1))/2;
if(expectedSum==sum)return 1;
return 0;
}
Here's my first 100% code.
I can't say if it's the fastest but it seems all correct -- watch the double OR ( || ) condition.
import java.util.Arrays;
class Solution
{
public int solution(int[] A)
{
int i = 0;
int size = A.length;
if ( size > 0 && size < 100001)
{
// Sort the array ascending:
Arrays.sort(A);
// Check each element:
for(i = 0; i < size; i++)
if ( A[i] > size || A[i] != (i + 1) )
return 0;
return 1;
}
return 0;
}
}
EDIT
Actually, we need not worry about valid first element data (i.e. A[i] > 0) because, after sorting, a valid perm array must have A[0] = 1 and this is already covered by the condition A[i] = i + 1.
The upper limit for array entries (> 1,000,000,000) is restricted further by the limit on the array size itself (100,000) and we must check for conformity here as there will be a Codility test for this. So I have removed the lower limit condition on array entries.
Below code runs and gave me a 100%, the time complexity is O(n):
private static int solution(int[] A) {
int isPermutation = 1; // all permutations start at 1
int n = A.length;
Arrays.sort(A);
if (n == 0) return 0; // takes care of edge case where an empty array is passed
for (int i = 0; i < n; i++) {
if (A[i] != isPermutation) { //if current array item is not equals to permutation, return 0;
return 0;
}
isPermutation++;
}
return 1;
}
100% score with complexity O(N)
public int solution(int[] A) {
int res = 1;
if (A.length == 1 && A[0]!=1)
return 0;
int[] B = new int[A.length];
for (int j : A) {
int p = j - 1;
if (A.length > p)
B[p] = j;
}
for (int i = 0; i < B.length - 1; i++) {
if (B[i] + 1 != B[i + 1]) {
res = 0;
break;
}
}
return res;
}

java codility Frog-River-One

I have been trying to solve a Java exercise on a Codility web page.
Below is the link to the mentioned exercise and my solution.
https://codility.com/demo/results/demoH5GMV3-PV8
Can anyone tell what can I correct in my code in order to improve the score?
Just in case here is the task description:
A small frog wants to get to the other side of a river. The frog is currently located at position 0, and wants to get to position X. Leaves fall from a tree onto the surface of the river.
You are given a non-empty zero-indexed array A consisting of N integers representing the falling leaves. A[K] represents the position where one leaf falls at time K, measured in minutes.
The goal is to find the earliest time when the frog can jump to the other side of the river. The frog can cross only when leaves appear at every position across the river from 1 to X.
For example, you are given integer X = 5 and array A such that:
A[0] = 1
A[1] = 3
A[2] = 1
A[3] = 4
A[4] = 2
A[5] = 3
A[6] = 5
A[7] = 4
In minute 6, a leaf falls into position 5. This is the earliest time when leaves appear in every position across the river.
Write a function:
class Solution { public int solution(int X, int[] A); }
that, given a non-empty zero-indexed array A consisting of N integers and integer X, returns the earliest time when the frog can jump to the other side of the river.
If the frog is never able to jump to the other side of the river, the function should return −1.
For example, given X = 5 and array A such that:
A[0] = 1
A[1] = 3
A[2] = 1
A[3] = 4
A[4] = 2
A[5] = 3
A[6] = 5
A[7] = 4
the function should return 6, as explained above. Assume that:
N and X are integers within the range [1..100,000];
each element of array A is an integer within the range [1..X].
Complexity:
expected worst-case time complexity is O(N);
expected worst-case space complexity is O(X), beyond input storage (not counting the storage required for input arguments).
Elements of input arrays can be modified.
And here is my solution:
import java.util.ArrayList;
import java.util.List;
class Solution {
public int solution(int X, int[] A) {
int list[] = A;
int sum = 0;
int searchedValue = X;
List<Integer> arrayList = new ArrayList<Integer>();
for (int iii = 0; iii < list.length; iii++) {
if (list[iii] <= searchedValue && !arrayList.contains(list[iii])) {
sum += list[iii];
arrayList.add(list[iii]);
}
if (list[iii] == searchedValue) {
if (sum == searchedValue * (searchedValue + 1) / 2) {
return iii;
}
}
}
return -1;
}
}
You are using arrayList.contains inside a loop, which will traverse the whole list unnecessarily.
