Using recursion, If n is 123, the code should return 4 (i.e. 1+3). But instead it is returning the last digit, in this case 3.
public static int sumOfOddDigits(NaturalNumber n) {
int ans = 0;
if (!n.isZero()) {
int r = n.divideBy10();
sumOfOddDigits(n);
if (r % 2 != 0) {
ans = ans + r;
}
n.multiplyBy10(r);
}
return ans;
}
It isn't clear what NaturalNumber is or why you would prefer it to int, but your algorithm is easy enough to follow with int (and off). First, you want the remainder (or modulus) of division by 10. That is the far right digit. Determine if it is odd. If it is add it to the answer, and then when you recurse divide by 10 and make sure to add the result to the answer. Like,
public static int sumOfOddDigits(int n) {
int ans = 0;
if (n != 0) {
int r = n % 10;
if (r % 2 != 0) {
ans += r;
}
ans += sumOfOddDigits(n / 10);
}
return ans;
}
One problem is that you’re calling multiplyBy on n and not doing anything with the result. NaturalNumber seems likely to be immutable, so the method call has no effect.
But using recursion lets you write declarative code, this kind of imperative logic isn’t needed. instead of mutating local variables you can use the argument list to hold the values to be used in the next iteration:
public static int sumOfOddDigits(final int n) {
return sumOfOddDigits(n, 0);
}
// overload to pass in running total as an argument
public static int sumOfOddDigits(final int n, final int total) {
// base case: no digits left
if (n == 0)
return total;
// n is even: check other digits of n
if (n % 2 == 0)
return sumOfOddDigits(n / 10, total);
// n is odd: add last digit to total,
// then check other digits of n
return sumOfOddDigits(n / 10, n % 10 + total);
}
I am trying to implement a min heap in java which sorts based on two parameters. Each element of the min heap is an object which contains an int and a string. My current implementation sorts solely based on the integer but I also need it to sort in alphabetical order. For example, if the contents of the objects are as follows:
{ (stopped, 3), (anywhere, 1), (food, 17), (get, 3), (done, 1)}
the output when removing elements from the heap must be:
{(anywhere, 1), (done, 1), (get, 3), (stopped, 3), (food, 17)}
My sink and swim functions are described below:
private void swim(int n){
while (n > 1 && greater(n/2, n)){
exchange(n, n/2);
n = n/2;
}
}
private boolean greater(int i, int j){
return elements[i].getValue() >= elements[j].getValue();
}
private void exchange(int i, int j){
Node tmp = elements[i];
elements[i] = elements[j];
elements[j] = tmp;
}
private void sink(int k){
while(2*k <=n){
int i = 2*k;
if(i < n && greater(i, i+1)) i++;
if(!greater(k,i)) break;
exchange(k,i);
k = i;
}
}
Any help would be greatly appreciated!
Update
Thank you very much to #AlbertoSinigaglia, your solution worked!
you just need to update the greater method in this way:
return /*1*/ elements[i].getValue()>elements[j].getValue
||
/*2*/ (elements[i].getValue()==elements[j].getValue() && elements[i].getString().compareTo(elements[j].getString())>0)
With 1 you check if the int Value is greater, if yes, well ends there, if else it's not, it should be o = or < and we need to take care of the = case, so if the Values are equals, then we compare the String with the compareTo() method, which will return >0 in case the first String is greater than the second string
How would you solve the following task:
Write a recursive method which gets passed an array, filters all odd numbers and store them into an array. The returned array has to be sorted by each elements order.
You are not allowed to use any provided methods by java classes like Arrays.sort, Lists, etc. Furthermore loops are disallowed and generic well known sort algorithm applied to the result as well.
The part of filtering is easy, but I don't know how to put each element at its right place. At the moment my method only returns an unsorted array with all odd numbers.
public static int[] filterOdd(int[] m){
return filterOdd(m, 0, 0);
}
private static int[] filterOdd(int[] m, int idx, int idxToPlace){
if(idx <= m.length -1){
if(m[idx] % 2 == 0){
return filterOdd(m, idx + 1, idxToPlace);
}else{
int[] buffer = filterOdd(m, idx + 1, idxToPlace + 1);
buffer[idxToPlace] = m[idx];
return buffer;
}
}else{
return new int[numberOfOddIntegers(m)];
}
}
Is there any way to insert the odd number at its right place recursively?
