I'm currently checking out the following guide: https://developer.android.com/topic/libraries/architecture/guide.html
The networkBoundResource class:
// ResultType: Type for the Resource data
// RequestType: Type for the API response
public abstract class NetworkBoundResource<ResultType, RequestType> {
// Called to save the result of the API response into the database
#WorkerThread
protected abstract void saveCallResult(#NonNull RequestType item);
// Called with the data in the database to decide whether it should be
// fetched from the network.
#MainThread
protected abstract boolean shouldFetch(#Nullable ResultType data);
// Called to get the cached data from the database
#NonNull #MainThread
protected abstract LiveData<ResultType> loadFromDb();
// Called to create the API call.
#NonNull #MainThread
protected abstract LiveData<ApiResponse<RequestType>> createCall();
// Called when the fetch fails. The child class may want to reset components
// like rate limiter.
#MainThread
protected void onFetchFailed() {
}
// returns a LiveData that represents the resource
public final LiveData<Resource<ResultType>> getAsLiveData() {
return result;
}
}
I'm a bit confused here about the use of threads.
Why is #MainThread applied here for networkIO?
Also, for saving into the db, #WorkerThread is applied, whereas #MainThread for retrieving results.
Is it bad practise to use a worker thread by default for NetworkIO and local db interaction?
I'm also checking out the following demo (GithubBrowserSample): https://github.com/googlesamples/android-architecture-components
This confuses me from a threading point of view.
The demo uses executors framework, and defines a fixed pool with 3 threads for networkIO, however in the demo only a worker task is defined for one call, i.e. the FetchNextSearchPageTask. All other network requests seem to be executed on the main thread.
Can someone clarify the rationale?
It seems you have a few misconceptions.
Generally it is never OK to call network from the Main (UI) thread but unless you have a lot of data it might be OK to fetch data from DB in the Main thread. And this is what Google example does.
1.
The demo uses executors framework, and defines a fixed pool with 3 threads for networkIO, however in the demo only a worker task is defined for one call, i.e. the FetchNextSearchPageTask.
First of all, since Java 8 you can create simple implementation of some interfaces (so called "functional interfaces") using lambda syntax. This is what happens in the NetworkBoundResource:
appExecutors.diskIO().execute(() -> {
saveCallResult(processResponse(response));
appExecutors.mainThread().execute(() ->
// we specially request a new live data,
// otherwise we will get immediately last cached value,
// which may not be updated with latest results received from network.
result.addSource(loadFromDb(),
newData -> result.setValue(Resource.success(newData)))
);
});
at first task (processResponse and saveCallResult) is scheduled on a thread provided by the diskIO Executor and then from that thread the rest of the work is scheduled back to the Main thread.
2.
Why is #MainThread applied here for networkIO?
and
All other network requests seem to be executed on the main thread.
This is not so. Only result wrapper i.e. LiveData<ApiResponse<RequestType>> is created on the main thread. The network request is done on a different thread. This is not easy to see because Retrofit library is used to do all the network-related heavy lifting and it nicely hides such implementation details. Still, if you look at the LiveDataCallAdapter that wraps Retrofit into a LiveData, you can see that Call.enqueue is used which is actually an asynchronous call (scheduled internally by Retrofit).
Actually if not for "pagination" feature, the example would not need networkIO Executor at all. "Pagination" is a complicated feature and thus it is implemented using explicit FetchNextSearchPageTask and this is a place where I think Google example is done not very well: FetchNextSearchPageTask doesn't re-use request parsing logic (i.e. processResponse) from RepoRepository but just assumes that it is trivial (which it is now, but who knows about the future...). Also there is no scheduling of the merging job onto the diskIO Executor which is also inconsistent with the rest of the response processing.
Related
I have a request that is rather simple to formulate, but I cannot pull it of without leaking resources.
I want to return a response of type application/stream+json, featuring news events someone posted. I do not want to use Websockets, not because I don't like them, I just want to know how to do it with a stream.
For this I need to return a Flux<News> from my restcontroller, that is continuously fed with news, once someone posts any.
My attempt for this was creating a Publisher:
public class UpdatePublisher<T> implements Publisher<T> {
private List<Subscriber<? super T>> subscribers = new ArrayList<>();
#Override
public void subscribe(Subscriber<? super T> s) {
subscribers.add(s);
}
public void pushUpdate(T message) {
subscribers.forEach(s -> s.onNext(message));
}
}
And a simple News Object:
public class News {
String message;
// Constructor, getters, some properties omitted for readability...
}
And endpoints to publish news respectively get the stream of news
// ...
private UpdatePublisher<String> updatePublisher = new UpdatePublisher<>();
#GetMapping(value = "/news/ticker", produces = "application/stream+json")
public Flux<News> getUpdateStream() {
return Flux.from(updatePublisher).map(News::new);
}
#PutMapping("/news")
public void putNews(#RequestBody News news) {
updatePublisher.pushUpdate(news.getMessage());
}
This WORKS, but I cannot unsubscribe, or access any given subscription again - so once a client disconnects, the updatePublisher will just continue to push onto a growing number of dead channels - as I have no way to call the onCompleted() handler on the subscriptions.