Here is my solution (I wrote it some time ago, but I believe it scores 100/100):
public int frog(int X, int[] A) {
int steps = X;
boolean[] bitmap = new boolean[steps+1];
for(int i = 0; i < A.length; i++){
if(!bitmap[A[i]]){
bitmap[A[i]] = true;
steps--;
if(steps == 0) return i;
}
}
return -1;
}
Here is my solution. It got me 100/100:
public int solution(int X, int[] A)
{
int[] B = A.Distinct().ToArray();
return (B.Length != X) ? -1 : Array.IndexOf<int>(A, B[B.Length - 1]);
}
100/100
public static int solution (int X, int[] A){
int[]counter = new int[X+1];
int ans = -1;
int x = 0;
for (int i=0; i<A.length; i++){
if (counter[A[i]] == 0){
counter[A[i]] = A[i];
x += 1;
if (x == X){
return i;
}
}
}
return ans;
}
A Java solution using Sets (Collections Framework) Got a 100%
import java.util.Set;
import java.util.TreeSet;
public class Froggy {
public static int solution(int X, int[] A){
int steps=-1;
Set<Integer> values = new TreeSet<Integer>();
for(int i=0; i<A.length;i++){
if(A[i]<=X){
values.add(A[i]);
}
if(values.size()==X){
steps=i;
break;
}
}
return steps;
}
Better approach would be to use Set, because it only adds unique values to the list. Just add values to the Set and decrement X every time a new value is added, (Set#add() returns true if value is added, false otherwise);
have a look,
public static int solution(int X, int[] A) {
Set<Integer> values = new HashSet<Integer>();
for (int i = 0; i < A.length; i++) {
if (values.add(A[i])) X--;
if (X == 0) return i;
}
return -1;
}
do not forget to import,
import java.util.HashSet;
import java.util.Set;
Here's my solution, scored 100/100:
import java.util.HashSet;
class Solution {
public int solution(int X, int[] A) {
HashSet<Integer> hset = new HashSet<Integer>();
for (int i = 0 ; i < A.length; i++) {
if (A[i] <= X)
hset.add(A[i]);
if (hset.size() == X)
return i;
}
return -1;
}
}
Simple solution 100%
public int solution(final int X, final int[] A) {
Set<Integer> emptyPosition = new HashSet<Integer>();
for (int i = 1; i <= X; i++) {
emptyPosition.add(i);
}
// Once all the numbers are covered for position, that would be the
// moment when the frog will jump
for (int i = 0; i < A.length; i++) {
emptyPosition.remove(A[i]);
if (emptyPosition.size() == 0) {
return i;
}
}
return -1;
}
Here's my solution.
It isn't perfect, but it's good enough to score 100/100.
(I think that it shouldn't have passed a test with a big A and small X)
Anyway, it fills a new counter array with each leaf that falls
counter has the size of X because I don't care for leafs that fall farther than X, therefore the try-catch block.
AFTER X leafs fell (because it's the minimum amount of leafs) I begin checking whether I have a complete way - I'm checking that every int in count is greater than 0.
If so, I return i, else I break and try again.
public static int solution(int X, int[] A){
int[] count = new int[X];
for (int i = 0; i < A.length; i++){
try{
count[A[i]-1]++;
} catch (ArrayIndexOutOfBoundsException e){ }
if (i >= X - 1){
for (int j = 0; j< count.length; j++){
if (count[j] == 0){
break;
}
if (j == count.length - 1){
return i;
}
}
}
}
return -1;
}
Here's my solution with 100 / 100.
public int solution(int X, int[] A) {
int len = A.length;
if (X > len) {
return -1;
}
int[] isFilled = new int[X];
int jumped = 0;
Arrays.fill(isFilled, 0);
for (int i = 0; i < len; i++) {
int x = A[i];
if (x <= X) {
if (isFilled[x - 1] == 0) {
isFilled[x - 1] = 1;
jumped += 1;
if (jumped == X) {
return i;
}
}
}
}
return -1;
}
Here's what I have in C#. It can probably still be refactored.