At the place where you do buffer[idxToPlace] = m[idx]; you have to call another method that will return the sorted array with the current processing number added to it.
That new method can be recursive too: you know at that moment that the array you have in your hands is ordered. You just recursively traverse (for example from the end to the begin) and from the moment your element fits in (e.g. is smaller than the previous element) you can insert it and return the sorted array. If there is only 1 element (base case) you can just return it.
That way, at the end of your algorithm, the list will be sorted.
I'm not allowed to use System.arraycopy
This means that you need to figure out how many odd numbers you are going to have, in order to size your result properly:
public static int[] filterOdd(int[] m){
int[] res = new int[countOdd(m, 0)];
filterOdd(m, 0, 0, res);
return res;
}
private static int countOdd(int[] m, int i) {
if (i == m.length) {
return 0;
}
int isOdd = m[i] % 2 != 0 ? 1 : 0;
return isOdd + countOdd(m, i+1);
}
private static void filterOdd(int[] m, int src, int dest, int[] res){
if(src == m.length) {
return;
}
if (m[src] % 2 != 0) {
res[dest++] = m[src];
}
filterOdd(m, src+1, dest, res);
}
Where ever I see Recursive Fibonacci Series everyone tell that
a[i] = fib(i - 1) + fib( i - 2)
But it can also be solved with
a[i] = fib(i - 1) + a[i-2] // If array 'a' is a global variable.
If array 'a' is a global Variable, then a[i-2] will be calculated when it is calculating for a[i-2];
It can be solved with below program in java..
public class Fibonacci {
public static int maxNumbers = 10;
public static double[] arr = new double[maxNumbers];
public static void main(String args[])
{
arr[0] = 0;
arr[1] = 1;
recur(maxNumbers - 1);
}
public static double recur(int i)
{
if( i > 1)
{
arr[i] = recur(i - 1) + arr[i - 2];
}
return arr[i];
}
}
Further more, complexity is also less when compared with original procedure. Is there any disadvantage of doing this way?
You have done the first step for Dynamic Programming calculation of Fibonacci, idea of DP is to avoid redundant calculations, and your algorithm achieve its goal.
A "classic" Bottom-Up DP Fibonacci implementation is filling the elements from lower to higher:
arr[0] = 0
arr[1] = 1
for (int i = 2; i <= n; i++)
arr[i] = arr[i-1] + arr[i-2]
(Optimization could be storing curr,last alone, and modifying them at each iteration.
Your approach is basically the same in principle.
As a side note, the DP approach to calculate Fibonacci is taking O(n) time, where there is even more efficient solution with exponential of the matrix:
1 1
1 0
The above holds because you use the fact that
1 1 F_{n+1} 1*F{n+1} + 1*F{n} F_{n+2}
* = =
1 0 F_{n} 1*F{n+1} + 0*F{n} F_{n+1}
Using exponent by squaring on the above matrix, this can be solved in O(logn).
If you just want the nth fibonacci number you could do this:
static double fib(double prev, double curr, int n) {
if(n == 0)
return curr;
return fib(curr, prev+curr, n-1);
}
Initial conditions would be prev = 0, curr = 1, n = maxNumbers. This function is tail recursive because you don't need to store the return value of the recursive call for any additional calculations. The initial stack frame gets reused (which saves memory) and once you hit your base case the value that's returned is the same value that would be returned from every other recursive call.
By using an array like you do you only recalculate one of the two branches (the longest one in each iteration) ending up with a O(n) complexity.
