Can't print out Add two numbers in Java - java

I can't return the value from the function AddTwoNumber to main. I have already checked the result in the function and it is correct. However, when I pass the value from AddTwoNumber into ListNode start, it doesn't print anything. I think the problem is happening here:
ListNode dummy = new ListNode(0);
ListNode node = dummy;
but I'm don't know how to solve it.
ListNode.cs:
class ListNode {
public int data; // data stored in this node
public ListNode next; // link to next node in the list
// post: constructs a node with data 0 and null link
public ListNode() {
this(0, null);
}
// post: constructs a node with given data and null link
public ListNode(int data) {
this(data, null);
}
// post: constructs a node with given data and given link
public ListNode(int data, ListNode next) {
this.data = data;
this.next = next;
}
}
Main.cs:
public static void main(String[] args) {
ListNode first = new ListNode(8,
new ListNode(9,
new ListNode(7 )));
ListNode second = new ListNode(3,
new ListNode(5,
new ListNode(6 )));
ListNode start = AddTwoNumber(first,second);
while (start!=null) {
System.out.println(start.next);
start=start.next;
}
}
public static ListNode AddTwoNumber(ListNode first, ListNode second) {
ListNode dummy = new ListNode(0);
ListNode node = dummy;
int Digitsten = 0;
int sum = 0;
//Once fit first&second =null & Digitsten=0,the code can stop
while (first != null || second != null || Digitsten != 0) {
if (first != null && second != null) {
sum += first.data + second.data + Digitsten;
} else if (first!= null) {
sum += first.data + Digitsten;
} else if (second!= null) {
sum += second.data + Digitsten;
} else {
sum=Digitsten; `enter code here`
}
int DigitsOne = sum % 10;
Digitsten = sum / 10;
node = new ListNode(DigitsOne);
node = node.next;
if (first == null) {
first = null;
} else {
first = first.next;
}
if (second == null) {
second = null;
} else {
second = second.next;
}
sum = 0;
}
return dummy.next; //return the value to dummy ListNode
}

The real problem is inside your AddTwoNumber method.
You can't make node pointing to a new node, you should make its next pointing to a new node, before you move to next.
public static ListNode AddTwoNumber(ListNode first, ListNode second){
ListNode dummy = new ListNode(0);
ListNode node = dummy;
int Digitsten = 0;
int sum = 0;
while (first != null || second != null || Digitsten != 0)
{
if (first != null && second != null)
{
sum += first.data + second.data + Digitsten;
}
else if (first!= null)
{
sum += first.data + Digitsten;
}
else if (second!= null)
{
sum += second.data + Digitsten;
}
else
{
sum=Digitsten; `enter code here`
}
int DigitsOne = sum % 10;
Digitsten = sum / 10;
// LOOK HERE!!!
node.next = new ListNode(DigitsOne);
node = node.next;
if (first == null)
{
first = null;
}
else
first = first.next;
if (second == null)
{
second = null;
}
else
{
second = second.next;
}
sum=0;
}
return dummy.next;//return the value to dummy ListNode

Related

Delete specific element from LinkedList....?

