I am currently working on a functionality where I need to make a callback after, lets say 'n' number of threads are completed (or failed). Amongst the 'n' sub-tasks, n-1 tasks will be submitted to one particular thread pool and I will have access to all these n-1 futures.
I have no issue in making the callback upon completion of all futures. I intend to pass an atomic monitor to each of these n-1 tasks and initiate the callback basing on some count.
Now i'm stuck dealing with the other single thread. Basically this thread is a different execution workflow. As per the functionality after initiating these (n-1) tasks/threads, I will make a separate call to a different application (to perform some long running task) and will exit. Once the other application is done with its computation, it will push its results through a different end point.
So, while the separate service is pushing its result, I have to maintain some sort of context to club all these sub-tasks together. I could solve this using a singleton hashmap or a local cache (guava caches) using a unique ID and using the atomic monitor (shared amongst all the sub-tasks).
Before that I wanted to know the pros and cons of this approach. Also, I would really appreciate, if you can propose some sort of design pattern or framework for implementing this workflow in an elegant manner.
Related
I'm new in Google Cloud Platform. I'm using AppEngine standard Environment. I need to create Threads in java but I think it's not possible, is it?
Here is the situation:
I need to create Feeds for users.
There are three databases with names d1, d2, d3.
Whenever a user sends a request for feeds Java creates three threads, one for each database. For example t1 for d1, t2 for d2 and t3 for d3. These threads must run asynchronously for better performance and after that the data from these 3 threads is combined and sent in the response back to user.
I know how to write code for this, but as you know I need threads for this work. If AppEngine standard Env. doesn't allow it then what can I do? Is there any other way?
In GCP Documentation they said:
To avoid using threads, consider Task Queues
I read about Task Queues. There are two types of queues: Push and Pull. Both run asynchronously but they do not send a response back to the user. I think they are only designed to complete tasks in the background.
Can you please let me know how can I achieve my goal? What things I need to learn for this?
Note: the answer is based solely on documentation, I'm not a java user.
Threads are supported by the standard environment, but with restrictions. From Threads:
Caution: Threads are a powerful feature that are full of surprises. To learn more about using threads with Java, we recommend
Goetz, Java Concurrency in Practice.
A Java application can create a new thread, but there are some
restrictions on how to do it. These threads can't "outlive" the
request that creates them.
An application can
Implement java.lang.Runnable.
Create a thread factory by calling com.google.appengine.api.ThreadManager.currentRequestThreadFactory().
Call the factory's newRequestThread method, passing in the Runnable, newRequestThread(runnable), or use the factory object
returned by
com.google.appengine.api.ThreadManager.currentRequestThreadFactory()
with an ExecutorService (e.g., call
Executors.newCachedThreadPool(factory)).
However, you must use one of the methods on ThreadManager to create
your threads. You cannot invoke new Thread() yourself or use the
default thread factory.
An application can perform operations against the current thread, such
as thread.interrupt().
Each request is limited to 50 concurrent request threads. The Java
runtime will throw a java.lang.IllegalStateException if you try to
create more than 50 threads in a single request.
When using threads, use high level concurrency objects, such as
Executor and Runnable. Those take care of many of the subtle but
important details of concurrency like Interrupts and scheduling
and bookkeeping.
An elegant way to implement what you need would be to create a parametrable endpoint in your application
/runFeed?db=d1
And from your "main" application code you can perform a fetchAsync call from URLFetchService that will return you a java.util.concurrent.Future<HTTPResponse>
This will allow you a better monitoring of what your application does.
This will add network latency to your application and increase its cost since urlFetchService is not free.
I am going through different concurrency model in multi-threading environment (http://tutorials.jenkov.com/java-concurrency/concurrency-models.html)
The article highlights about three concurrency models.
Parallel Workers
The first concurrency model is what I call the parallel worker model. Incoming jobs are assigned to different workers.
Assembly Line
The workers are organized like workers at an assembly line in a factory. Each worker only performs a part of the full job. When that part is finished the worker forwards the job to the next worker.