If you were to keep track on how large fibonacci number you have caclulated earlier you can use that and produce O(max(n-prevn, 1)). Here is an altered version of your code that fills the array from bottom to i if needed:
public class Fibonacci {
public static final int maxNumbers = 93; // fib(93) > Long.MAX_VALUE
public static long[] arr = new long[maxNumbers];
public static int calculatedN = 0;
public static long fib(int i) throws Exception
{
if( i >= maxNumbers )
throw new Exception("value out of bounds");
if( calculatedN == 0 ) {
arr[0] = 0L;
arr[1] = 1L;
calculatedN = 1;
}
if( i > calculatedN ) {
for( int x=calculatedN+1; x<=i; x++ ){
arr[x] = arr[x-2] + arr[x-1];
}
calculatedN = i;
}
return arr[i];
}
public static void main (String args[]) {
try {
System.out.println(fib(50)); // O(50-2)
System.out.println(fib(30)); // O(1)
System.out.println(fib(92)); // O(92-50)
System.out.println(fib(92)); // O(1)
} catch ( Exception e ) { e.printStackTrace(); }
}
}
I changed double to long. If you need larger fibonacci numbers than fib(92) I would change from long to Biginteger.
You can also code using two recursive function but as the same value is calculating over again and again so all You can do a dynamic programming approach where You can store the value and return it where need.Like this one in C++
#include <bits/stdc++.h>
using namespace std;
int dp[100];
int fib(int n){
if(n <= 1)
return n;
if(dp[n]!= -1)
return dp[n];
dp[n] = fib(n-1) + fib(n-2);
return dp[n];
}
int main(){
memset(dp,-1,sizeof(dp));
for(int i=1 ;i<10 ;i++)
cout<<fib(i)<<endl;
}
This is only step from non recursive version:
https://gist.github.com/vividvilla/4641152
General this partially recursive approach looks incredibly messy
I'm trying to calculate the total, mean and median of an array thats populated by input received by a textfield. I've managed to work out the total and the mean, I just can't get the median to work. I think the array needs to be sorted before I can do this, but I'm not sure how to do this. Is this the problem, or is there another one that I didn't find? Here is my code:
import java.applet.Applet;
import java.awt.Graphics;
import java.awt.*;
import java.awt.event.*;
public class whileloopq extends Applet implements ActionListener
{
Label label;
TextField input;
int num;
int index;
int[] numArray = new int[20];
int sum;
int total;
double avg;
int median;
public void init ()
{
label = new Label("Enter numbers");
input = new TextField(5);
add(label);
add(input);
input.addActionListener(this);
index = 0;
}
public void actionPerformed (ActionEvent ev)
{
int num = Integer.parseInt(input.getText());
numArray[index] = num;
index++;
if (index == 20)
input.setEnabled(false);
input.setText("");
sum = 0;
for (int i = 0; i < numArray.length; i++)
{
sum += numArray[i];
}
total = sum;
avg = total / index;
median = numArray[numArray.length/2];
repaint();
}
public void paint (Graphics graf)
{
graf.drawString("Total = " + Integer.toString(total), 25, 85);
graf.drawString("Average = " + Double.toString(avg), 25, 100);
graf.drawString("Median = " + Integer.toString(median), 25, 115);
}
}
The Arrays class in Java has a static sort function, which you can invoke with Arrays.sort(numArray).
Arrays.sort(numArray);
double median;
if (numArray.length % 2 == 0)
median = ((double)numArray[numArray.length/2] + (double)numArray[numArray.length/2 - 1])/2;
else
median = (double) numArray[numArray.length/2];
Sorting the array is unnecessary and inefficient. There's a variation of the QuickSort (QuickSelect) algorithm which has an average run time of O(n); if you sort first, you're down to O(n log n). It actually finds the nth smallest item in a list; for a median, you just use n = half the list length. Let's call it quickNth (list, n).
The concept is that to find the nth smallest, choose a 'pivot' value. (Exactly how you choose it isn't critical; if you know the data will be thoroughly random, you can take the first item on the list.)
Split the original list into three smaller lists:
One with values smaller than the pivot.
One with values equal to the pivot.
And one with values greater than the pivot.
You then have three cases:
The "smaller" list has >= n items. In that case, you know that the nth smallest is in that list. Return quickNth(smaller, n).