I am trying to delete an specific element from the linkedlist, however i am getting null pointer exception. Could any one pls fix my below mentioned code...
public void deleteElement(T num)
{
Node<T> ele = new Node<T>(num);
if(head == null){
System.out.println("Underflow");
return;
}
Node<T> temp = head;
while(temp != null)
{
if(temp.data == num){
temp.previous.next = temp.next;
return;
}
else
temp = temp.next;
}
size--;
}
You should modify inside your while loop like this:
while(temp != null)
{
if(temp.data == num) {
if(temp.previous != null) {
temp.previous.next = temp.next;
}
// you have to link-up the next's previous with temp's previous too
if(temp.next != null) {
temp.next.previous = temp.previous;
}
temp = null; // to deference the node and let garbage collector to delete/clear this node
break; // don't return here otherwise size-- won't execute
}
temp = temp.next;
}
Before referencing temp.next and temp.previous as lvalue you should check whether they are null otherwise it will throw NullPointerException.
Hope it helps!
You have to find Node object whose data is equal to T num. Use such loop:
for (Node<T> x = first; x != null; x = x.next) {
if (num.equals(x.data)) {
unlink(x);
return true;
}
}
Where first is pointer to first node. In method remove you have to unlink found Node x from linked list:
T remove(Node<T> x) {
// assert x != null;
final T element = x.data;
final Node<T> next = x.next;
final Node<T> prev = x.prev;
if (prev == null) {
//if x is first node(head)
first = next;
} else {
// link x.next to x.prev.next
prev.next = next;
//unlink x
x.prev = null;
}
if (next == null) {
//if x is last node(tail)
last = prev;
} else {
// link x.prev to x.next.prev
next.prev = prev;
//unlink x
x.next = null;
}
// reset data
x.data = null;
size--;
return element;
}

Reverse generic LinkedList by using swap method

public class SimpleLinkedList<E> {
public Node<E> head;
public int size;
public void add(E e) {
++this.size;
if (null == head) {
this.head = new Node();
head.val = e;
} else {
Node<E> newNode = new Node();
newNode.val = e;
newNode.next = head;
this.head = newNode;
}
}
public void swap(E val1, E val2) {
if (val1.equals(val2)) {
return;
}
Node prevX = null, curr1 = head;
while (curr1 != null && !curr1.val.equals(val1)) {
prevX = curr1;
curr1 = curr1.next;
}
Node prevY = null, curr2 = head;
while (curr2 != null && !curr2.val.equals(val2)) {
prevY = curr2;
curr2 = curr2.next;
}
if (curr1 == null || curr2 == null) {
return;
}
if (prevX == null) {
head = curr2;
} else {
prevX.next = curr2;
}
if (prevY == null) {
head = curr1;
} else {
prevY.next = curr1;
}
Node temp = curr1.next;
curr1.next = curr2.next;
curr2.next = temp;
}
public void reverse() {
Node<E> prev = null;
Node<E> current = head;
Node<E> next = null;
while (current != null) {
next = current.next;
current.next = prev;
prev = current;
current = next;
}
head = prev;
}
public static class Node<E> {
public Node<E> next;
public E val;
}
}
public class SimpleLinkedListTest {
#Test
public void testReverseMethod() {
SimpleLinkedList<Integer> myList = new SimpleLinkedList<>();
for (int i = 0; i < 10; i++) {
myList.add(i);
}
SimpleLinkedList<Integer> expectedList = new SimpleLinkedList<>();
for (int i = 9; i > -1; i--) {
expectedList.add(i);
}
myList.reverse();
assertTrue(AssertCustom.assertSLLEquals(expectedList, myList));
}
}
What would be the most optimal way to reverse generic LinkedList by using the swap method?
before reverse method :
(head=[9])->[8]->[7]->[6]->[5]->[4]->[3]->[2]->[1]->[0]-> null
after reverse() method :
(head=[0])->[1]->[2]->[3]->[4]->[5]->[6]->[7]->[8]->[9]-> null
What you need to do is divide the list in half. If the list size is odd the one in the middle will remain in place. Then swap elements on either side in a mirror like fashion. This should be more efficient than O(n^2)
reverse(){
Node current = this.head;
int half = this.size/2;
int midElement = this.size % 2 == 0 ? 0: half + 1;
Stack<Node<E>> stack = new Stack<Node<E>>();
for(int i = 0; i < this.size; i++){
if (i < = half)
stack.push(current);
else{
if (i == midElement)
continue;
else
swap(stack.pop(), current);
current = current.next;
}
}
swap(Node<E> v, Node<E> v1){
E tmp = v.value;
v.value = v1.value;
v1.value = tmp;
}
This is a little bit of pseudo java. It is missing still the checks for size = 0 or size = 1 when it should return immediately. One for loop. Time Complexity O(n). There is also the need to check when size = 2, swap(...) is to be invoked directly.
Based on the #efekctive 's idea, there a solution. The complexity is a little bit worse than O^2 but no need changes in the swap method, no need in usage of another collection. The code below passes the unit test, however, be careful to use it there could be a bug related to size/2 operation. Hope this help.
public void reverse() {
Node<E> current = head;
SimpleLinkedList<E> firstHalf = new SimpleLinkedList<>();
SimpleLinkedList<E> secondHalf = new SimpleLinkedList<>();
for (int i = 0; i < size; i++) {
if (i >= size / 2) {
firstHalf.add(current.val);
} else {
secondHalf.add(current.val);
}
current = current.next;
}
SimpleLinkedList<E> secondHalfReverse = new SimpleLinkedList<>();
for (int i = 0; i < secondHalf.size(); i++) {
secondHalfReverse.add(secondHalf.get(i));
}
for (int i = 0; i < size / 2; i++) {
if (secondHalfReverse.get(i) == firstHalf.get(i)) {
break;
}
swap(secondHalfReverse.get(i), firstHalf.get(i));
}
}

