float to long conversion increasing the value - java

I am storing a long value comes from backend system and I had to convert it to float because of one of the third party api only understands float.
Now when I read back the float and trying to convert back to long I am getting a bigger number(some times I've seen smaller as well)than what I had.
My question is how can I get back the original number in long. I am happy to add any rounding logic if required
public class Main {
public static void main(String[] args) {
long item = 1502028000;
System.out.println(String.format("item -> %d",item));
float floatItem = item;
System.out.println(String.format("floatItem -> %f",floatItem));
long resultItem = (long)floatItem;
System.out.println(String.format("resultItem -> %d",resultItem));
}
}
Below is the output. I need my original number back which is 1502028000 in this case.
item -> 1502028000
floatItem -> 1502028032.000000
resultItem -> 1502028032

The short answer is that a float value is only precise to about 7 digits. In terms of the the long value you are converting to a float, that means the float can only retain the first 7 digits of 1502028000. Note those 7 are still retained in the float value and when when you convert back to a long.
If you would like to read more about float precision you should take a look at this. Just as an exercise, you could do the same thing with a double and more digits should be retained.

A float value only has ~24 significant bits, a long has 64 bits. So it must happen that some/many different long values are giving the same float value. And that can't be recovered.
You said that your longs always are multiples of 1000. So of the many longs that correspond to your given float, only those divisibe by 1000 are valid for you. That's what your rounding suggestion Math.round(value/1000)*1000 will use. But that only works until there are more than 1000 longs mapping to one float, and that happens around the 10 billion magnitude. Your example is just a factor of ten below that, so that won't help reliably if the numbers can grow.
If you REALLY MUST map back the float value to the original long (ask yourself: why is it necessary - can I do my job another way?), you might maintain a Map from Float values to the original Long values wherever you pass a long to the third-party library. IF the long values are sparse, there are chances that within the valid long values that you used, you can often map back from float without ambiguity.
But that's a nasty kludge. Be prepared to deal with the ambiguity if it arises.

It appears that float doesn't have enough size to convert a "long" value and thus while converting, it looses it's precision.
To resolve this, you can use double instead of float. That will retain your value after the double conversion you are doing.
long item = 1502028000;
double floatItem = (double)item;
long resultItem = (long)floatItem;
System.out.println(String.format("resultItem -> %d",resultItem));
This prints :
resultItem -> 1502028000

Related

Java initialize doubles from floats [duplicate]