The smaller list has < n items, but the sum of the lengths of the smaller and equal lists have >= n items. In this case, the nth is equal to any item in the "equal" list; you're done.
n is greater than the sum of the lengths of the smaller and equal lists. In that case, you can essentially skip over those two, and adjust n accordingly. Return quickNth(greater, n - length(smaller) - length(equal)).
Done.
If you're not sure that the data is thoroughly random, you need to be more sophisticated about choosing the pivot. Taking the median of the first value in the list, the last value in the list, and the one midway between the two works pretty well.
If you're very unlucky with your choice of pivots, and you always choose the smallest or highest value as your pivot, this takes O(n^2) time; that's bad. But, it's also very unlikely if you choose your pivot with a decent algorithm.
Sample code:
import java.util.*;
public class Utility {
/****************
* #param coll an ArrayList of Comparable objects
* #return the median of coll
*****************/
public static <T extends Number> double median(ArrayList<T> coll, Comparator<T> comp) {
double result;
int n = coll.size()/2;
if (coll.size() % 2 == 0) // even number of items; find the middle two and average them
result = (nth(coll, n-1, comp).doubleValue() + nth(coll, n, comp).doubleValue()) / 2.0;
else // odd number of items; return the one in the middle
result = nth(coll, n, comp).doubleValue();
return result;
} // median(coll)
/*****************
* #param coll a collection of Comparable objects
* #param n the position of the desired object, using the ordering defined on the list elements
* #return the nth smallest object
*******************/
public static <T> T nth(ArrayList<T> coll, int n, Comparator<T> comp) {
T result, pivot;
ArrayList<T> underPivot = new ArrayList<>(), overPivot = new ArrayList<>(), equalPivot = new ArrayList<>();
// choosing a pivot is a whole topic in itself.
// this implementation uses the simple strategy of grabbing something from the middle of the ArrayList.
pivot = coll.get(n/2);
// split coll into 3 lists based on comparison with the pivot
for (T obj : coll) {
int order = comp.compare(obj, pivot);
if (order < 0) // obj < pivot
underPivot.add(obj);
else if (order > 0) // obj > pivot
overPivot.add(obj);
else // obj = pivot
equalPivot.add(obj);
} // for each obj in coll
// recurse on the appropriate list
if (n < underPivot.size())
result = nth(underPivot, n, comp);
else if (n < underPivot.size() + equalPivot.size()) // equal to pivot; just return it
result = pivot;
else // everything in underPivot and equalPivot is too small. Adjust n accordingly in the recursion.
result = nth(overPivot, n - underPivot.size() - equalPivot.size(), comp);
return result;
} // nth(coll, n)
public static void main (String[] args) {
Comparator<Integer> comp = Comparator.naturalOrder();
Random rnd = new Random();
for (int size = 1; size <= 10; size++) {
ArrayList<Integer> coll = new ArrayList<>(size);
for (int i = 0; i < size; i++)
coll.add(rnd.nextInt(100));
System.out.println("Median of " + coll.toString() + " is " + median(coll, comp));
} // for a range of possible input sizes
} // main(args)
} // Utility
If you want to use any external library here is Apache commons math library using you can calculate the Median.
For more methods and use take look at the API documentation
import org.apache.commons.math3.*;
.....
......
........
//calculate median
public double getMedian(double[] values){
Median median = new Median();
double medianValue = median.evaluate(values);
return medianValue;
}
.......
For more on evaluate method AbstractUnivariateStatistic#evaluate
Update
Calculate in program
Generally, median is calculated using the following two formulas given here
If n is odd then Median (M) = value of ((n + 1)/2)th item term.