We throw away numbers greater than X, which is where we want to stop, and then we add numbers to an array if they haven't already been added.
When the count of the list has reached the expected number, X, then return the result. 100%
var tempArray = new int[X+1];
var totalNumbers = 0;
for (int i = 0; i < A.Length; i++)
{
if (A[i] > X || tempArray.ElementAt(A[i]) != 0)
continue;
tempArray[A[i]] = A[i];
totalNumbers++;
if (totalNumbers == X)
return i;
}
return -1;
below is my solution. I basically created a set which allows uniques only and then go through the array and add every element to set and keep a counter to get the sum of the set and then using the sum formula of consecutive numbers then I got 100% . Note : if you add up the set using java 8 stream api the solution is becoming quadratic and you get %56 .
public static int solution2(int X, int[] A) {
long sum = X * (X + 1) / 2;
Set<Integer> set = new HashSet<Integer>();
int setSum = 0;
for (int i = 0; i < A.length; i++) {
if (set.add(A[i]))
setSum += A[i];
if (setSum == sum) {
return i;
}
}
return -1;
}
My JavaScript solution that got 100 across the board. Since the numbers are assumed to be in the range of the river width, simply storing booleans in a temporary array that can be checked against duplicates will do. Then, once you have amassed as many numbers as the quantity X, you know you have all the leaves necessary to cross.
function solution(X, A) {
covered = 0;
tempArray = [];
for (let i = 0; i < A.length; i++) {
if (!tempArray[A[i]]) {
tempArray[A[i]] = true;
covered++
if(covered === X) return i;
}
}
return -1;
}
Here is my answer in Python:
def solution(X, A):
# write your code in Python 3.6
values = set()
for i in range (len(A)):
if A[i]<=X :
values.add(A[i])
if len(values)==X:
return i
return -1
Just tried this problem as well and here is my solution. Basically, I just declared an array whose size is equal to position X. Then, I declared a counter to monitor if the necessary leaves have fallen at the particular spots. The loop exits when these leaves have been met and if not, returns -1 as instructed.
class Solution {
public int solution(int X, int[] A) {
int size = A.length;
int[] check = new int[X];
int cmp = 0;
int time = -1;
for (int x = 0; x < size; x++) {
int temp = A[x];
if (temp <= X) {
if (check[temp-1] > 0) {
continue;
}
check[temp - 1]++;
cmp++;
}
if ( cmp == X) {
time = x;
break;
}
}
return time;
}
}
It got a 100/100 on the evaluation but I'm not too sure of its performance. I am still a beginner when it comes to programming so if anybody can critique the code, I would be grateful.
Maybe it is not perfect but its straightforward. Just made a counter Array to track the needed "leaves" and verified on each iteration if the path was complete. Got me 100/100 and O(N).
public static int frogRiver(int X, int[] A)
{
int leaves = A.Length;
int[] counter = new int[X + 1];
int stepsAvailForTravel = 0;
for(int i = 0; i < leaves; i++)
{
//we won't get to that leaf anyway so we shouldnt count it,
if (A[i] > X)
{
continue;
}
else
{
//first hit!, keep a count of the available leaves to jump
if (counter[A[i]] == 0)
stepsAvailForTravel++;
counter[A[i]]++;
}
//We did it!!
if (stepsAvailForTravel == X)
{
return i;
}
}
return -1;
}
This is my solution. I think it's very simple. It gets 100/100 on codibility.
set.contains() let me eliminate duplicate position from table.