Union of Generic Linked List in Java

In this program I made a generic linked list .Insert and Display functions are working fine but the union function is not working.I'm actually not sure that the function which i wrote is correct or not so,How do I perform union of the two given list.
import java.util.*;
class Node<T> {
T data;
Node<T> next;
Node(T d) {
data = d;
}
void display() {
System.out.println(data + " ");
}
}
class List<T> {
Node<T> first;
List() {
first = null;
}
void insert(T data) {
Node<T> newnode = new Node<T>(data);
if (first == null)
first = newnode;
else {
Node<T> temp = first;
while (temp.next != null)
temp = temp.next;
temp.next = newnode;
}
}
void display() {
if (first == null)
System.out.println("EmpTY");
else {
Node<T> temp = first;
while (temp != null) {
temp.display();
temp = temp.next;
}
}
}
public void union(Node<Double> head1, Node<Double> head2) {
Node<T> t = head1;
Node<T> t1 = head2;
while (t != null && t1 != null) {
if (t.data > t1.data) {
System.out.println(t.data + "\n");
t = t.next;
} else if (t.data < t1.data) {
System.out.println(t1.data + "\n");
t1 = t1.next;
} else {
System.out.println(t.data + "\n");
System.out.println(t.data + "\n");
t = t.next;
t1 = t1.next;
}
}
}
}
class DEMO {
public static void main(String args[]) {
List<Double> l1 = new List<Double>();
for (double i = 0; i < 5; i++) {
l1.insert(i);
}
l1.display();
List<Double> l2 = new List<Double>();
List<Double> l3 = new List<Double>();
for (double j = 0; j < 5; j++) {
l2.insert(j);
}
l3.union(l1, l2);
}
}
You can do something like this:
/* Function to get Union of 2 Linked Lists */
void doUnion(Node head1, Node head2) {
Node t1 = head1, t2 = head2;
//insert all elements of list1 in the result
while (t1 != null) {
push(t1.data);
t1 = t1.next;
}
// insert those elements of list2 that are not present
while (t2 != null) {
if (!isPresent(head, t2.data)) {
push(t2.data);
}
t2 = t2.next;
}
}
/* Inserts a node at start of linked list */
void push(int new_data) {
/* 1. Allocate the Node & Put in the data*/
Node new_node = new Node(new_data);
/* 2. Make next of new Node as head */
new_node.next = head;
/* 3. Move the head to point to new Node */
head = new_node;
}
/* A utilty function that returns true if data is present in linked list else return false */
boolean isPresent(Node head, int data) {
Node t = head;
while (t != null) {
if (t.data == data) {
return true;
}
t = t.next;
}
return false;
}

