how to get fibonacci series within range without recursion - java

I am trying to calculate the fibonacci numbers within specific range(wide range of numbers in thousands)
I have wrote this but for I do not know to to modify it to make it within a range for example i need to get fibonacci numbers between 5027 and 8386589
class Fibonacci
{
public static void main(String args[])
{
int n1=0,n2=1,n3,i,count=10;
System.out.print(n1+" "+n2);//printing 0 and 1
for(i=2;i<count;++i)
{
n3=n1+n2;
System.out.print(" "+n3);
n1=n2;
n2=n3;
}
}
}

int fib(int low, int high){
// Initialize first three Fibonacci Numbers
int n1 = 0, n2 = 1, n3 = 1;
// Count fibonacci numbers in given range
int result = 0;
while (n1 <= high){
if (n1 >= low)
result++;
f1 = f2;
f2 = f3;
f3 = f1 + f2;
}
return result;
}

Try using a while loop instead of a for loop and include an if-statement
while(n3<8386589){
if(n3>5027){
System.out.print(n3+" ");
}
n3=n1+n2;
n1=n2;
n2=n3;
}

FWIW, here's my version (also using a while loop):
private static void Fibonacci(long lower, long upper)
{
long curr = 1, prev = 1;
while (curr <= upper)
{
long temp = curr;
curr = prev + curr;
prev = temp;
if (curr >= lower && curr <= upper)
{
System.out.println(curr);
}
}
}

The some idea just using BigInteger for bigger values :
private static BigInteger function_f(int n) {
// if n = 0 => f(n) = 0
if(n == 0)
return new BigInteger("0");
// Initialization of variables
// if n = 1 => f(n) = 1 (case included)
BigInteger result = new BigInteger("1");
BigInteger last_fn = new BigInteger("0");
BigInteger before_last_fn = new BigInteger("0");
// Do the loop for n > 1
for (int i = 2; i <= n; i++) {
// f(n - 2)
before_last_fn = last_fn;
// f(n - 1)
last_fn = result;
// f(n - 1) + f(n - 2)
result = last_fn.add(before_last_fn);
}
// Return the result
return result;
}

Related

Summing up huge fibonacci numbers (upto 10^18)

I recently came across a problem where given a l and r you need to find out the sum of all x such that l <= x <= r (mod10^9 + 7).
And,
1 <= l <= r <= 10^18
Let sum(x) be the sum of fibonacci numbers upto x and let fibo(x) be the xth fibonacci number. It is known that
sum(x) = fibo(x+2) - 1
Using this I used this post to calculate the nth fibonacci term in O(logn) time.
I was wondering if it can be done any faster than this. Below is my implementation
public class FastFibonacci {
private static Map<BigInteger, BigInteger> map;
private static BigInteger mod = BigInteger.valueOf(1000000007);
public static BigInteger nthFibonacci(BigInteger num) {
if (num.compareTo(BigInteger.valueOf(2)) <= 0) return BigInteger.ONE;
return solve(num.subtract(BigInteger.ONE)).mod(BigInteger.valueOf(10000));
}
public static BigInteger solve(BigInteger num) {
if (map.get(num) != null) {
return map.get(num);
} else {
BigInteger k = num.divide(BigInteger.valueOf(2));
if (num.mod(BigInteger.valueOf(2)).compareTo(BigInteger.ZERO) == 0) {
// f(2*k)
map.put(num, (solve(k).multiply(solve(k)).mod(mod).add(solve(k.subtract(BigInteger.ONE)).multiply(solve(k.subtract(BigInteger.ONE))).mod(mod)).mod(mod)));
return map.get(num);
} else {
// f(2*k + 1)
map.put(num, (solve(k).multiply(solve(k.add( BigInteger.ONE))).mod(mod).add(solve(k).multiply(solve(k.subtract(BigInteger.ONE))).mod(mod))).mod(mod));
return map.get(num);
}
}
}
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
map = new HashMap<>();
map.put(BigInteger.ZERO, BigInteger.ONE);
map.put(BigInteger.ONE, BigInteger.ONE);
int test = in.nextInt();
BigInteger[] ls = new BigInteger[test];
BigInteger[] rs = new BigInteger[test];
for (int i = 0; i < test; i++) {
ls[i] = new BigInteger(in.readString());
rs[i] = new BigInteger(in.readString());
}
StringBuilder sb = new StringBuilder();
for (int i = 0; i < test; i++) {
BigInteger sumUptoL = nthFibonacci(ls[i]).subtract(BigInteger.ONE);
BigInteger sumUptoR = nthFibonacci(rs[i].add(BigInteger.valueOf(1))).subtract(BigInteger.ONE);
sb.append(sumUptoR.subtract(sumUptoL));
sb.append("\n");
}
System.out.print(sb.toString());
}
}
Assuming that for a given number N you only want to know fib(N+2)-1 and you don't really need to show all the sequence, you can use a non-recursive approach. The following function uses double, but you can refactor it to BigInteger to accept bigger values:
public double getFibonacci(int n) {
double f1 = Math.pow(((1 + Math.sqrt(5)) / 2.0), n);
double f2 = Math.pow(((1 - Math.sqrt(5)) / 2.0), n);
return Math.floor((f1 - f2) / Math.sqrt(5));
}