TL;DL:
Can one push messages onto a possible endless Flux from a different thread and still terminate the Flux on demand without relying on a reset by peer exception or something along those lines?
You should never try to implement yourself the Publisher interface, as it boils down to getting the reactive streams implementation right. This is exactly the issue you're facing here.
Instead you should use one of the generator operators provided by Reactor itself (this is actually a Reactor question, nothing specific to Spring WebFlux).
In this case, Flux.create or Flux.push are probably the best candidates, given your code uses some type of event listener to push events down the stream. See the reactor project reference documentation on that.
Without more details, it's hard to give you a concrete code sample that solves your problem. Here are a few pointers though:
you might want to .share() the stream of events for all subscribers if you'd like some multicast-like communication pattern
pay attention to the push/pull/push+pull model that you'd like to have here; how is the backpressure supposed to work here? What if we produce more events that the subscribers can handle?
this model would only work on a single application instance. If you'd like this to work on multiple application instances, you might want to look into messaging patterns using a broker
I have a couple domain objects, Message and Contact:
public class Contact {
String name;
}
public class Message {
String body;
Contact contact;
}
I'm populating a list of Message and showing them the user. Contact info for each of the Messages is retrieved asynchronously, and then the list is updated. This is basically how I have it set up:
listAdapter.setDataSet(listOfMessages);
for (Message message : listOfMessages) {
fetchContactDetails(message);
}
...
fetchContactDetails(Message message) {
contactService
.fetchContactDetails(listOfMessages)
.subscribeOn... // observe, etc
.observe(new Observable<Contact>() {
onNext(Contact contact) {
message.setContact(contact);
list.notifyChanged(message);
}
});
This feels like a lot of code, given that I could instead just update each Message Contact within the service function contactService.fetchContactDetails. On the contrary, it feels unclean to use a service method to modify the object passed in without returning anything.
Is it a bad practice to use a service function to update a Object passed in as an argument, without returning anything?
Is it a bad practice to use a service function to update a Object passed in as an argument, without returning anything?
No, you can implement void method Observable, by using Completable, but in your case you will still need to update the UI on the main thread, so you will subscribe and handle the onNext on mainThread (by adding observeOn(AndroidSchedulers.mainThread())).
So in this case your method not seems to be pure void method that returns nothing, but method that updated some data and return it to the UI for processing.
So, I think it is more general architectural question, of how to separate the code right. I would defiantly gather the model/domain logic together in separate Observable, and let the UI/presentation handle the just the UI updates.
BTW, you can loop more elegantly with Rx using from() and flatMap()
Observable.from(listOfMessages)
.flatMap(msg -> contactService.fetchContactDetails(msg))
then you can have control on the enitre process, like do something when all updates done, or limit the parallelism or whatever.
I have a webapp in which I have to return the results from a mongodb find() to the front-end from my java back-end.
I am using the Async Java driver, and the only way I think I have to return the results from mongo is something like this:
public String getDocuments(){
...
collection.find(query).map(Document::toJson)
.into(new HashSet<String>(), new SingleResultCallback<HashSet<String>>() {
#Override
public void onResult(HashSet<String> strings, Throwable throwable) {
// here I have to get all the Json Documents in the set,
// make a whole json string and wake the main thread
}
});
// here I have to put the main thread to wait until I get the data in
// the onResult() method so I can return the string back to the front-end
...
return jsonString;
}
Is this assumption right or thereĀ“s another way to do it?
Asynchronous APIs (any API based on callbacks, not necessarily MongoDB) can be a true blessing for multithreaded applications. But to really benefit from them, you need to design your whole application architecture in an asynchronous fashion. This is not always feasible, especially when it is supposed to fit into a given framework which isn't built on callbacks.
So sometimes (like in your case) you just want to use an asynchronous API in a synchronous fashion. In that case, you can use the class CompletableFuture.
This class provides (among others) two methods <T> get() and complete(<T> value). The method get will block until complete is called to provide the return value (should complete get called before get, get returns immediately with the provided value).
public String getDocuments(){
...
CompletableFuture<String> result = new CompletableFuture<>(); // <-- create an empty, uncompleted Future
collection.find(query).map(Document::toJson)
.into(new HashSet<String>(), new SingleResultCallback<HashSet<String>>() {
#Override
public void onResult(HashSet<String> strings, Throwable throwable) {
// here I have to get all the Json Documents in the set and
// make a whole json string
result.complete(wholeJsonString); // <--resolves the future
}
});
return result.get(); // <-- blocks until result.complete is called
}
The the get()-method of CompletableFuture also has an alternative overload with a timeout parameter. I recommend using this to prevent your program from accumulating hanging threads when the callback is not called for whatever reason. It will also be a good idea to implement your whole callback in a try { block and do the result.complete in the finally { block to make sure the result always gets resolved, even when there is an unexpected error during your callback.
Yes, you're right.
That's the correct behaviour of Mongo async driver (see MongoIterable.into).
However, Why don't you use sync driver in this situation? Is there any reason to use async method?