Adding two numbers given (digits in Linked List) using Strings

I am trying to add two non negative numbers, the digits of which are stored in reverse order in two separate linked lists. The answer should also be a linked list with digits reversed and no trailing zeros.
I understand that there is a way to solve this question by adding digits and maintaining a carry each time, but I am trying to solve it by using addition operation on numbers.
Here's my code:
/**
* Definition for singly-linked list.
* class ListNode {
* public int val;
* public ListNode next;
* ListNode(int x) { val = x; next = null; }
* }
*/
public class Solution {
public ListNode addTwoNumbers(ListNode a, ListNode b) {
if(a==null || b==null){
return null;
}
String num1 = "";
String num2 = "";
ListNode temp1 = a;
ListNode temp2 = b;
while(temp1!=null){
num1 = num1+Integer.toString(temp1.val);
temp1 = temp1.next;
}
new StringBuilder(num1).reverse().toString();
double value1 = Double.parseDouble(num1);
while(temp2!=null){
num2 = num2+Integer.toString(temp2.val);
temp2 = temp2.next;
}
new StringBuilder(num2).reverse().toString();
double value2 = Double.parseDouble(num2);
double result = value1+value2;
String res = String.format("%.0f",result);
ListNode first_node = new ListNode(Character.getNumericValue(res.charAt(0)));
ListNode ans = first_node;
for(int j=1;j<res.length();j++){
ListNode node = new ListNode(Character.getNumericValue(res.charAt(j)));
add(node,ans);
}
return ans;
}
public void add(ListNode node, ListNode ans){
ListNode temp;
temp = ans;
ans = node;
ans.next = temp;
}
}
My code has been giving wrong answers. Can anyone point out the errors?
Your approach is not correct and indirect.
You are trying to do big numbers arithmetics using floating point operations.
As a result - computing errors.
We have:
List<Integer> firstNumber;
List<Integer> secondNumber;
Lets assume firstNumber > secondNumber.
Try this alogrithm:
List<Integer> result = new ArrayList<>();
int i = 0;
int appendix = 0;
for (; i < secondNumber.size(); i++) {
int sum = firstNumber.get(i) + secondNumber.get(i) + appendix;
result.append(sum % 10);
appendix = sum / 10;
}
for (; i < firstNumber.size(); i++) {
int sum = firstNumber.get(i) + appendix;
result.append(sum % 10);
appendix = sum / 10;
}
if (appendix != 0)
result.append(appendix);
return result;
Your add function looks incorrect. You will get you number in the reverse order than what is expected.
Also, your solution is missing the point of the question. Your approach will fail if you have a number with a lot of digits (even double has its limits ~ 2^1024 I think). A linked list representation allows for numbers even bigger.
The correct solution would just iterate through both the lists simultaneously with a carry digit while creating the solution list. If this is a question in an assignment or coding competition, your solution would be judged wrong.
Your add method is wrong, it doesn't build correctly the list. Here is how the final part of your method should look, without the add method:
for(int j=1;j<res.length();j++){
ans.next = new ListNode(Character.getNumericValue(res.charAt(j)));;
ans = ans.next;
}
return first_node;
In your approach, the variable ans is not updating. You can try this:
ans = add(node,ans);
and in your add method, change the method to return ListNode ans
Your approach is not straightforward and wouldn't give you expected results.
Here is a simple approach which wouldn't require much explanation as the addition is simple integer by integer.
