I am working on a project that is making a REST call to another Service to save DATA on the DB. The Data is very important so we can't afford losing anything.
If there is a problem in the network this message will be lost, which can't happen. I already searched about Spring Retry and I saw that it is designed to handle temporary network glitches, which is not what I need.
I need a method to put the REST calls in some kind of Queue (Like Active MQ) and preserve the order (this is very important because I receive Save, Delete and Update REST calls.)
Any ideas? Thanks.
If a standalone installation of ActiveMQ is not desirable, you can use an embedded in-memory broker.
http://activemq.apache.org/how-do-i-embed-a-broker-inside-a-connection.html
Not sure if you can configure the in-memory broker to use KahaDB. Of course the scope of persistence will be limited to your application process i.e. messages in the queue will not be available if the application is restarted . This is probably the most important reason why in-memory or vanilla code based approaches are no good.
If you must reinvent the wheel, then have a look at this topic, which talks about using Executors and BlockingQueue to implement your own pseudo-MQ.
Producer/Consumer threads using a Queue.
On a side note, retry mechanism is not something provided by the MQ broker. It is the client that implements it. Be it ActiveMQs bundled client library or other Messaging libraries such as Camel.
You can also retrospect your current tech-stack to see if any of the existing components have JMS capabilities. For example: Oracle database bundles an MQ called Oracle AQ
Have your service keep its own internal queue of jobs, and only move onto the next REST call until the previous one returns a success code.
There are many better ways to do this but the limitation will come down to what your company will let you do.
Related
We need advice on this queue migration topic.
There are two JMS providers (PROVIDER and NEWPROVIDER ) to connect to two instances of EMX. Each has some queues. Now we want to move all queues from PROVIDER to NEWPROVIDER at EMX side. At WebSphere admin console, minimum effort solution is to change the URL and authentication of PROVIDER to be same as NEWPROVIDER .
I don’t see any immediate issue as it may only seem to impact connection pool, max connection etc, but not sure to take changes to Production.
Question: Is there any issue in this approach or we should delete and recreate all queues under NEWPROVIDER.
To help understand this change faster I have created a diagram. Blue color shows current state, Red shows changes and to be state.
We are using WebSphere6.1/JMS(EMX)/Oracle.
Pointing WebSphere to the new EMS instance, as you've illustrated, is pretty straight-forward. The main question is: do all the relevant destinations (queues, topics, durable subscribers if any) exist on the new EMS instance? In other words, has the exact configuration been replicated from the existing EMS instance to the new instance? Will all WebSphere services have access to the data they require in order to operate with the new EMS instance? Will in-flight (undelivered/unacknowledged) messages that may live in queues on the old instance need to be available on the new instance?
If you're simply moving the store-files and conf files over, then all of this would essentially be taken care of.
As Larry mentioned, it is quite straightforward. There was no question of any issue for in-flight messages etc. This is because it's handled by different team and not part of this question.
We are successfully managed to complete the task by changing URL and authentication details. We did not delete all queues and we did not recreate them in NEWPROVIDER. We just pointed PROVIDER to be same as NEWPROVIDER.
I was asked the following question in an interview and couldn't answer that.
How do you include a jdbc operation,a web service call and a JMS operation into one single transaction. That means if one of them fails all has to be roll backed.
I have heard about two-phase commit protocol and oracl XA in case of database transactions involving multiple databases. But not sure whether the same can be used here.
The critical factor is that the web services you connect to have been built using a web services framework that supports transactions. JBoss Narayana is one such web services framework. Once the web services endpoint you are connecting to is on such a framework, it's just a matter of configuring spring to use the appropriate client.
In the case of Narayana, the spring config (from http://bgshinhung.blogspot.ca/2012/10/integrating-spring-framework-jetty-and.html) for transactions with web services:
You are never going to be able to do this in a completely bomb-proof way as the systems are separate. A failure in one stage of the system (for example between the SQL commit and the JMS commit the power on your server gets turned off) will leave the SQL commit in place.
The only way to resolve that would be to keep some record of partial commits somewhere and scan that on startup to fix any resulting problems but now what happens if you have a failure processing or keeping that list.
Essentially the solution is to do your own implementation of the multiple-stage-commit and rollback process wrapping the three operations you need to make. If any of the operations fails then you need to reverse (preferably using an internal transaction mechanism, if not then by issuing reversing commands) any that have been done so far.
There are a lot of corner cases and potential ways for a system like this to fail though, so really the first approach should be to consider whether you can redesign the system so you don't need to do this at all!