I have a primitive float and I need as a primitive double. Simply casting the float to double gives me weird extra precision. For example:
float temp = 14009.35F;
System.out.println(Float.toString(temp)); // Prints 14009.35
System.out.println(Double.toString((double)temp)); // Prints 14009.349609375
However, if instead of casting, I output the float as a string, and parse the string as a double, I get what I want:
System.out.println(Double.toString(Double.parseDouble(Float.toString(temp))));
// Prints 14009.35
Is there a better way than to go to String and back?
It's not that you're actually getting extra precision - it's that the float didn't accurately represent the number you were aiming for originally. The double is representing the original float accurately; toString is showing the "extra" data which was already present.
For example (and these numbers aren't right, I'm just making things up) suppose you had:
float f = 0.1F;
double d = f;
Then the value of f might be exactly 0.100000234523. d will have exactly the same value, but when you convert it to a string it will "trust" that it's accurate to a higher precision, so won't round off as early, and you'll see the "extra digits" which were already there, but hidden from you.
When you convert to a string and back, you're ending up with a double value which is closer to the string value than the original float was - but that's only good if you really believe that the string value is what you really wanted.
Are you sure that float/double are the appropriate types to use here instead of BigDecimal? If you're trying to use numbers which have precise decimal values (e.g. money), then BigDecimal is a more appropriate type IMO.
I find converting to the binary representation easier to grasp this problem.
float f = 0.27f;
double d2 = (double) f;
double d3 = 0.27d;
System.out.println(Integer.toBinaryString(Float.floatToRawIntBits(f)));
System.out.println(Long.toBinaryString(Double.doubleToRawLongBits(d2)));
System.out.println(Long.toBinaryString(Double.doubleToRawLongBits(d3)));
You can see the float is expanded to the double by adding 0s to the end, but that the double representation of 0.27 is 'more accurate', hence the problem.
111110100010100011110101110001
11111111010001010001111010111000100000000000000000000000000000
11111111010001010001111010111000010100011110101110000101001000
This is due the contract of Float.toString(float), which says in part:
How many digits must be printed for
the fractional part […]? There
must be at least one digit to
represent the fractional part, and
beyond that as many, but only as many,
more digits as are needed to uniquely
distinguish the argument value from
adjacent values of type float. That
is, suppose that x is the exact
mathematical value represented by the
decimal representation produced by
this method for a finite nonzero
argument f. Then f must be the float
value nearest to x; or, if two float
values are equally close to x, then f
must be one of them and the least
significant bit of the significand of
f must be 0.
I've encountered this issue today and could not use refactor to BigDecimal, because the project is really huge. However I found solution using
Float result = new Float(5623.23)
Double doubleResult = new FloatingDecimal(result.floatValue()).doubleValue()
And this works.
Note that calling result.doubleValue() returns 5623.22998046875
But calling doubleResult.doubleValue() returns correctly 5623.23
But I am not entirely sure if its a correct solution.
I found the following solution:
public static Double getFloatAsDouble(Float fValue) {
return Double.valueOf(fValue.toString());
}
If you use float and double instead of Float and Double use the following:
public static double getFloatAsDouble(float value) {
return Double.valueOf(Float.valueOf(value).toString()).doubleValue();
}
Use a BigDecimal instead of float/double. There are a lot of numbers which can't be represented as binary floating point (for example, 0.1). So you either must always round the result to a known precision or use BigDecimal.
See http://en.wikipedia.org/wiki/Floating_point for more information.
Floats, by nature, are imprecise and always have neat rounding "issues". If precision is important then you might consider refactoring your application to use Decimal or BigDecimal.
Yes, floats are computationally faster than decimals because of the on processor support. However, do you want fast or accurate?
A simple solution that works well, is to parse the double from the string representation of the float:
double val = Double.valueOf(String.valueOf(yourFloat));
Not super efficient, but it works!
For information this comes under Item 48 - Avoid float and double when exact values are required, of Effective Java 2nd edition by Joshua Bloch. This book is jam packed with good stuff and definitely worth a look.
Does this work?
float flt = 145.664454;
Double dbl = 0.0;
dbl += flt;
There is a way to convert Float value into Double without adding the extra precision
Float aFloat= new Float(0.11);
String s = aFloat.toString();
Double aDouble = Double.parseDouble(s);
This Approach will not add an extra precisions to your Float value while converting. The only Problem with this approach is memory usage of the JVM by creating an extra tamp String object.
When calling an toString() (aDouble.toString()) on Double will never add an extra precisions. The precisions will be added while type conversion.

Why does multiplying a float and double give less accurate result than multiplying two floats [duplicate]