Each worker is running in its own thread, and shares no state with other workers. This is also sometimes referred to as a shared nothing concurrency model.
Functional Parallelism
The basic idea of functional parallelism is that you implement your program using function calls. Functions can be seen as "agents" or "actors" that send messages to each other, just like in the assembly line concurrency model (AKA reactive or event driven systems). When one function calls another, that is similar to sending a message.
Now I want to map java API support for these three concepts
Parallel Workers : Is it ExecutorService,ThreadPoolExecutor, CountDownLatch API?
Assembly Line : Sending an event to messaging system like JMS & using messaging concepts of Queues & Topics.
Functional Parallelism: ForkJoinPool to some extent & java 8 streams. ForkJoin pool is easy to understand compared to streams.
Am I correct in mapping these concurrency models? If not please correct me.
Each of those models says how the work is done/splitted from a general point of view, but when it comes to implementation, it really depends on your exact problem. Generally I see it like this:
Parallel Workers: a producer creates new jobs somewhere (e.g in a BlockingQueue) and many threads (via an ExecutorService) process those jobs in parallel. Of course, you could also use a CountDownLatch, but that means you want to trigger an action after exactly N subproblems have been processed (e.g you know your big problem may be split in N smaller problems, check the second example here).
Assembly Line: for every intermediate step, you have a BlockingQueue and one Thread or an ExecutorService. On each step the jobs are taken from one BlickingQueue and put in the next one, to be processed further. To your idea with JMS: JMS is there to connect distributed components and is part of the Java EE and was not thought to be used in a high concurrent context (messages are kept usually on the hard disk, before being processed).
Functional Parallelism: ForkJoinPool is a good example on how you could implement this.
An excellent question to which the answer might not be quite as satisfying. The concurrency models listed show some of the ways you might want to go about implementing an concurrent system. The API provides tools used to implementing any of these models.
Lets start with ExecutorService. It allows you to submit tasks to be executed in a non-blocking way. The ThreadPoolExecutor implementation then limits the maximum number of threads available. The ExecutorService does not require the task to perform the complete process as you might expect of a parallel worker. The task may be limited to specific part of the process and send a message upon completion that starts the next step in an assembly line.
The CountDownLatch and the ExecutorService provide a means to block until all workers have completed that may come in handy if a certain process has been divided to different concurrent sub-tasks.
The point of JMS is to provide a means for messaging between components. It does not enforce a specific model for concurrency. Queues and topics denote how a message is sent from a publisher to a subscriber. When you use queues the message is sent to exactly one subscriber. Topics on the other hand broadcast the message to all subscribers of the topic.
Similar behavior could be achieved within a single component by for example using the observer pattern.
ForkJoinPool is actually one implementation of ExecutorService (which might highlight the difficulty of matching a model and an implementation detail). It just happens to be optimized for working with large amount of small tasks.
Summary: There are multiple ways to implement a certain concurrency model in the Java environment. The interfaces, classes and frameworks used in implementing a program may vary regardless of the concurrency model chosen.
Actor model is another example for an Assembly line. Ex: akka
Suppose I need to execute N tasks in the same thread. The tasks may sometimes need some values from an external storage. I have no idea in advance which task may need such a value and when. It is much faster to fetch M values in one go rather than the same M values in M queries to the external storage.
Note that I cannot expect cooperation from tasks themselves, they can be concidered as nothing more than java.lang.Runnable objects.
Now, the ideal procedure, as I see it, would look like
Execute all tasks in a loop. If a task requests an external value, remember this, suspend the task and switch to the next one.
Fetch the values requested at the previous step, all at once.
Remove all completed task (suspended ones don't count as completed).
If there are still tasks left, go to step 1, but instead of executing a task, continue its execution from the suspended state.
As far as I see, the only way to "suspend" and "resume" something would be to remove its related frames from JVM stack, store them somewhere, and later push them back onto the stack and let JVM continue.
Is there any standard (not involving hacking at lower level than JVM bytecode) way to do this?