It may be trick question and the right answer is "it can not be done".
But I would try to pseodo-code something like this:
try{
jdbc.startTransaction();
Savepoint saveJdbc = jdbc.setSavepoint();
JMS.startTransaction();
Savepoint saveJMS = JMS.setSavepoint();
jdbs.doSomeStuff();
JMS.doSomeStuff();
jdbc.commit();
JMS.commit();
if(webServise.doSomeStuff() == fail){throw new Exception();}
}
catch(Eception e){
jdbc.rollback(saveJdbc);
JMS.rollback(saveJMS);
}
You prepare one servise that has roll back. You prepare second servise that has roll back. You will try web servise and if web servise fail you will roll back those two which have rollback.
May be it is a way to implement rollback to your web servise.
We had same situation like web service will push the data, we have to read the xml stream and persist to db(oracle). implementation we followed is.
Web service send soap message and that will contain xml stream data.
all request soap messages pushed to jms.
respective listner will read the stream and persist the data into 'Temporary tables'.
if request processed successfully then move data from temp table to actual table.
if any error roll back.
hope above points may help.
To my mind, it looks like interviewer liked to understand your ability to think in terms of enterprise wide distribution. Few points:
JDBC is used for Database connectivity
WebService is probably a mechanism to send control command to a
server from any client.
JMS is mainly used for alerts of what is being happened in the
system.
My guess is your interviewer might be having a typical scenario with him that they wish to suffice the following situation:
Data is on one tier ( cluster, or machine )
Clients may be any kind, mobile, app, ios, objective c, browser pay, etc.
JMS is configured to listen to topics. Or is that he wishes he could do that.
Now probably the best approach is to write a JMS Subscriber which decides what to do in the onMessage() method. As an example, suppose a web service is initiated a payment request from client. This will initiate a JMS publisher to tell a DAO do the necessary internal connection to database and when transaction is in middle and when it finishes, one message will be published to subscriber. You will have full grain control of every step as that would be configured to be published through JMS. Though this is difficult to achieve, this could be your interviewer's expected approach from you. (This is Only my guess, and please note.)
I need to be able to achieve two threading tasks in a container and need to understand the best practices for doing this. Here are the two classes of task I need to accomplish:
During a web services call, I need to start a thread that continues processing after the response has been sent. No message is required back to the original sender when processing is complete.
A web services call may need to spawn multiple threads that need to run in parallel to each other. The response to the original request should be blocked until all the workers have completed. Elements of the response will be drawn from pieces of each of the thread's results.
Of course, I could create my own instance of a java.util.concurrent.Executor and use it, but I suspect containers might be smart enough to provide one that they manage.
FWIW - I'm using WebSphere 6.1 on JDK 1.5.0 (I know, ancient...but it is what it is). I am running web services developed using Apache CXF, so I'm in the servlet container, but configured with Spring.
For 1) you might want to look at Asynchronous Beans. Alternatively use a Message Driven Bean which picks up and actions a message you send to a Queue. There's the Quartz stuff from Spring you might want to look at too. I think with Servlet 3 (no chance on WAS 6.1!) you might get the async support without the Async Work Manager or JMS approach, but until then I don't know a better way than these patterns.
For 2) generally blocking the request is a risky business (what if you hit the timeout). However, you're in the servlet container so you're ok using something from java.util.concurrent e.g. ExecutorService as you mentioned. Alternatively use messaging to send the work off somewhere else and block until it completes.
Generally, I wouldn't start threads from inside a container because there is the chance that j2ee full compliance is turned on and your app would die. Under full compliance threads are not allowed to be created. What you want to do is set up a JMS queue that you submit your "work to be done" to. You can then have an MDB listening to the queue which performs that actual operation that your thread would have done.
I'm having a hard time figuring out how to architect the final piece of my system. Currently I'm running a Tomcat server that has a servlet that responds to client requests. Each request in turn adds a processing message to an asynchronous queue (I'll probably be using JMS via Spring or more likely Amazon SQS).
The sequence of events is this:
Sending side:
1. Take a client request
2. Add some data into a DB related to this request with a unique ID
3. Add a message object representing this request to the message queue
Receiving side:
1. Pull a new message object from the queue
2. Unwrap the object and grab some information from a web site based on information contained in the msg object.
3. Send an email alert
4. update my DB row (same unique ID) with the information that operation was completed for this request.
I'm having a hard figuring out how to properly deal with the receiving side. On one hand I can probably create a simple java program that I kick off from the command line that picks each item in the queue and processes it. Is that safe? Does it make more sense to have that program running as another thread inside the Tomcat container? I will not want to do this serially, meaning the receiving end should be able to process several objects at a time -- using multiple threads. I want this to be always running, 24 hours a day.