If n is even then Median (M) = value of [((n)/2)th item term + ((n)/2 + 1)th item term ]/2
In your program you have numArray, first you need to sort array using Arrays#sort
Arrays.sort(numArray);
int middle = numArray.length/2;
int medianValue = 0; //declare variable
if (numArray.length%2 == 1)
medianValue = numArray[middle];
else
medianValue = (numArray[middle-1] + numArray[middle]) / 2;
Arrays.sort(numArray);
return (numArray[size/2] + numArray[(size-1)/2]) / 2;
Arrays.sort(numArray);
int middle = ((numArray.length) / 2);
if(numArray.length % 2 == 0){
int medianA = numArray[middle];
int medianB = numArray[middle-1];
median = (medianA + medianB) / 2;
} else{
median = numArray[middle + 1];
}
EDIT: I initially had medianB setting to middle+1 in the even length arrays, this was wrong due to arrays starting count at 0. I have updated it to use middle-1 which is correct and should work properly for an array with an even length.
You can find good explanation at https://www.youtube.com/watch?time_continue=23&v=VmogG01IjYc
The idea it to use 2 Heaps viz one max heap and mean heap.
class Heap {
private Queue<Integer> low = new PriorityQueue<>(Comparator.reverseOrder());
private Queue<Integer> high = new PriorityQueue<>();
public void add(int number) {
Queue<Integer> target = low.size() <= high.size() ? low : high;
target.add(number);
balance();
}
private void balance() {
while(!low.isEmpty() && !high.isEmpty() && low.peek() > high.peek()) {
Integer lowHead= low.poll();
Integer highHead = high.poll();
low.add(highHead);
high.add(lowHead);
}
}
public double median() {
if(low.isEmpty() && high.isEmpty()) {
throw new IllegalStateException("Heap is empty");
} else {
return low.size() == high.size() ? (low.peek() + high.peek()) / 2.0 : low.peek();
}
}
}
Try sorting the array first. Then after it's sorted, if the array has an even amount of elements the mean of the middle two is the median, if it has a odd number, the middle element is the median.
Use Arrays.sort and then take the middle element (in case the number n of elements in the array is odd) or take the average of the two middle elements (in case n is even).
public static long median(long[] l)
{
Arrays.sort(l);
int middle = l.length / 2;
if (l.length % 2 == 0)
{
long left = l[middle - 1];
long right = l[middle];
return (left + right) / 2;
}
else
{
return l[middle];
}
}
Here are some examples:
#Test
public void evenTest()
{
long[] l = {
5, 6, 1, 3, 2
};
Assert.assertEquals((3 + 4) / 2, median(l));
}
#Test
public oddTest()
{
long[] l = {
5, 1, 3, 2, 4
};
Assert.assertEquals(3, median(l));
}
And in case your input is a Collection, you might use Google Guava to do something like this:
public static long median(Collection<Long> numbers)
{
return median(Longs.toArray(numbers)); // requires import com.google.common.primitives.Longs;
}
I was looking at the same statistics problems. The approach you are thinking it is good and it will work. (Answer to the sorting has been given)
But in case you are interested in algorithm performance, I think there are a couple of algorithms that have better performance than just sorting the array, one (QuickSelect) is indicated by #bruce-feist's answer and is very well explained.
[Java implementation: https://discuss.leetcode.com/topic/14611/java-quick-select ]
But there is a variation of this algorithm named median of medians, you can find a good explanation on this link:
http://austinrochford.com/posts/2013-10-28-median-of-medians.html
Java implementation of this:
- https://stackoverflow.com/a/27719796/957979
I faced a similar problem yesterday.
I wrote a method with Java generics in order to calculate the median value of every collection of Numbers; you can apply my method to collections of Doubles, Integers, Floats and returns a double. Please consider that my method creates another collection in order to not alter the original one.
I provide also a test, have fun. ;-)
public static <T extends Number & Comparable<T>> double median(Collection<T> numbers){
if(numbers.isEmpty()){
throw new IllegalArgumentException("Cannot compute median on empty collection of numbers");
}
List<T> numbersList = new ArrayList<>(numbers);
Collections.sort(numbersList);
int middle = numbersList.size()/2;
if(numbersList.size() % 2 == 0){
return 0.5 * (numbersList.get(middle).doubleValue() + numbersList.get(middle-1).doubleValue());
} else {
return numbersList.get(middle).doubleValue();
}
}
JUnit test code snippet:
/**
* Test of median method, of class Utils.