Do note that i carry forward when the sum of two integers is greater than 9 else continue with the sum of next integers from both the list.
class Node {
private Object data;
private Node next;
public Object getData() { return data; }
public void setData(Object data) { this.data = data; }
public Node getNext() { return next; }
public void setNext(Node next) { this.next = next; }
public Node(final Object data, final Node next) {
this.data = data;
this.next = next;
}
#Override
public String toString() { return "Node:[Data=" + data + "]"; }
}
class SinglyLinkedList {
Node start;
public SinglyLinkedList() { start = null; }
public void addFront(final Object data) {
// create a reference to the start node with new data
Node node = new Node(data, start);
// assign our start to a new node
start = node;
}
public void addRear(final Object data) {
Node node = new Node(data, null);
Node current = start;
if (current != null) {
while (current.getNext() != null) {
current = current.getNext();
}
current.setNext(node);
} else {
addFront(data);
}
}
public void deleteNode(final Object data) {
Node previous = start;
if (previous == null) {
return;
}
Node current = previous.getNext();
if (previous != null && previous.getData().equals(data)) {
start = previous.getNext();
previous = current;
current = previous.getNext();
return;
}
while (current != null) {
if (current.getData().equals(data)) {
previous.setNext(current.getNext());
current = previous.getNext();
} else {
previous = previous.getNext();
current = previous.getNext();
}
}
}
public Object getFront() {
if (start != null) {
return start.getData();
} else {
return null;
}
}
public void print() {
Node current = start;
if (current == null) {
System.out.println("SingleLinkedList is Empty");
}
while (current != null) {
System.out.print(current);
current = current.getNext();
if (current != null) {
System.out.print(", ");
}
}
}
public int size() {
int size = 0;
Node current = start;
while (current != null) {
current = current.getNext();
size++;
}
return size;
}
public Node getStart() {
return this.start;
}
public Node getRear() {
Node current = start;
Node previous = current;
while (current != null) {
previous = current;
current = current.getNext();
}
return previous;
}
}
public class AddNumbersInSinglyLinkedList {
public static void main(String[] args) {
SinglyLinkedList listOne = new SinglyLinkedList();
SinglyLinkedList listTwo = new SinglyLinkedList();
listOne.addFront(5);
listOne.addFront(1);
listOne.addFront(3);
listOne.print();
System.out.println();
listTwo.addFront(2);
listTwo.addFront(9);
listTwo.addFront(5);
listTwo.print();
SinglyLinkedList listThree = add(listOne, listTwo);
System.out.println();
listThree.print();
}
private static SinglyLinkedList add(SinglyLinkedList listOne, SinglyLinkedList listTwo) {
SinglyLinkedList result = new SinglyLinkedList();
Node startOne = listOne.getStart();
Node startTwo = listTwo.getStart();
int carry = 0;
while (startOne != null || startTwo != null) {
int one = 0;
int two = 0;
if (startOne != null) {
one = (Integer) startOne.getData();
startOne = startOne.getNext();
}
if (startTwo != null) {
two = (Integer) startTwo.getData();
startTwo = startTwo.getNext();
}
int sum = carry + one + two;
carry = 0;
if (sum > 9) {
carry = sum / 10;
result.addRear(sum % 10);
} else {
result.addRear(sum);
}
}
return result;
}
}
Sample Run
Node:[Data=3], Node:[Data=1], Node:[Data=5]
Node:[Data=5], Node:[Data=9], Node:[Data=2]
Node:[Data=8], Node:[Data=0], Node:[Data=8]