difficulty with fibonacci function

I'm supposed to change this recursive function, into an iterative function...
int rFib(int n)
{ //assumes n >= 0
if(n <= 1)
return n;
else
return (rFib(n-1) + rFib(n-2));
}
But I'm drawing a blank on the mathematical view of this... I would appreciate any assistance. I was able to get the other 3 functions, but I just can't seem to figure out the math of this one.
public static int fib(int n)
{
int theFib = 1;
while(n > 1)
{
theFib = n - 1;
n = n + n - 2;
}
System.out.println(theFib);
return theFib;
}
The next number in the Fibonacci sequence is the sum of the last two numbers, so you'll need to remember the last two numbers.
In pseudo code, since you should do some of the homework yourself:
n1 = 0
n2 = 1
loop
n = n1 + n2
n1 = n2
n2 = n
end loop
I'll leave it to you to limit the looping.
You can find an example here.
The code in question:
public class FibonacciIterative {
public static int fib(int n) {
int prev1=0, prev2=1;
for(int i=0; i<n; i++) {
int savePrev1 = prev1;
prev1 = prev2;
prev2 = savePrev1 + prev2;
}
return prev1;
}
}
It does not really matter which direction (up or down) you count. The challenge is to deal with the limits properly.
Using dynamic programming technique:
static int fib(int n) {
int[] fibs = new int[n + 1];
for (int i = 0; i <= n; i++) {
if (i <= 1) {
fibs[i] = i;
} else {
fibs[i] = fibs[i - 1] + fibs[i - 2];
}
}
return fibs[n];
}