I'm working in an Spring application that downloads data from different APIs. For that purpose I need a class Fetcher that interacts with an API to fetch the needed data. One of the requirements of this class is that it has to have a method to start the fetching and a method to stop it. Also, it must download all asynchronously because users must be able to interact with a dashboard while fetching data.
Which is the best way to accomplish this? I've been reading about task executors and the different annotations of Spring to schedule tasks and execute them asynchronously but this solutions don't seem to solve my problem.
Asynchronous task execution is what you're after and since Spring 3.0 you can achieve this using annotations too directly on the method you want to run asyncrhonously.
There are two ways of implementing this depending whether you are interested in getting a result from the async process:
#Async
public Future<ReturnPOJO> asyncTaskWithReturn(){
//..
return new AsyncResult<ReturnPOJO>(yourReturnPOJOInstance);
}
or not:
#Async
public void asyncTaskNoReturn() {
//..
}
In the former method the result of your computation conveyed by yourReturnPOJOInstance object instance, is stored in an instance of org.springframework.scheduling.annotation.AsyncResult<V> which in return implements the java.util.concurrent.Future<V> that the caller can use to retrieve the result of the computation later on.
To activate the above functionality in Spring you have to add in your XML config file:
<task: annotation-driven />
along with the needed task namespace.
The simplest way to do this is to use the Thread class. You supply a Runnable object that performs the fetching functionality in the run() method and when the Thread is started, it invokes the run method in a separate thread of execution.
So something like this:
public class Fetcher implements Runnable{
public void run(){
//do fetching stuff
}
}
//in your code
Thread fetchThread = new Thread(new Fetcher());
fetchThread.start();
Now, if you want to be able to cancel, you can do that a couple of ways. The easiest (albeit most violent and nonadvisable way to do it is to interrupt the thread:
fetchThread.interrupt();
The correct way to do it would be to implement logic in your Fetcher class that periodically checks a variable to see whether it should stop doing whatever it's doing or not.
Edit To your question about getting Spring to run it automatically, if you wanted it to run periodically, you'll need to use a scheduling framework like Quartz. However, if you just want it to run once what you could do is use the #PostConstruct annotation. The method annotated with #PostConstruct will be executed after the bean is created. So you could do something like this
#Service
public class Fetcher implements Runnable{
public void run(){
//do stuff
}
#PostConstruct
public void goDoIt(){
Thread trd = new Thread(this);
trd.start();
}
}
Edit 2 I actually didn't know about this, but check out the #Async discussion in the Spring documentation if you haven't already. Might also be what you want to do.
You might only need certain methods to run on a separate thread rather than the entire class. If so, the #Async annotation is so simple and easy to use.
Simply add it to any method you want to run asynchronously, you can also use it on methods with return types thanks to Java's Future library.
Check out this page: http://www.baeldung.com/spring-async
I am working on an application which has 5- 6 activities where user is involved. Some data will be generated during this and is saved into Database.
I need to upload/sync these data between server ( I use KSOAP2 ). But this should happen behind. Even if the user is jumping between activities, it should not get affected. But when I quit the app I don't want this process to continue.
Is Android Service the only way to do this? What would be the best option?
You can use Async Task
http://developer.android.com/reference/android/os/AsyncTask.html. Have a look at the documentation under the heading The 4 steps.
AsyncTask is designed to be a helper class around Thread and Handler and does not constitute a generic threading framework. AsyncTasks should ideally be used for short operations (a few seconds at the most.) If you need to keep threads running for long periods of time, it is highly recommended you use the various APIs provided by the java.util.concurrent pacakge such as Executor, ThreadPoolExecutor and FutureTask.
In your activity after setContentView()
pd= new ProgressDialog(this);
pd.setTitle("Making Soap Request");
new SoapRequestTask().execute();
private class SoapRequestTask extends AsyncTask<VOid, Void, Void> {
protected void onPreExecute()
{
pd.show();
}
protected SoapObject doInBackground(Void... params) {
// TODO Auto-generated method stub
//Soap request. do not update ui here
return null;
}
protected void onPostExecute(Void param)
{
//update ui here
pd.dismiss();
}
An alternative to asynctask is Robospice.https://github.com/octo-online/robospice.
You can get started with robopice here. https://github.com/octo-online/robospice/wiki/Starter-Guide.
A sample of robospice at https://play.google.com/store/apps/details?id=com.octo.android.robospice.motivations&feature=search_result.
Some of the features of robospice.
1.executes asynchronously (in a background AndroidService) network requests (ex: REST requests using Spring Android).
2.is strongly typed ! You make your requests using POJOs and you get POJOs as request results.
3.enforce no constraints neither on POJOs used for requests nor on Activity classes you use in your projects.
4.caches results (in Json with both Jackson and Gson, or Xml, or flat text files, or binary files, even using ORM Lite).
5.notifies your activities (or any other context) of the result of the network request if and only if they are still alive
6.no memory leak at all, like Android Loaders, unlike Android AsyncTasks notifies your activities on their UI Thread.
7.uses a simple but robust exception handling model.
I think Async task is what you are looking for ...http://developer.android.com/reference/android/os/AsyncTask.html
No, you can use an AsyncTask. documentation: http://developer.android.com/reference/android/os/AsyncTask.html