How to reverse a singly-linked list in blocks of some given size in O(n) time in place?

I recently encounter an algorithm problem:
Reverse a singly-linked list in blocks of k in place. An iterative approach is preferred.
The first block of the resulting list should be maximal with regards to k. If the list contains n elements, the last block will either be full or contain n mod k elements.
For example:
k = 2, list = [1,2,3,4,5,6,7,8,9], the reversed list is [8,9,6,7,4,5,2,3,1]
k = 3, list = [1,2,3,4,5,6,7,8,9], the reversed list is [7,8,9,4,5,6,1,2,3]
My code is shown as below.
Is there an O(n) algorithm that doesn't use a stack or extra space?
public static ListNode reverse(ListNode list, int k) {
Stack<ListNode> stack = new Stack<ListNode>();
int listLen = getLen(list);
int firstBlockSize = listLen % k;
ListNode start = list;
if (firstBlockSize != 0) {
start = getBlock(stack, start, firstBlockSize);
}
int numBlock = (listLen) / k;
for (int i = 0; i < numBlock; i++) {
start = getBlock(stack, start, k);
}
ListNode dummy = new ListNode(0);
ListNode cur = dummy;
while (!stack.empty()) {
cur.next = stack.peek();
cur = stack.pop();
while (cur.next != null) {
cur = cur.next;
}
}
return dummy.next;
}
public static ListNode getBlock(Stack<ListNode> stack, ListNode start, int blockSize) {
ListNode end = start;
while (blockSize > 1) {
end = end.next;
blockSize--;
}
ListNode temp = end.next;
end.next = null;
stack.push(start);
return temp;
}
public static int getLen(ListNode list) {
ListNode iter = list;
int len = 0;
while (iter != null) {
len++;
iter = iter.next;
}
return len;
}
This can be done in O(n) time using O(1) space as follows:
Reverse the entire list.
Reverse the individual blocks.
Both can be done using something very similar to the standard way to reverse a singly linked-list and the overall process resembles reversing the ordering of words in a string.
Reversing only a given block is fairly easily done by using a length variable.
The complication comes in when we need to move from one block to the next. The way I achieved this was by having the reverse function return both the first and last nodes and having the last node point to the next node in our original linked-list. This is necessary because the last node's next pointer needs to be updated to point to the first node our next reverse call returns (we don't know what it will need to point to before that call completes).
For simplicity's sake, I used a null start node in the code below (otherwise I would've needed to cater for the start node specifically, which would've complicated the code).
class Test
{
static class Node<T>
{
Node next;
T data;
Node(T data) { this.data = data; }
#Override
public String toString() { return data.toString(); }
}
// reverses a linked-list starting at 'start', ending at min(end, len-th element)
// returns {first element, last element} with (last element).next = (len+1)-th element
static <T> Node<T>[] reverse(Node<T> start, int len)
{
Node<T> current = start;
Node<T> prev = null;
while (current != null && len > 0)
{
Node<T> temp = current.next;
current.next = prev;
prev = current;
current = temp;
len--;
}
start.next = current;
return new Node[]{prev, start};
}
static <T> void reverseByBlock(Node<T> start, int k)
{
// reverse the complete list
start.next = reverse(start.next, Integer.MAX_VALUE)[0];
// reverse the individual blocks
Node<T>[] output;
Node<T> current = start;
while (current.next != null)
{
output = reverse(current.next, k);
current.next = output[0];
current = output[1];
}
}
public static void main(String[] args)
{
//Scanner scanner = new Scanner(System.in);
Scanner scanner = new Scanner("3 9 1 2 3 4 5 6 7 8 9\n" +
"2 9 1 2 3 4 5 6 7 8 9");
while (scanner.hasNextInt())
{
int k = scanner.nextInt();
// read the linked-list from console
Node<Integer> start = new Node<>(null);
Node<Integer> current = start;
int n = scanner.nextInt();
System.out.print("Input: ");
for (int i = 1; i <= n; i++)
{
current.next = new Node<>(scanner.nextInt());
current = current.next;
System.out.print(current.data + " ");
}
System.out.println("| k = " + k);
// reverse the list
reverseByBlock(start, k);