Need help in fibonacci search algorithm

I am trying to put java code for fibonacci search with my understanding gained from
http://en.wikipedia.org/wiki/Fibonacci_search :
Let k be defined as an element in F, the array of Fibonacci numbers. n = Fm is the array size. If the array size is not a Fibonacci number, let Fm be the smallest number in F that is greater than n.
The array of Fibonacci numbers is defined where Fk+2 = Fk+1 + Fk, when k ≥ 0, F1 = 1, and F0 = 0.
To test whether an item is in the list of ordered numbers, follow these steps:
Set k = m.
If k = 0, stop. There is no match; the item is not in the array.
Compare the item against element in Fk−1.
If the item matches, stop.
If the item is less than entry Fk−1, discard the elements from positions Fk−1 + 1 to n. Set k = k − 1 and return to step 2.
If the item is greater than entry Fk−1, discard the elements from positions 1 to Fk−1. Renumber the remaining elements from 1 to Fk−2, set k = k − 2, and return to step 2.
The below is my code:
package com.search.demo;
public class FibonacciSearch {
static int[] a = {10,20,30,40,50,60,70,80,90,100};
static int required = 70;
static int m = 2;
static int p = 0;
static int q = 0;
/**
* #param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
FibonacciSearch fs = new FibonacciSearch();
fs.findm();
fibSearch(required);
}
private void findm(){
//here you have to find Fm which matches size of searching array, or which is close to it.
int n = a.length;
int fibCurrent = 1;
int fibPrev1 = 1;
int fibPrev2 = 0;
while(n > fibCurrent){
fibPrev2 = fibPrev1;
fibPrev1 = fibCurrent;
fibCurrent = fibPrev1 + fibPrev2;
m++;
}
p = m-1;
q = m-2;
}
public static int fibSearch(int no){
for(;;){
if(m == 0){
System.out.println("not found");
return -1;
}
int j = f(p);
if(no == a[j]){
System.out.println("found at "+p);
}else if(no < a[j]){
m = p;
p = m - 1;
q = m - 2;
}else if(no > a[j]){
m = q; // as per the step 6..
p = m-1;
q = m-2;
}
}
//return m;
}
public static int f(int val){
if(val == 2 || val == 1 || val == 0){
return 1;
}
return (f(val-1) + f(val-2));
}
}
Please correct me what I am doing wrong, and help me understand it clearly..
I have seen this Fibonacci Search and http://www.cs.utsa.edu/~wagner/CS3343/binsearch/searches.html but I am not able to understand..
while(n > fibCurrent){
fibPrev2 = fibPrev1;
fibPrev1 = fibCurrent;
fibCurrent = fibPrev1 + fibPrev2;
m++;
}
This part in the findm() function is actually comparing nth fibonacci number but according to algorithm it should be cumulative sum of the fibonacci numbers upto that point.
Rather you can search for the element in while loop of findm.
Finally I am able to solve the puzzle, that's stopping me..
I think the below code should help someone who are stuck as I did.
package com.search.demo;
public class FibonacciSearch {
int a[] = {10,20,30,40,50,60,70,80,90,100};
static FibonacciSearch fs;
/**
* #param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
fs = new FibonacciSearch();
int location = fs.find(70);
if(location < 0){
System.out.println("number not found..");
}else{
System.out.println("found at location "+location);
}
}
private int find(int no){
int n = a.length;
int m = findFm(n); //m = Fm iff n is Fibonacci number else returns Fm+1
int p = fibSequenceIterative(m-1); //p = Fm-1, always a fibonacci number
int q = fibSequenceIterative(m -2); //q = Fm-2, always a fibonacci number
while(true){
if(no == a[m]){
return m;
}else if (no < a[m]){
if(q == 0){
return -(m - 1);// we crossed 0th index in array, number not found.
}
m = m - q; //moved to 1 step left towards a fibonacci num
int tmp = p;//hold this temporarily
p = q; //move p to 1 step left into another fibonacci num
q = tmp - q;//moved q to 1 step left....
}else if(no > a[m]){
if(p == 1){
return -m;//we reached 0th index in array again and number not found..
}
m = m + q;
p = p - q;
q = q - p;
}
}
}
private int findFm(int n){
int prev = 1;
int curr = 1;
int next = 0;
if(n == 0){
next = 0;
return -1;
}else if(n == 1 || n == 2){
next = 1;
return 1;
}else{
for(int i = 3; ; i++){
next = prev + curr;
prev = curr;
curr = next;
System.out.println("prev = "+prev+" curr = "+curr+" next = "+next);
if(n <= curr){
System.out.println("n = "+n+" curr = "+curr);
return i;
}
}
//return -1;//we should not get here..
}
}
/* Iterative method for printing Fibonacci sequence..*/
private int fibSequenceIterative(int n){
int prev = 1;
int curr = 1;
int next = 0;
if(n == 0){
next = 0;
//return 0;
}else if(n == 1 || n == 2){
next = 1;
//return 1;
}else{
for(int i = 3; i <= n; i++){
next = prev + curr;
prev = curr;
curr = next;
}
return next;
}
return next;
}
}
The bit of code what I am doing wrong is managing the indexes, which does influence the position of dividing the array at an index postion.
the m should be find first, to the value that matches n (size of array). if it doesn't match it should be the next value at which the F(x) will be > n. i.e., in my case size is 10 which doesn't match with any fibonacci number, so the next value in the fibonacci series is 13. and the index of i at which our condition satisfied is F(7) = 13 which is > 10. So m = 7
and now p and q are 2 consecutive fibonacci numbers which always determine the interval at which to divide the array.
read the below:
Take N = 54, so that N+1 = 55 = F[10]. We will be searching the sorted array: A[1], ..., A[54], inclusive. The array indexes are strictly between the two Fibonacci number: 0 < 55. Instead of the midpoint, this search uses the next Fibonacci number down from F[10] = 55, namely F[9] = 34. Instead of dividing the search interval in two, 50% on either side, we divide roughly by the golden ratio, roughly 62% to the left and 38% to the right. If y == A[34], then we've found it. Otherwise we have two smaller intervals to search: 0 to 34 and 34 to 55, not including the endpoints. If you have two successive Fibonacci numbers, it's easy to march backwards using subtraction, so that above, the next number back from 34 is 55 - 34 = 21. We would break up 0 to 34 with a 21 in the middle. The range from 34 to 55 is broken using the next Fibonacci number down: 34 - 21 = 13. The whole interval [34, 55] has length 21, and we go 13 past the start, to 34 + 13 = 47. Notice that this is not a Fibonacci number -- it's the lengths of all the intervals that are.(copied from http://www.cs.utsa.edu/~wagner/CS3343/binsearch/fibsearch.html)

Java combination function has a limit of small number. How to use math Big int?