I have a primitive float and I need as a primitive double. Simply casting the float to double gives me weird extra precision. For example:
float temp = 14009.35F;
System.out.println(Float.toString(temp)); // Prints 14009.35
System.out.println(Double.toString((double)temp)); // Prints 14009.349609375
However, if instead of casting, I output the float as a string, and parse the string as a double, I get what I want:
System.out.println(Double.toString(Double.parseDouble(Float.toString(temp))));
// Prints 14009.35
Is there a better way than to go to String and back?
It's not that you're actually getting extra precision - it's that the float didn't accurately represent the number you were aiming for originally. The double is representing the original float accurately; toString is showing the "extra" data which was already present.
For example (and these numbers aren't right, I'm just making things up) suppose you had:
float f = 0.1F;
double d = f;
Then the value of f might be exactly 0.100000234523. d will have exactly the same value, but when you convert it to a string it will "trust" that it's accurate to a higher precision, so won't round off as early, and you'll see the "extra digits" which were already there, but hidden from you.
When you convert to a string and back, you're ending up with a double value which is closer to the string value than the original float was - but that's only good if you really believe that the string value is what you really wanted.
Are you sure that float/double are the appropriate types to use here instead of BigDecimal? If you're trying to use numbers which have precise decimal values (e.g. money), then BigDecimal is a more appropriate type IMO.
I find converting to the binary representation easier to grasp this problem.
float f = 0.27f;
double d2 = (double) f;
double d3 = 0.27d;
System.out.println(Integer.toBinaryString(Float.floatToRawIntBits(f)));
System.out.println(Long.toBinaryString(Double.doubleToRawLongBits(d2)));
System.out.println(Long.toBinaryString(Double.doubleToRawLongBits(d3)));
You can see the float is expanded to the double by adding 0s to the end, but that the double representation of 0.27 is 'more accurate', hence the problem.
111110100010100011110101110001
11111111010001010001111010111000100000000000000000000000000000
11111111010001010001111010111000010100011110101110000101001000
This is due the contract of Float.toString(float), which says in part:
How many digits must be printed for
the fractional part […]? There
must be at least one digit to
represent the fractional part, and
beyond that as many, but only as many,
more digits as are needed to uniquely
distinguish the argument value from
adjacent values of type float. That
is, suppose that x is the exact
mathematical value represented by the
decimal representation produced by
this method for a finite nonzero
argument f. Then f must be the float
value nearest to x; or, if two float
values are equally close to x, then f
must be one of them and the least
significant bit of the significand of
f must be 0.
I've encountered this issue today and could not use refactor to BigDecimal, because the project is really huge. However I found solution using
Float result = new Float(5623.23)
Double doubleResult = new FloatingDecimal(result.floatValue()).doubleValue()
And this works.
Note that calling result.doubleValue() returns 5623.22998046875
But calling doubleResult.doubleValue() returns correctly 5623.23
But I am not entirely sure if its a correct solution.
I found the following solution:
public static Double getFloatAsDouble(Float fValue) {
return Double.valueOf(fValue.toString());
}
If you use float and double instead of Float and Double use the following:
public static double getFloatAsDouble(float value) {
return Double.valueOf(Float.valueOf(value).toString()).doubleValue();
}
Use a BigDecimal instead of float/double. There are a lot of numbers which can't be represented as binary floating point (for example, 0.1). So you either must always round the result to a known precision or use BigDecimal.
See http://en.wikipedia.org/wiki/Floating_point for more information.
Floats, by nature, are imprecise and always have neat rounding "issues". If precision is important then you might consider refactoring your application to use Decimal or BigDecimal.
Yes, floats are computationally faster than decimals because of the on processor support. However, do you want fast or accurate?
A simple solution that works well, is to parse the double from the string representation of the float:
double val = Double.valueOf(String.valueOf(yourFloat));
Not super efficient, but it works!
For information this comes under Item 48 - Avoid float and double when exact values are required, of Effective Java 2nd edition by Joshua Bloch. This book is jam packed with good stuff and definitely worth a look.
Does this work?
float flt = 145.664454;
Double dbl = 0.0;
dbl += flt;
There is a way to convert Float value into Double without adding the extra precision
Float aFloat= new Float(0.11);
String s = aFloat.toString();
Double aDouble = Double.parseDouble(s);
This Approach will not add an extra precisions to your Float value while converting. The only Problem with this approach is memory usage of the JVM by creating an extra tamp String object.
When calling an toString() (aDouble.toString()) on Double will never add an extra precisions. The precisions will be added while type conversion.

Float - datatype confusion

class Test
{
public static void main(String[] arg2)
{
float num = 1234.123126f;
System.out.println(num);
}
}
Output: 1234.1232
Why it is not 1234.123 or 1234.1231?
System.out.println(float) calls String.valueOf(float), which calls Float.toString(float).
The answer is in the documentation for Float.toString(float):
How many digits must be printed for the fractional part of m or a? There must be at least one digit to represent the fractional part, and beyond that as many, but only as many, more digits as are needed to uniquely distinguish the argument value from adjacent values of type float.
Therefore, it printed 1234.1232 because it is the closest value representable by the float data-type that is uniquely identifiable from any adjacent float values.
I see your point. Your rounding logic is correct. But, since you're using a float datatype, you will be losing some amount of precision. So, when the JVM does the rounding, it is arriving at the value of 1234.1232.
First of all, a float can only reliably store up to 6 digits; 1234.123126 is too long to store as a float and recover as a decimal exactly.
Java prints a decimal string that allows you to recover the internal float value. In the worst case, 9 decimal digits are required, but less can suffice. The internal float value of 1234.123126 is 1234.1231689453125. Rounded to 9 digits, that's 1234.12317. But 1234.1232 converts to the same float, and is shorter, so Java chooses that. (Note that 1234.123 and 1234.1231 are incorrect choices, since they convert to a different float: 1234.123046875.
This is occurring because of rounding of the exact value. If you want to print the exact value as it is, you will have to specify the format using examples given in this Oracle tutorial.