What are some options for building the receiving side?
"On one hand I can probably create a simple java program that I kick off from the command line that picks each item in the queue and processes it. Is that safe?"
What's unsafe about it? It works great.
"Does it make more sense to have that program running as another thread inside the Tomcat container?"
Only if Tomcat has a lot of free time to handle background processing. Often, this is the case -- you have free time to do this kind of processing.
However, threads aren't optimal. Threads share common I/O resources, and your background thread may slow down the front-end.
Better is to have a JMS queue between the "port 80" front-end, and a separate backend process. The back-end process starts, connects to the queue, fetches and executes the requests. The backend process can (if necessary) be multi-threaded.
If you are using JMS, why are you placing the tasks into a DB?
You can use a durable Queue in JMS. This would keep tasks, even if the JMS broker dies, until they have been acknowledged. You can have redundant brokers so that if one broker dies, the second automatically takes over. This could be more reliable than using a single DB.
If you are already using Spring, check out DefaultMessageListenerContainer. It allows you to create a POJO message driven bean. This can be used from within an existing application container (your WAR file) or as a separate process.
I've done this sort of thing by hosting the receiver in an app server, weblogic in my case, but tomcat works fine, too. Don't poll the queue, use an event-based model. This could be hand-coded or it could be a message-driven web service. If the database update is idempotent, you could update the database and send the email, then issue the commit on the queue. It's not a problem to have several threads that all read from the same queue.
I've use various JMS solutions, including tibco, activemq (before apache subsumed it) and joram. Joram was the more reliable opensource solution, but that may have changed now that it's part of apache.
I've a WEB application (with pure Java servlet) that have some heavy computational work, with database access, that can be done in asynchronous mode.
I'm planning to use a dedicated server to execute such batch jobs and I'm wondering which tools/techniques/protocols to use for communication between servlets in the WEB server and batch jobs in the new dedicated server.
I'm looking at JMS. Is it the right choice?
There are industry standard and/or widely adopted techniques?
I need also queue and priority handling for multiple simultaneous jobs.
JMS is a pretty standard solution. The high-end platforms (Sun's JCAPS, for example) makes heavy use of JMS to partition and manage the workload of web services.
There are many advantages to buying a high-end JMS implementation from Sun (or IBM or Microsoft). First, you get things like reliable message queues that are backed to the file system. No message can get lost. Second, you get some monitoring and management tools.
One cool thing is to have a JMS queue with (potentially) multiple subscribers to do workload balancing.
Another cool thing is to have JMS topic which has a logging process as well as the real work process subscribed. The logging process picks off the messages and simply records the essential stages of the job being started and stopped.
Messaging is one of the best options.
Make the messaging framework very generic so that it can handle any type of batch jobs.
One approach is to have an event/task manager where you put an event on the queue and the queue consumer processes the event and converts it into a set of tasks. The tasks can then be executed by separate task handlers. A task can also generate some more events that can be again put on the queues to provide a feedback loop. This way you can add work flow like features to the framework and allow your batch jobs to have dependencies on each other.
JMS would be the appropriate solution for sending your batch jobs from the servlet. It may not be the best solution for the batch server to communicate with the servlet though, as it cannot be a listener to messages.
As I don't know what the communication from the batch server to the servlet is supposed to entail, I can only say that there are probably several options you can use (yes JMS is one of them). But they all basically rely on polling calls to the servlet which will then check in some way to see if there is anything from the batch server waiting. This could simply be a servlet on the batch server or making receive calls to a JMS response queue. Other solutions are available, but the point is it is not asynchronous, unless you have the ability to push from the batch server all the way to you client end (a browser I am guessing) via something like AJAX.
Anyway, just something to keep in mind.
Another alternative for asynchronous processing is to have the web application store the request in the database, and have the batch process poll the database for new batch jobs to process. Since your application appears to be smaller (pure Java Servlets) this may be a simpler and lower cost solution.
Hope it helps.
We use JMS with web services:
Client requests computation via web service
Server writes JMS message, and creates an ID value which is stored in a database along with a status (initially "Pending"). Server returns the id to the client.
Server (can be separate server) reads JMS message, does computation, and when finished updates the status to "Completed" in the database
While the computation is ongoing, the client is polling the server to determine the status using another web service (along with the id). The server returns the status which is retrieved from the database. Once the server computation is completed, the client will see the "Completed" status and know that the computation is complete.