I am learning java myself these days. This function is to calculate the Combination. However, I found that there is a very small limit of the number n and k in this function. Each time if I type a large n or k, for instance, 100, it gives me
Exception in thread "main" java.lang.ArithmeticException: / by zero
at Combination.combination(Combination.java:29)
at Combination.main(Combination.java:47)
Or gives me a negative number...
Is there a way to make it work for large number like 10000?
Thanks!
import java.util.HashMap; import java.util.Map;
public class Combination {
private Map<Long,Long> factorialMap = new HashMap<Long,Long>();
public Long getFactorial(int number) {
Long val = factorialMap.get(number);
if(val != null) {
return val;
} else {
val = getFactorialRecursive(number);
factorialMap.put((long) number, val);
return val;
}
}
public Long getFactorialRecursive(int number) {
if(number == 1 || number == 0) {
return 1L;
} else {
return number * getFactorialRecursive(number-1);
}
}
public Long combination(int fromVal, int chooseVal) {
return getFactorial(fromVal)/(getFactorial(chooseVal)*getFactorial(fromVal-chooseVal));
}
public static void main(String[] args) {
int n, k;
Combination comb = new Combination();
java.util.Scanner console = new java.util.Scanner(System.in);
while (true) // will break with k > n or illegal k or n
{ System.out.print ("Value for n: ");
n = console.nextInt();
if ( n < 0 ) break;
System.out.print ("Value for k: ");
k = console.nextInt();;
if ( k > n || k < 0 )
break;
System.out.print(n +" choose " + k + " = ");
System.out.println(comb.combination(n,k));
}
console.nextLine(); // Set up for "Press ENTER...
} }
You should use the BigInteger object: http://docs.oracle.com/javase/7/docs/api/java/math/BigInteger.html
In particular, your problem is that 21! is too large for even a long and therefore overflows. Another option would be to use a double, but that will lose precision, so if you need integer accuracy BigInteger is the way to go.
Using BigInteger you will need to convert your integer to BigInteger:
BigInteger bi = new BigInteger(intVal+"");
Then use the add, multiply, divide and subtract (amongst others) to manipulate your values (like):
bi = bi.add(bi2);
Then you can use the method longValue() to get the value back (assuming it fits in a long):
return bi.longValue();
I suggest you consider that Java will not recurse more than about 10,000 times by default and you don't need to calculate such large factorials in the first place.
e.g. 1000!/999! is 1000
If you use a loop you can stop much earlier.
public static BigInteger combination(int n, int r) {
if (r * 2 > n) r = n - r;
BigInteger num = BigInteger.ONE;
BigInteger nr = BigInteger.valueOf(n - r);
for (int i = n; i > r; i--) {
num = num.multiply(BigInteger.valueOf(i));
while (nr.compareTo(BigInteger.ONE) > 0 && num.mod(nr).equals(BigInteger.ZERO)) {
num = num.divide(nr);
nr = nr.subtract(BigInteger.ONE);
}
}
while (nr.compareTo(BigInteger.ONE) > 0) {
num = num.divide(nr);
nr = nr.subtract(BigInteger.ONE);
}
return num;
}
BTW I wouldn't use Long when I mean to use long as it less efficient.
For comparison I have included the same code using long.
public static long combination2(int n, int r) {
if (r * 2 > n) r = n - r;
long num = 1;
int nr = n - r;
for (int i = n; i > r; i--) {
num *= i;
while (nr > 1 && num % nr == 0) {
num /= nr--;
}
}
while (nr > 1)
num /= nr--;
return num;
}

Fastest algorithm to check if a number is pandigital?