Number too big for BigInteger

I'm developing a chemistry app, and I need to include the Avogadro's number:
(602200000000000000000000)
I don't really know if I can use scientific notation to represent it as 6.022 x 10x23 (can't put the exponent).
I first used double, then long and now, I used java.math.BigInteger.
But it still says it's too big, what can I do or should this is just to much for a system?
Pass it to the BigInteger constructor as a String, and it works just fine.
BigInteger a = new BigInteger("602200000000000000000000");
a = a.multiply(new BigInteger("2"));
System.out.println(a);
Output: 1204400000000000000000000
First of all, you need to check your physics / chemistry text book.
Avogadro's number is not 602,200,000,000,000,000,000,000. It is approximately 6.022 x 1023. The key word is "approximately". As of 2019, the precise value is 6.02214076×1023 mol−1
(In 2015 when I originally wrote this reply, the current best approximation for Avogadro's number was 6.022140857(74)×1023 mol−1, and the relative error was +/- 1.2×10–8. In 2019, the SI redefined the mole / Avogadro's number to be the precise value above. Source: Wikipedia)
My original (2015) answer was that since the number only needed 8 decimal digits precision, the Java double type was an appropriate type to represent it. Hence, I recommended:
final double AVOGADROS_CONSTANT = 6.02214076E23;
Clearly, neither int or long can represent this number. A float could, but not with enough precision (assuming we use the best available measured value).
Now (post 2019) the BigInteger is the simplest correct representation.
Now to your apparent problems with declaring the constant as (variously) an double, a long and a BigInteger.
I expect you did something like this:
double a = 602200000000000000000000;
and so on. That isn't going to work, but the reason it won't work needs to be explained. The problem is that the number is being supplied as an int literal. An int cannot be that big. The largest possible int value is 231 - 1 ... which is a little bit bigger than 2 x 109.
That is what the Java compiler was complaining about. The literal is too big to be an int.
It is too big for long literal as well. (Do the math.)
But it is not too big for a double literal ... provided that you write it correctly.
The solution using BigInteger(String) works because it side-steps the problem of representing the number as a numeric literal by using a string instead, and parsing it at runtime. That's OK from the perspective of the language, but (IMO) wrong because the extra precision is an illusion.
You can use E notation to write the scientific notation:
double a = 6.022e23;
The problem is with how you're trying to create it (most likely), not because it can't fit.
If you have just a number literal in your code (even if you try to assign it to a double or long), this is first treated as an integer (before being converted to the type it needs to be), and the number you have can't fit into an integer.
// Even though this number can fit into a long, it won't compile, because it's first treated
// as an integer.
long l = 123456788901234;
To create a long, you can add L to your number, so 602200000000000000000000L, although it won't fit into a long either - the max value is 263-1.
To create a double, you can add .0 to your number, so 602200000000000000000000.0 (or 6.022e23 as Guffa suggested), although you should not use this if you want precise values, as you may lose some accuracy because of the way it stores the value.
To create a BigInteger, you can use the constructor taking a string parameter:
new BigInteger("602200000000000000000000");
Most probably you are using long to initialize BigInteger. Since long can represent 64-bit numbers, your number would be too big to fit in to long. Using String would help.