The result of first loop get us expected sum. In the second loop we get sum of input values.
class Solution {
public int solution(int X, int[] A) {
Set<Integer> set = new HashSet<Integer>();
int sum1 = 0, sum2 = 0;
for (int i = 0; i <= X; i++){
sum1 += i;
}
for (int i = 0; i < A.length; i++){
if (set.contains(A[i])) continue;
set.add(A[i]);
sum2 += A[i];
if (sum1 == sum2) return i;
}
return -1;
}
}
Your algorithm is perfect except below code
Your code returns value only if list[iii] matches with searchedValue.
The algorithm must be corrected in such a way that, it returns the value if sum == n * ( n + 1) / 2.
import java.util.ArrayList;
import java.util.List;
class Solution {
public int solution(int X, int[] A) {
int list[] = A;
int sum = 0;
int searchedValue = X;
int sumV = searchedValue * (searchedValue + 1) / 2;
List<Integer> arrayList = new ArrayList<Integer>();
for (int iii = 0; iii < list.length; iii++) {
if (list[iii] <= searchedValue && !arrayList.contains(list[iii])) {
sum += list[iii];
if (sum == sumV) {
return iii;
}
arrayList.add(list[iii]);
}
}
return -1;
}
}
I think you need to check the performance as well. I just ensured the output only
This solution I've posted today gave 100% on codility, but respectivly #rafalio 's answer it requires K times less memory
public class Solution {
private static final int ARRAY_SIZE_LOWER = 1;
private static final int ARRAY_SIZE_UPPER = 100000;
private static final int NUMBER_LOWER = ARRAY_SIZE_LOWER;
private static final int NUMBER_UPPER = ARRAY_SIZE_UPPER;
public static class Set {
final long[] buckets;
public Set(int size) {
this.buckets = new long[(size % 64 == 0 ? (size/64) : (size/64) + 1)];
}
/**
* number should be greater than zero
* #param number
*/
public void put(int number) {
buckets[getBucketindex(number)] |= getFlag(number);
}
public boolean contains(int number) {
long flag = getFlag(number);
// check if flag is stored
return (buckets[getBucketindex(number)] & flag) == flag;
}
private int getBucketindex(int number) {
if (number <= 64) {
return 0;
} else if (number <= 128) {
return 1;
} else if (number <= 192) {
return 2;
} else if (number <= 256) {
return 3;
} else if (number <= 320) {
return 4;
} else if (number <= 384) {
return 5;
} else
return (number % 64 == 0 ? (number/64) : (number/64) + 1) - 1;
}
private long getFlag(int number) {
if (number <= 64) {
return 1L << number;
} else
return 1L << (number % 64);
}
}
public static final int solution(final int X, final int[] A) {
if (A.length < ARRAY_SIZE_LOWER || A.length > ARRAY_SIZE_UPPER) {
throw new RuntimeException("Array size out of bounds");
}
Set set = new Set(X);
int ai;
int counter = X;
final int NUMBER_REAL_UPPER = min(NUMBER_UPPER, X);
for (int i = 0 ; i < A.length; i++) {
if ((ai = A[i]) < NUMBER_LOWER || ai > NUMBER_REAL_UPPER) {
throw new RuntimeException("Number out of bounds");
} else if (ai <= X && !set.contains(ai)) {
counter--;
if (counter == 0) {
return i;
}
set.put(ai);
}
}
return -1;
}
private static int min(int x, int y) {
return (x < y ? x : y);
}
}
This is my solution it got me 100/100 and O(N).
public int solution(int X, int[] A) {
Map<Integer, Integer> leaves = new HashMap<>();
for (int i = A.length - 1; i >= 0 ; i--)
{
leaves.put(A[i] - 1, i);
}
return leaves.size() != X ? -1 : Collections.max(leaves.values());
}
This is my solution
public func FrogRiverOne(_ X : Int, _ A : inout [Int]) -> Int {
var B = [Int](repeating: 0, count: X+1)
for i in 0..<A.count {
if B[A[i]] == 0 {
B[A[i]] = i+1
}
}
var time = 0
for i in 1...X {
if( B[i] == 0 ) {
return -1
} else {
time = max(time, B[i])
}
}
return time-1
}
A = [1,2,1,4,2,3,5,4]
print("FrogRiverOne: ", FrogRiverOne(5, &A))
Actually I re-wrote this exercise without seeing my last answer and came up with another solution 100/100 and O(N).
public int solution(int X, int[] A) {
Set<Integer> leaves = new HashSet<>();
for(int i=0; i < A.length; i++) {
leaves.add(A[i]);
if (leaves.contains(X) && leaves.size() == X) return i;
}
return -1;
}
I like this one better because it is even simpler.