Pandigital number is a number that contains the digits 1..number length.
For example 123, 4312 and 967412385.
I have solved many Project Euler problems, but the Pandigital problems always exceed the one minute rule.
This is my pandigital function:
private boolean isPandigital(int n){
Set<Character> set= new TreeSet<Character>();
String string = n+"";
for (char c:string.toCharArray()){
if (c=='0') return false;
set.add(c);
}
return set.size()==string.length();
}
Create your own function and test it with this method
int pans=0;
for (int i=123456789;i<=123987654;i++){
if (isPandigital(i)){
pans++;
}
}
Using this loop, you should get 720 pandigital numbers. My average time was 500 millisecond.
I'm using Java, but the question is open to any language.
UPDATE
#andras answer has the best time so far, but #Sani Huttunen answer inspired me to add a new algorithm, which gets almost the same time as #andras.
C#, 17ms, if you really want a check.
class Program
{
static bool IsPandigital(int n)
{
int digits = 0; int count = 0; int tmp;
for (; n > 0; n /= 10, ++count)
{
if ((tmp = digits) == (digits |= 1 << (n - ((n / 10) * 10) - 1)))
return false;
}
return digits == (1 << count) - 1;
}
static void Main()
{
int pans = 0;
Stopwatch sw = new Stopwatch();
sw.Start();
for (int i = 123456789; i <= 123987654; i++)
{
if (IsPandigital(i))
{
pans++;
}
}
sw.Stop();
Console.WriteLine("{0}pcs, {1}ms", pans, sw.ElapsedMilliseconds);
Console.ReadKey();
}
}
For a check that is consistent with the Wikipedia definition in base 10:
const int min = 1023456789;
const int expected = 1023;
static bool IsPandigital(int n)
{
if (n >= min)
{
int digits = 0;
for (; n > 0; n /= 10)
{
digits |= 1 << (n - ((n / 10) * 10));
}
return digits == expected;
}
return false;
}
To enumerate numbers in the range you have given, generating permutations would suffice.
The following is not an answer to your question in the strict sense, since it does not implement a check. It uses a generic permutation implementation not optimized for this special case - it still generates the required 720 permutations in 13ms (line breaks might be messed up):
static partial class Permutation
{
/// <summary>
/// Generates permutations.
/// </summary>
/// <typeparam name="T">Type of items to permute.</typeparam>
/// <param name="items">Array of items. Will not be modified.</param>
/// <param name="comparer">Optional comparer to use.
/// If a <paramref name="comparer"/> is supplied,
/// permutations will be ordered according to the
/// <paramref name="comparer"/>
/// </param>
/// <returns>Permutations of input items.</returns>
public static IEnumerable<IEnumerable<T>> Permute<T>(T[] items, IComparer<T> comparer)
{
int length = items.Length;
IntPair[] transform = new IntPair[length];
if (comparer == null)
{
//No comparer. Start with an identity transform.
for (int i = 0; i < length; i++)
{
transform[i] = new IntPair(i, i);
};
}
else
{
//Figure out where we are in the sequence of all permutations
int[] initialorder = new int[length];
for (int i = 0; i < length; i++)
{
initialorder[i] = i;
}
Array.Sort(initialorder, delegate(int x, int y)
{
return comparer.Compare(items[x], items[y]);
});
for (int i = 0; i < length; i++)
{
transform[i] = new IntPair(initialorder[i], i);
}
//Handle duplicates
for (int i = 1; i < length; i++)
{
if (comparer.Compare(
items[transform[i - 1].Second],
items[transform[i].Second]) == 0)
{
transform[i].First = transform[i - 1].First;
}
}
}
yield return ApplyTransform(items, transform);
while (true)
{
//Ref: E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1997
//Find the largest partition from the back that is in decreasing (non-icreasing) order
int decreasingpart = length - 2;
for (;decreasingpart >= 0 &&
transform[decreasingpart].First >= transform[decreasingpart + 1].First;
--decreasingpart) ;
//The whole sequence is in decreasing order, finished
if (decreasingpart < 0) yield break;
//Find the smallest element in the decreasing partition that is
//greater than (or equal to) the item in front of the decreasing partition
int greater = length - 1;
for (;greater > decreasingpart &&
transform[decreasingpart].First >= transform[greater].First;
greater--) ;
//Swap the two
Swap(ref transform[decreasingpart], ref transform[greater]);
//Reverse the decreasing partition
Array.Reverse(transform, decreasingpart + 1, length - decreasingpart - 1);
yield return ApplyTransform(items, transform);
}
}
#region Overloads
public static IEnumerable<IEnumerable<T>> Permute<T>(T[] items)
{
return Permute(items, null);
}
public static IEnumerable<IEnumerable<T>> Permute<T>(IEnumerable<T> items, IComparer<T> comparer)
{
List<T> list = new List<T>(items);