Converting from float to double, why the extra decimal points? [duplicate]

I have a primitive float and I need as a primitive double. Simply casting the float to double gives me weird extra precision. For example:
float temp = 14009.35F;
System.out.println(Float.toString(temp)); // Prints 14009.35
System.out.println(Double.toString((double)temp)); // Prints 14009.349609375
However, if instead of casting, I output the float as a string, and parse the string as a double, I get what I want:
System.out.println(Double.toString(Double.parseDouble(Float.toString(temp))));
// Prints 14009.35
Is there a better way than to go to String and back?
It's not that you're actually getting extra precision - it's that the float didn't accurately represent the number you were aiming for originally. The double is representing the original float accurately; toString is showing the "extra" data which was already present.
For example (and these numbers aren't right, I'm just making things up) suppose you had:
float f = 0.1F;
double d = f;
Then the value of f might be exactly 0.100000234523. d will have exactly the same value, but when you convert it to a string it will "trust" that it's accurate to a higher precision, so won't round off as early, and you'll see the "extra digits" which were already there, but hidden from you.
When you convert to a string and back, you're ending up with a double value which is closer to the string value than the original float was - but that's only good if you really believe that the string value is what you really wanted.
Are you sure that float/double are the appropriate types to use here instead of BigDecimal? If you're trying to use numbers which have precise decimal values (e.g. money), then BigDecimal is a more appropriate type IMO.
I find converting to the binary representation easier to grasp this problem.
float f = 0.27f;
double d2 = (double) f;
double d3 = 0.27d;
System.out.println(Integer.toBinaryString(Float.floatToRawIntBits(f)));
System.out.println(Long.toBinaryString(Double.doubleToRawLongBits(d2)));
System.out.println(Long.toBinaryString(Double.doubleToRawLongBits(d3)));
You can see the float is expanded to the double by adding 0s to the end, but that the double representation of 0.27 is 'more accurate', hence the problem.
111110100010100011110101110001
11111111010001010001111010111000100000000000000000000000000000
11111111010001010001111010111000010100011110101110000101001000
This is due the contract of Float.toString(float), which says in part:
How many digits must be printed for
the fractional part […]? There
must be at least one digit to
represent the fractional part, and
beyond that as many, but only as many,
more digits as are needed to uniquely
distinguish the argument value from
adjacent values of type float. That
is, suppose that x is the exact
mathematical value represented by the
decimal representation produced by
this method for a finite nonzero
argument f. Then f must be the float
value nearest to x; or, if two float
values are equally close to x, then f
must be one of them and the least
significant bit of the significand of
f must be 0.
I've encountered this issue today and could not use refactor to BigDecimal, because the project is really huge. However I found solution using
Float result = new Float(5623.23)
Double doubleResult = new FloatingDecimal(result.floatValue()).doubleValue()
And this works.
Note that calling result.doubleValue() returns 5623.22998046875
But calling doubleResult.doubleValue() returns correctly 5623.23
But I am not entirely sure if its a correct solution.
I found the following solution:
public static Double getFloatAsDouble(Float fValue) {
return Double.valueOf(fValue.toString());
}
If you use float and double instead of Float and Double use the following:
public static double getFloatAsDouble(float value) {
return Double.valueOf(Float.valueOf(value).toString()).doubleValue();
}
Use a BigDecimal instead of float/double. There are a lot of numbers which can't be represented as binary floating point (for example, 0.1). So you either must always round the result to a known precision or use BigDecimal.
See http://en.wikipedia.org/wiki/Floating_point for more information.
Floats, by nature, are imprecise and always have neat rounding "issues". If precision is important then you might consider refactoring your application to use Decimal or BigDecimal.
Yes, floats are computationally faster than decimals because of the on processor support. However, do you want fast or accurate?
A simple solution that works well, is to parse the double from the string representation of the float:
double val = Double.valueOf(String.valueOf(yourFloat));
Not super efficient, but it works!
For information this comes under Item 48 - Avoid float and double when exact values are required, of Effective Java 2nd edition by Joshua Bloch. This book is jam packed with good stuff and definitely worth a look.
Does this work?
float flt = 145.664454;
Double dbl = 0.0;
dbl += flt;
There is a way to convert Float value into Double without adding the extra precision
Float aFloat= new Float(0.11);
String s = aFloat.toString();
Double aDouble = Double.parseDouble(s);
This Approach will not add an extra precisions to your Float value while converting. The only Problem with this approach is memory usage of the JVM by creating an extra tamp String object.
When calling an toString() (aDouble.toString()) on Double will never add an extra precisions. The precisions will be added while type conversion.

Categories

Resources