This one works good on codality 100% out of 100%. It's very similar to the marker array above but uses a map:
public int solution(int X, int[] A) {
int index = -1;
Map<Integer, Integer> map = new HashMap();
for (int i = 0; i < A.length; i++) {
if (!map.containsKey(A[i])) {
map.put(A[i], A[i]);
X--;
if (X == 0) {index = i;break;}
}
}
return index;
}
%100 with js
function solution(X, A) {
let leafSet = new Set();
for (let i = 0; i < A.length; i += 1) {
if(A[i] <= 0)
continue;
if (A[i] <= X )
leafSet.add(A[i]);
if (leafSet.size == X)
return i;
}
return -1;
}
With JavaScript following solution got 100/100.
Detected time complexity: O(N)
function solution(X, A) {
let leaves = new Set();
for (let i = 0; i < A.length; i++) {
if (A[i] <= X) {
leaves.add(A[i])
if (leaves.size == X) {
return i;
}
}
}
return -1;
}
100% Solution using Javascript.
function solution(X, A) {
if (A.length === 0) return -1
if (A.length < X) return -1
let steps = X
const leaves = {}
for (let i = 0; i < A.length; i++) {
if (!leaves[A[i]]) {
leaves[A[i]] = true
steps--
}
if (steps === 0) {
return i
}
}
return -1
}
C# Solution with 100% score:
using System;
using System.Collections.Generic;
class Solution {
public int solution(int X, int[] A) {
// go through the array
// fill a hashset, until the size of hashset is X
var set = new HashSet<int>();
int i = 0;
foreach (var a in A)
{
if (a <= X)
{
set.Add(a);
}
if (set.Count == X)
{
return i;
}
i++;
}
return -1;
}
}
https://app.codility.com/demo/results/trainingXE7QFJ-TZ7/
I have a very simple solution (100% / 100%) using HashSet. Lots of people check unnecessarily whether the Value is less than or equal to X. This task cannot be otherwise.
public static int solution(int X, int[] A) {
Set<Integer> availableFields = new HashSet<>();
for (int i = 0; i < A.length; i++) {
availableFields.add(A[i]);
if (availableFields.size() == X){
return i;
}
}
return -1;
}
public static int solutions(int X, int[] A) {
Set<Integer> values = new HashSet<Integer>();
for (int i = 0; i < A.length; i++) {
if (values.add(A[i])) {
X--;
}
if (X == 0) {
return i;
}
}
return -1;
}
This is my solution. It uses 3 loops but is constant time and gets 100/100 on codibility.
class FrogLeap
{
internal int solution(int X, int[] A)
{
int result = -1;
long max = -1;
var B = new int[X + 1];
//initialize all entries in B array with -1
for (int i = 0; i <= X; i++)
{
B[i] = -1;
}
//Go through A and update B with the location where that value appeared
for (int i = 0; i < A.Length; i++)
{
if( B[A[i]] ==-1)//only update if still -1
B[A[i]] = i;
}
//start from 1 because 0 is not valid
for (int i = 1; i <= X; i++)
{
if (B[i] == -1)
return -1;
//The maxValue here is the earliest time we can jump over
if (max < B[i])
max = B[i];
}
result = (int)max;
return result;
}
}
Short and sweet C++ code. Gets perfect 100%... Drum roll ...
#include <set>
int solution(int X, vector<int> &A) {
set<int> final;
for(unsigned int i =0; i< A.size(); i++){
final.insert(A[i]);
if(final.size() == X) return i;
}
return -1;
}

Categories

Resources