return Permute(list.ToArray(), comparer);
}
public static IEnumerable<IEnumerable<T>> Permute<T>(IEnumerable<T> items)
{
return Permute(items, null);
}
#endregion Overloads
#region Utility
public static IEnumerable<T> ApplyTransform<T>(
T[] items,
IntPair[] transform)
{
for (int i = 0; i < transform.Length; i++)
{
yield return items[transform[i].Second];
}
}
public static void Swap<T>(ref T x, ref T y)
{
T tmp = x;
x = y;
y = tmp;
}
public struct IntPair
{
public IntPair(int first, int second)
{
this.First = first;
this.Second = second;
}
public int First;
public int Second;
}
#endregion
}
class Program
{
static void Main()
{
int pans = 0;
int[] digits = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
Stopwatch sw = new Stopwatch();
sw.Start();
foreach (var p in Permutation.Permute(digits))
{
pans++;
if (pans == 720) break;
}
sw.Stop();
Console.WriteLine("{0}pcs, {1}ms", pans, sw.ElapsedMilliseconds);
Console.ReadKey();
}
}
This is my solution:
static char[][] pandigits = new char[][]{
"1".toCharArray(),
"12".toCharArray(),
"123".toCharArray(),
"1234".toCharArray(),
"12345".toCharArray(),
"123456".toCharArray(),
"1234567".toCharArray(),
"12345678".toCharArray(),
"123456789".toCharArray(),
};
private static boolean isPandigital(int i)
{
char[] c = String.valueOf(i).toCharArray();
Arrays.sort(c);
return Arrays.equals(c, pandigits[c.length-1]);
}
Runs the loop in 0.3 seconds on my (rather slow) system.
Two things you can improve:
You don't need to use a set: you can use a boolean array with 10 elements
Instead of converting to a string, use division and the modulo operation (%) to extract the digits.
Using a bit vector to keep track of which digits have been found appears to be the fastest raw method. There are two ways to improve it:
Check if the number is divisible by 9. This is a necessary condition for being pandigital, so we can exclude 88% of numbers up front.
Use multiplication and shifts instead of divisions, in case your compiler doesn't do that for you.
This gives the following, which runs the test benchmark in about 3ms on my machine. It correctly identifies the 362880 9-digit pan-digital numbers between 100000000 and 999999999.
bool IsPandigital(int n)
{
if (n != 9 * (int)((0x1c71c71dL * n) >> 32))
return false;
int flags = 0;
while (n > 0) {
int q = (int)((0x1999999aL * n) >> 32);
flags |= 1 << (n - q * 10);
n = q;
}
return flags == 0x3fe;
}
My solution involves Sums and Products.
This is in C# and runs in about 180ms on my laptop:
static int[] sums = new int[] {1, 3, 6, 10, 15, 21, 28, 36, 45};
static int[] products = new int[] {1, 2, 6, 24, 120, 720, 5040, 40320, 362880};
static void Main(string[] args)
{
var pans = 0;
for (var i = 123456789; i <= 123987654; i++)
{
var num = i.ToString();
if (Sum(num) == sums[num.Length - 1] && Product(num) == products[num.Length - 1])
pans++;
}
Console.WriteLine(pans);
}
protected static int Sum(string num)
{
int sum = 0;
foreach (char c in num)
sum += (int) (c - '0');
return sum;
}
protected static int Product(string num)
{
int prod = 1;
foreach (char c in num)
prod *= (int)(c - '0');
return prod;
}
Why find when you can make them?
from itertools import *
def generate_pandigital(length):
return (''.join for each in list(permutations('123456789',length)))
def test():
for i in range(10):
print i
generate_pandigital(i)
if __name__=='__main__':
test()
J does this nicely:
isPandigital =: 3 : 0
*./ (' ' -.~ ": 1 + i. # s) e. s =. ": y
)
isPandigital"0 (123456789 + i. 1 + 123987654 - 123456789)
But slowly. I will revise. For now, clocking at 4.8 seconds.
EDIT:
If it's just between the two set numbers, 123456789 and 123987654, then this expression:
*./"1 (1+i.9) e."1 (9#10) #: (123456789 + i. 1 + 123987654 - 123456789)
Runs in 0.23 seconds. It's about as fast, brute-force style, as it gets in J.
TheMachineCharmer is right. At least for some the problems, it's better to iterate over all the pandigitals, checking each one to see if it fits the criteria of the problem. However, I think their code is not quite right.
I'm not sure which is better SO etiquette in this case: Posting a new answer or editing theirs. In any case, here is the modified Python code which I believe to be correct, although it doesn't generate 0-to-n pandigitals.
from itertools import *
def generate_pandigital(length):
'Generate all 1-to-length pandigitals'
return (''.join(each) for each in list(permutations('123456789'[:length])))
def test():
for i in range(10):
print 'Generating all %d-digit pandigitals' % i
for (n,p) in enumerate(generate_pandigital(i)):
print n,p
if __name__=='__main__':
test()
You could add:
if (set.add(c)==false) return false;