Or can you maybe suggest another possible way to achieve this (other than starting N threads or making tasks cooperate in some way)?
It's possible using something like quasar that does stack-slicing via an agent. Some degree of cooperation from the tasks is helpful, but it is possible to use AOP to insert suspension points from outside.
(IMO it's better to be explicit about what's going on (using e.g. Future and ForkJoinPool). If some plain code runs on one thread for a while and is then "magically" suspended and jumps to another thread, this can be very confusing to debug or reason about. With modern languages and libraries the overhead of being explicit about the asynchronicity boundaries should not be overwhelming. If your tasks are written in terms of generic types then it's fairly easy to pass-through something like scalaz Future. But that wouldn't meet your requirements as given).
As mentioned, Quasar does exactly that (it usually schedules N fibers on M threads, but you can set M to 1), using bytecode transformations. It even gives each task (AKA "fiber") its own stack trace, so you can dump it and get a complete stack trace without any interference from any other task sharing the thread.
Well you could try this
you need
A mechanism to save the current state of the task because when the task returns its frame would be popped from the call stack. Based on the return value or something like that you can determine weather it completed or not since you would need to re-execute it from the point where it left thus u need to preserve the state information.
Create a Request Data structure for each task. When ever a task wants to request something it logs it there , The data structure should support all the possible request a task can make.
Store these DS in a Map. At the end of the loop you can query this DS to determine the kind of resource required by each task.
get the resource put it in the DS . Start the task from the state when it returned.
The task queries the DS gets the resource.
The task should use this DS when ever it wants to use an external resource.
you would need to design the method in which resource is requested with special consideration since when you will re-execute the task again you would need to call this method yourself so that the task can execute from where it left.
*DS -> Data Structure
hope it helps.
Is there a way to assure FIFO (first in, first out) behavior with Task Queues on GAE?
GAE Documentation says that FIFO is one of the factors that affect task execution order, but the same documentation says that “the system's scheduling may 'jump' new tasks to the head of the queue” and I have confirmed this behavior with a test. The effect: my events are being processed out of order.
Docs says:
https://developers.google.com/appengine/docs/java/taskqueue/overview-push
The order in which tasks are executed depends on several factors:
The position of the task in the queue. App Engine attempts to process tasks based on FIFO > (first in, first out) order. In general, tasks are inserted into the end of a queue, and
executed from the head of the queue.
The backlog of tasks in the queue. The system attempts to deliver the lowest latency
possible for any given task via specially optimized notifications to the scheduler.
Thus, in the case that a queue has a large backlog of tasks, the
system's scheduling may "jump" new tasks to the head of the queue.
The value of the task's etaMillis property. This property specifies the
earliest time that a task can execute. App Engine always waits until
after the specified ETA to process push tasks.
The value of the task's countdownMillis property. This property specifies the minimum
number of seconds to wait before executing a task. Countdown and eta
are mutually exclusive; if you specify one, do not specify the other.
What I need to do? In my use case, I'll process 1-2 million events/day coming from vehicles. These events can be sent at any interval (1 sec, 1 minute or 1 hour). The order of the event processing has to be assured. I need process by timestamp order, which is generated on a embedded device inside the vehicle.
What I have now?
A Rest servlet that is called by the consumer and creates a Task (Event data is on payload).
After this, a worker servlet get this Task and:
Deserialize Event data;
Put Event on Datastore;
Update Vehicle On Datastore.
So, again, is there any way to assure just FIFO behavior? Or how can I improve this solution to get this?
You need to approach this with three separate steps:
Implement a Sharding Counter to generate a monotonically
increasing ID. As much as I like to use the timestamp from
Google's server to indicate task ordering, it appears that timestamps
between GAE servers might vary more than what your requirement is.
Add your tasks to a Pull Queue instead of a Push Queue. When
constructing your TaskOption, add the ID obtained from Step #1 as a tag.
After adding the task, store the ID somewhere on your datastore.
Have your worker servlet lease Tasks by a certain tag from the Pull Queue.