// display the list
System.out.print("Result: ");
for (Node<Integer> node = start.next; node != null; node = node.next)
System.out.print(node + " ");
System.out.println();
System.out.println();
}
}
}
This outputs:
Input: 1 2 3 4 5 6 7 8 9 | k = 3
Result: 7 8 9 4 5 6 1 2 3
Input: 1 2 3 4 5 6 7 8 9 | k = 2
Result: 8 9 6 7 4 5 2 3 1
Live demo.
Here is an iterative way of doing it... you read my full explanation here
Node reverseListBlocks1(Node head, int k) {
if (head == null || k <= 1) {
return head;
}
Node newHead = head;
boolean foundNewHead = false;
// moves k nodes through list each loop iteration
Node mover = head;
// used for reversion list block
Node prev = null;
Node curr = head;
Node next = null;
Finish: while (curr != null) {
// move the mover just after the block we are reversing
for (int i = 0; i < k; i++) {
// if there are no more reversals, finish
if (mover == null) {
break Finish;
}
mover = mover.next;
}
// reverse the block and connect its tail to the rest of
// the list (at mover's position)
prev = mover;
while (curr != mover) {
next = curr.next;
curr.next = prev;
prev = curr;
curr = next;
}
// establish the new head, if we didn't yet
if (!foundNewHead) {
newHead = prev;
foundNewHead = true;
}
// connects previous block's head to the rest of the list
// move the head to the tail of the reversed block
else {
head.next = prev;
for (int i = 0; i < k; i++) {
head = head.next;
}
}
}
return newHead;
}
The easiest way to reverse the single linked list is as follows.
private void reverse(Node node)
{
Node current = Node;
Node prev = null;
Node next = null;
if(node == null || node.next == null)
{
return node;
}
while(current != null)
{
next = current.next;
//swap
current.next = prev;
prev = current;
current = next;
}
node.next = current;
}
This section contains multiple Single Linked List Operation
import java.util.Scanner;
import java.util.Stack;
public class AddDigitPlusLL {
Node head = null;
int len =0;
static class Node {
int data;
Node next;
Node(int data) {
this.data = data;
this.next = null;
}
}
public void insertFirst(int data) {
Node newNode = new Node(data);
if (head != null)
newNode.next = head;
head = newNode;
}
public void insertLast(int data) {
Node temp = head;
Node newNode = new Node(data);
if (temp == null)
head = newNode;
else {
Node previousNode = null;
while (temp != null) {
previousNode = temp;
temp = temp.next;
}
previousNode.next = newNode;
}
}
public Long getAllElementValue() {
Long val = 0l;
Node temp=head;
while(temp !=null) {
if(val == 0)
val=(long) temp.data;
else
val=val*10+temp.data;
temp = temp.next;
}
System.out.println("value is :" + val);
return val;
}
public void print(String printType) {
System.out.println("----------- :"+ printType +"----------- ");
Node temp = head;
while (temp != null) {
System.out.println(temp.data + " --> ");
temp = temp.next;
}
}
public void generateList(Long val) {
head = null;
while(val > 0) {
int remaining = (int) (val % 10);
val = val/10;
insertFirst(remaining);
}
}
public void reverseList(Long val) {
head =null;
while(val >0) {
int remaining = (int) (val % 10);
val = val/10;
insertLast(remaining);
}
}
public void lengthRecursive(Node temp) {
if(temp != null) {
len++;
lengthRecursive(temp.next);
}
}
public void reverseUsingStack(Node temp) {
Stack<Integer> stack = new Stack<Integer>();
while(temp != null) {
stack.push(temp.data);
temp = temp.next;
}
head = null;
while(!stack.isEmpty()) {
int val = stack.peek();
insertLast(val);
stack.pop();
}
print(" Reverse Using Stack");
}
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner s = new Scanner(System.in);
AddDigitPlusLL sll = new AddDigitPlusLL();
sll.insertFirst(5);
sll.insertFirst(9);
sll.insertLast(8);
sll.print("List Iterate");
Long val = sll.getAllElementValue();
System.out.println("Enter the digit to add");
Long finalVal = val +s.nextInt();
s.close();
sll.generateList(finalVal);
sll.print("Add int with List Value");
sll.reverseList(finalVal);
sll.print("Reverse the List");
sll.lengthRecursive(sll.head);
System.out.println("Length with Recursive :"+ sll.len);
sll.print("Before call stack reverse method");
sll.reverseUsingStack(sll.head);
}
}

Categories

Resources