This would short circuit a lot of your computations, since it'll return false as soon as a duplicate was found, since add() returns false in this case.
bool IsPandigital (unsigned long n) {
if (n <= 987654321) {
hash_map<int, int> m;
unsigned long count = (unsigned long)(log((double)n)/log(10.0))+1;
while (n) {
++m[n%10];
n /= 10;
}
while (m[count]==1 && --count);
return !count;
}
return false;
}
bool IsPandigital2 (unsigned long d) {
// Avoid integer overflow below if this function is passed a very long number
if (d <= 987654321) {
unsigned long sum = 0;
unsigned long prod = 1;
unsigned long n = d;
unsigned long max = (log((double)n)/log(10.0))+1;
unsigned long max_sum = max*(max+1)/2;
unsigned long max_prod = 1;
while (n) {
sum += n % 10;
prod *= (n%10);
max_prod *= max;
--max;
n /= 10;
}
return (sum == max_sum) && (prod == max_prod);
}
I have a solution for generating Pandigital numbers using StringBuffers in Java. On my laptop, my code takes a total of 5ms to run. Of this only 1ms is required for generating the permutations using StringBuffers; the remaining 4ms are required for converting this StringBuffer to an int[].
#medopal: Can you check the time this code takes on your system?
public class GenPandigits
{
/**
* The prefix that must be appended to every number, like 123.
*/
int prefix;
/**
* Length in characters of the prefix.
*/
int plen;
/**
* The digit from which to start the permutations
*/
String beg;
/**
* The length of the required Pandigital numbers.
*/
int len;
/**
* #param prefix If there is no prefix then this must be null
* #param beg If there is no prefix then this must be "1"
* #param len Length of the required numbers (excluding the prefix)
*/
public GenPandigits(String prefix, String beg, int len)
{
if (prefix == null)
{
this.prefix = 0;
this.plen = 0;
}
else
{
this.prefix = Integer.parseInt(prefix);
this.plen = prefix.length();
}
this.beg = beg;
this.len = len;
}
public StringBuffer genPermsBet()
{
StringBuffer b = new StringBuffer(beg);
for(int k=2;k<=len;k++)
{
StringBuffer rs = new StringBuffer();
int l = b.length();
int s = l/(k-1);
String is = String.valueOf(k+plen);
for(int j=0;j<k;j++)
{
rs.append(b);
for(int i=0;i<s;i++)
{
rs.insert((l+s)*j+i*k+j, is);
}
}
b = rs;
}
return b;
}
public int[] getPandigits(String buffer)
{
int[] pd = new int[buffer.length()/len];
int c= prefix;
for(int i=0;i<len;i++)
c =c *10;
for(int i=0;i<pd.length;i++)
pd[i] = Integer.parseInt(buffer.substring(i*len, (i+1)*len))+c;
return pd;
}
public static void main(String[] args)
{
GenPandigits gp = new GenPandigits("123", "4", 6);
//GenPandigits gp = new GenPandigits(null, "1", 6);
long beg = System.currentTimeMillis();
StringBuffer pansstr = gp.genPermsBet();
long end = System.currentTimeMillis();
System.out.println("Time = " + (end - beg));
int pd[] = gp.getPandigits(pansstr.toString());
long end1 = System.currentTimeMillis();
System.out.println("Time = " + (end1 - end));
}
}
This code can also be used for generating all Pandigital numbers(excluding zero). Just change the object creation call to
GenPandigits gp = new GenPandigits(null, "1", 9);
This means that there is no prefix, and the permutations must start from "1" and continue till the length of the numbers is 9.
Following are the time measurements for different lengths.
#andras: Can you try and run your code to generate the nine digit Pandigital numbers? What time does it take?
This c# implementation is about 8% faster than #andras over the range 123456789 to 123987654 but it is really difficult to see on my test box as his runs in 14ms and this one runs in 13ms.
static bool IsPandigital(int n)
{
int count = 0;
int digits = 0;
int digit;
int bit;
do
{
digit = n % 10;
if (digit == 0)
{
return false;
}
bit = 1 << digit;
if (digits == (digits |= bit))
{
return false;
}
count++;
n /= 10;
} while (n > 0);
return (1<<count)-1 == digits>>1;
}
If we average the results of 100 runs we can get a decimal point.
public void Test()
{
int pans = 0;
var sw = new Stopwatch();
sw.Start();
for (int count = 0; count < 100; count++)
{
pans = 0;
for (int i = 123456789; i <= 123987654; i++)
{
if (IsPandigital(i))
{
pans++;
}
}
}
sw.Stop();
Console.WriteLine("{0}pcs, {1}ms", pans, sw.ElapsedMilliseconds / 100m);
}
#andras implementation averages 14.4ms and this implementation averages 13.2ms
EDIT:
It seems that mod (%) is expensive in c#. If we replace the use of the mod operator with a hand coded version then this implementation averages 11ms over 100 runs.
private static bool IsPandigital(int n)
{
int count = 0;
int digits = 0;
int digit;
int bit;
do
{
digit = n - ((n / 10) * 10);
if (digit == 0)
{
return false;
}
bit = 1 << digit;
if (digits == (digits |= bit))
{