Query the datastore to get the earliest ID that you need to fetch, and use the ID as
the lease tag. In this way, you can simulate FIFO behavior for your task queue.
After you finished your processing, delete the ID from your datastore, and don't forget to delete the Task from your Pull Queue too. Also, I would recommend you run your task consumptions on the Backend.
UPDATE:
As noted by Nick Johnson and mjaggard, sharding in step #1 doesn't seem to be viable to generate a monotonically increasing IDs, and other sources of IDs would then be needed. I seem to recall you were using timestamps generated by your vehicles, would it be possible to use this in lieu of a monotonically increasing ID?
Regardless of the way to generate the IDs, the basic idea is to use datastore's query mechanism to produce a FIFO ordering of Tasks, and use task Tag to pull specific task from the TaskQueue.
There is a caveat, though. Due to the eventual consistency read policy on high-replication datastores, if you choose HRD as your datastore (and you should, the M/S is deprecated as of April 4th, 2012), there might be some stale data returned by the query on step #2.
I think the simple answer is "no", however partly in order to help improve the situation, I am using a pull queue - pulling 1000 tasks at a time and then sorting them. If timing isn't important, you could sort them and put them into the datastore and then complete a batch at a time. You've still got to work out what to do with the tasks at the beginning and ends of the batch - because they might be out of order with interleaving tasks in other batches.
Ok. This is how I've done it.
1) Rest servlet that is called from the consumer:
If Event sequence doesn't match Vehicle sequence (from datastore)
Creates a task on a "wait" queue to call me again
else
State validation
Creates a task on the "regular" queue (Event data is on payload).
2) A worker servlet gets the task from the "regular" queue, and so on... (same pseudo code)
This way I can pause the "regular" queue in order to do a data maintenance without losing events.
Thank you for your answers. My solution is a mix of them.
You can put the work to be done in a row in the datastore with a create timestamp and then fetch work tasks by that timestamp, but if your tasks are being created too quickly you will run into latency issues.
Don't know the answer myself, but it may be possible that tasks enqueued using a deferred function might execute in order submitted. Likely you will need an engineer from G. to get an answer. Pull queues as suggested seem a good alternative, plus this would allow you to consider batching your put()s.
One note about sharded counters: they increase the probability of monotonically increasing ids, but do not guarantee them.
The best way to handle this, the distributed way or "App Engine way" is probably to modify your algorithm and data collection to work with just a timestamp, allowing arbitrary ordering of tasks.
Assuming this is not possible or too difficult, you could modify your algorithm as follow:
when creating the task don't put the data on payload but in the datastore, in a Kind with an ordering on timestamps and stored as a child entity of whatever entity you're trying to update (Vehicule?). The timestamps should come from the client, not the server, to guarantee the same ordering.
run a generic task that fetch the data for the first timestamp, process it, and then delete it, inside a transaction.
Following this thread, I am unclear as to whether the strict FIFO requirement is for all transactions received, or on a per-vehicle basis. Latter has more options vs. former.
EDIT: This is basically a "how to properly implement a data flow engine in Java" question, and I feel this cannot be adequately answered in a single answer (it's like asking, "how to properly implement an ORM layer" and getting someone to write out the details of Hibernate or something), so consider this question "closed".
Is there an elegant way to model a dynamic dataflow in Java? By dataflow, I mean there are various types of tasks, and these tasks can be "connected" arbitrarily, such that when a task finishes, successor tasks are executed in parallel using the finished tasks output as input, or when multiple tasks finish, their output is aggregated in a successor task (see flow-based programming). By dynamic, I mean that the type and number of successors tasks when a task finishes depends on the output of that finished task, so for example, task A may spawn task B if it has a certain output, but may spawn task C if has a different output. Another way of putting it is that each task (or set of tasks) is responsible for determining what the next tasks are.
Sample dataflow for rendering a webpage: I have as task types: file downloader, HTML/CSS renderer, HTML parser/DOM builder, image renderer, JavaScript parser, JavaScript interpreter.