return false;
}
count++;
n /= 10;
} while (n > 0);
return (1 << count) - 1 == digits >> 1;
}
EDIT: Integrated n/=10 into the digit calculation for a small speed improvement.
private static bool IsPandigital(int n)
{
int count = 0;
int digits = 0;
int digit;
int bit;
do
{
digit = n - ((n /= 10) * 10);
if (digit == 0)
{
return false;
}
bit = 1 << digit;
if (digits == (digits |= bit))
{
return false;
}
count++;
} while (n > 0);
return (1 << count) - 1 == digits >> 1;
}
#include <cstdio>
#include <ctime>
bool isPandigital(long num)
{
int arr [] = {1,2,3,4,5,6,7,8,9}, G, count = 9;
do
{
G = num%10;
if (arr[G-1])
--count;
arr[G-1] = 0;
} while (num/=10);
return (!count);
}
int main()
{
clock_t start(clock());
int pans=0;
for (int i = 123456789;i <= 123987654; ++i)
{
if (isPandigital(i))
++pans;
}
double end((double)(clock() - start));
printf("\n\tFound %d Pandigital numbers in %lf seconds\n\n", pans, end/CLOCKS_PER_SEC);
return 0;
}
Simple implementation. Brute-forced and computes in about 140 ms
In Java
You can always just generate them, and convert the Strings to Integers, which is faster for larger numbers
public static List<String> permutation(String str) {
List<String> permutations = new LinkedList<String>();
permutation("", str, permutations);
return permutations;
}
private static void permutation(String prefix, String str, List<String> permutations) {
int n = str.length();
if (n == 0) {
permutations.add(prefix);
} else {
for (int i = 0; i < n; i++) {
permutation(prefix + str.charAt(i),
str.substring(0, i) + str.substring(i + 1, n), permutations);
}
}
}
The below code works for testing a numbers pandigitality.
For your test mine ran in around ~50ms
1-9 PanDigital
public static boolean is1To9PanDigit(int i) {
if (i < 1e8) {
return false;
}
BitSet set = new BitSet();
while (i > 0) {
int mod = i % 10;
if (mod == 0 || set.get(mod)) {
return false;
}
set.set(mod);
i /= 10;
}
return true;
}
or more general, 1 to N,
public static boolean is1ToNPanDigit(int i, int n) {
BitSet set = new BitSet();
while (i > 0) {
int mod = i % 10;
if (mod == 0 || mod > n || set.get(mod)) {
return false;
}
set.set(mod);
i /= 10;
}
return set.cardinality() == n;
}
And just for fun, 0 to 9, zero requires extra logic due to a leading zero
public static boolean is0To9PanDigit(long i) {
if (i < 1e6) {
return false;
}
BitSet set = new BitSet();
if (i <= 123456789) { // count for leading zero
set.set(0);
}
while (i > 0) {
int mod = (int) (i % 10);
if (set.get(mod)) {
return false;
}
set.set(mod);
i /= 10;
}
return true;
}
Also for setting iteration bounds:
public static int maxPanDigit(int n) {
StringBuffer sb = new StringBuffer();
for(int i = n; i > 0; i--) {
sb.append(i);
}
return Integer.parseInt(sb.toString());
}
public static int minPanDigit(int n) {
StringBuffer sb = new StringBuffer();
for(int i = 1; i <= n; i++) {
sb.append(i);
}
return Integer.parseInt(sb.toString());
}
You could easily use this code to generate a generic MtoNPanDigital number checker
I decided to use something like this:
def is_pandigital(n, zero_full=True, base=10):
"""Returns True or False if the number n is pandigital.
This function returns True for formal pandigital numbers as well as
n-pandigital
"""
r, l = 0, 0
while n:
l, r, n = l + 1, r + n % base, n / base
t = xrange(zero_full ^ 1, l + (zero_full ^ 1))
return r == sum(t) and l == len(t)
Straight forward way
boolean isPandigital(int num,int length){
for(int i=1;i<=length;i++){
if(!(num+"").contains(i+""))
return false;
}
return true;
}
OR if you are sure that the number is of the right length already
static boolean isPandigital(int num){
for(int i=1;i<=(num+"").length();i++){
if(!(num+"").contains(i+""))
return false;
}
return true;
}
I refactored Andras' answer for Swift:
extension Int {
func isPandigital() -> Bool {
let requiredBitmask = 0b1111111111;
let minimumPandigitalNumber = 1023456789;
if self >= minimumPandigitalNumber {
var resultBitmask = 0b0;
var digits = self;
while digits != 0 {
let lastDigit = digits % 10;
let binaryCodedDigit = 1 << lastDigit;
resultBitmask |= binaryCodedDigit;
// remove last digit
digits /= 10;
}
return resultBitmask == requiredBitmask;
}
return false;
}
}
1023456789.isPandigital(); // true
great answers, my 2 cents
bool IsPandigital(long long number, int n){
int arr[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, amax = 0, amin;
while (number > 0){
int rem = number % 10;
arr[rem]--;
if (arr[rem] < 0)
return false;
number = number / 10;
}
for (int i = 0; i < n; i++){
if (i == 0)
amin = arr[i];
if (arr[i] > amax)
amax = arr[i];
if (arr[i] < amin)
amin = arr[i];
}
if (amax == 0 && amin == 0)
return true;
else
return false;
}

Categories

Resources