File downloader task for HTML file
HTML parser/DOM builder task
File downloader task for each embedded file/link
If image, image renderer
If external JavaScript, JavaScript parser
JavaScript interpreter
Otherwise, just store in some var/field in HTML parser task
JavaScript parser for each embedded script
JavaScript interpreter
Wait for above tasks to finish, then HTML/CSS renderer (obviously not optimal or perfectly correct, but this is simple)
I'm not saying the solution needs to be some comprehensive framework (in fact, the closer to the JDK API, the better), and I absolutely don't want something as heavyweight is say Spring Web Flow or some declarative markup or other DSL.
To be more specific, I'm trying to think of a good way to model this in Java with Callables, Executors, ExecutorCompletionServices, and perhaps various synchronizer classes (like Semaphore or CountDownLatch). There are a couple use cases and requirements:
Don't make any assumptions on what executor(s) the tasks will run on. In fact, to simplify, just assume there's only one executor. It can be a fixed thread pool executor, so a naive implementation can result in deadlocks (e.g. imagine a task that submits another task and then blocks until that subtask is finished, and now imagine several of these tasks using up all the threads).
To simplify, assume that the data is not streamed between tasks (task output->succeeding task input) - the finishing task and succeeding task don't have to exist together, so the input data to the succeeding task will not be changed by the preceeding task (since it's already done).
There are only a couple operations that the dataflow "engine" should be able to handle:
A mechanism where a task can queue more tasks
A mechanism whereby a successor task is not queued until all the required input tasks are finished
A mechanism whereby the main thread (or other threads not managed by the executor) blocks until the flow is finished
A mechanism whereby the main thread (or other threads not managed by the executor) blocks until certain tasks have finished
Since the dataflow is dynamic (depends on input/state of the task), the activation of these mechanisms should occur within the task code, e.g. the code in a Callable is itself responsible for queueing more Callables.
The dataflow "internals" should not be exposed to the tasks (Callables) themselves - only the operations listed above should be available to the task.
Note that the type of the data is not necessarily the same for all tasks, e.g. a file download task may accept a File as input but will output a String.
If a task throws an uncaught exception (indicating some fatal error requiring all dataflow processing to stop), it must propagate up to the thread that initiated the dataflow as quickly as possible and cancel all tasks (or something fancier like a fatal error handler).
Tasks should be launched as soon as possible. This along with the previous requirement should preclude simple Future polling + Thread.sleep().
As a bonus, I would like to dataflow engine itself to perform some action (like logging) every time task is finished or when no has finished in X time since last task has finished. Something like: ExecutorCompletionService<T> ecs; while (hasTasks()) { Future<T> future = ecs.poll(1 minute); some_action_like_logging(); if (future != null) { future.get() ... } ... }
Are there straightforward ways to do all this with Java concurrency API? Or if it's going to complex no matter what with what's available in the JDK, is there a lightweight library that satisfies the requirements? I already have a partial solution that fits my particular use case (it cheats in a way, since I'm using two executors, and just so you know, it's not related at all to the web browser example I gave above), but I'd like to see a more general purpose and elegant solution.
How about defining interface such as:
interface Task extends Callable {
boolean isReady();
}
Your "dataflow engine" would then just need to manage a collection of Task objects i.e. allow new Task objects to be queued for excecution and allow queries as to the status of a given task (so maybe the interface above needs extending to include id and/or type). When a task completes (and when the engine starts of course) the engine must just query any unstarted tasks to see if they are now ready, and if so pass them to be run on the executor. As you mention, any logging, etc. could also be done then.
One other thing that may help is to use Guice (http://code.google.com/p/google-guice/) or a similar lightweight DI framework to help wire up all the objects correctly (e.g. to ensure that the correct executor type is created, and to make sure that Tasks that need access to the dataflow engine (either for their isReady method or for queuing other tasks, say) can be provided with an instance without introducing complex circular relationships.
HTH, but please do comment if I've missed any key aspects...
Paul.
Look at https://github.com/rfqu/df4j — a simple but powerful dataflow library. If it lacks some desired features, they can be added easily.