*/
#Test
public void testMedian() {
System.out.println("median");
Double expResult = 3.0;
Double result = Utils.median(Arrays.asList(3.0,2.0,1.0,9.0,13.0));
assertEquals(expResult, result);
expResult = 3.5;
result = Utils.median(Arrays.asList(3.0,2.0,1.0,9.0,4.0,13.0));
assertEquals(expResult, result);
}
Usage example (consider the class name is Utils):
List<Integer> intValues = ... //omitted init
Set<Float> floatValues = ... //omitted init
.....
double intListMedian = Utils.median(intValues);
double floatSetMedian = Utils.median(floatValues);
Note: my method works on collections, you can convert arrays of numbers to list of numbers as pointed here
And nobody paying attention when list contains only one element (list.size == 1). All your answers will crash with index out of bound exception, because integer division returns zero (1 / 2 = 0). Correct answer (in Kotlin):
MEDIAN("MEDIAN") {
override fun calculate(values: List<BigDecimal>): BigDecimal? {
if (values.size == 1) {
return values.first()
}
if (values.size > 1) {
val valuesSorted = values.sorted()
val mid = valuesSorted.size / 2
return if (valuesSorted.size % 2 != 0) {
valuesSorted[mid]
} else {
AVERAGE.calculate(listOf(valuesSorted[mid - 1], valuesSorted[mid]))
}
}
return null
}
},
As #Bruce-Feist mentions, for a large number of elements, I'd avoid any solution involving sort if performance is something you are concerned about. A different approach than those suggested in the other answers is Hoare's algorithm to find the k-th smallest of element of n items. This algorithm runs in O(n).
public int findKthSmallest(int[] array, int k)
{
if (array.length < 10)
{
Arrays.sort(array);
return array[k];
}
int start = 0;
int end = array.length - 1;
int x, temp;
int i, j;
while (start < end)
{
x = array[k];
i = start;
j = end;
do
{
while (array[i] < x)
i++;
while (x < array[j])
j--;
if (i <= j)
{
temp = array[i];
array[i] = array[j];
array[j] = temp;
i++;
j--;
}
} while (i <= j);
if (j < k)
start = i;
if (k < i)
end = j;
}
return array[k];
}
And to find the median:
public int median(int[] array)
{
int length = array.length;
if ((length & 1) == 0) // even
return (findKthSmallest(array, array.length / 2) + findKthSmallest(array, array.length / 2 + 1)) / 2;
else // odd
return findKthSmallest(array, array.length / 2);
}
public static int median(int[] arr) {
int median = 0;
java.util.Arrays.sort(arr);
for (int i=0;i<arr.length;i++) {
if (arr.length % 2 == 1) {
median = Math.round(arr[arr.length/2]);
} else {
median = (arr[(arr.length/2)] + arr[(arr.length/2)-1])/2;
}
}
return median;
}
Check out the Arrays.sort methods:
http://docs.oracle.com/javase/6/docs/api/java/util/Arrays.html
You should also really abstract finding the median into its own method, and just return the value to the calling method. This will make testing your code much easier.
public int[] data={31, 29, 47, 48, 23, 30, 21
, 40, 23, 39, 47, 47, 42, 44, 23, 26, 44, 32, 20, 40};
public double median()
{
Arrays.sort(this.data);
double result=0;
int size=this.data.length;
if(size%2==1)
{
result=data[((size-1)/2)+1];
System.out.println(" uneven size : "+result);
}
else
{
int middle_pair_first_index =(size-1)/2;
result=(data[middle_pair_first_index+1]+data[middle_pair_first_index])/2;
System.out.println(" Even size : "+result);
}
return result;
}
package arrays;
public class Arraymidleelement {
static public double middleArrayElement(int [] arr)
{
double mid;
if(arr.length%2==0)
{
mid=((double)arr[arr.length/2]+(double)arr[arr.length/2-1])/2;
return mid;
}
return arr[arr.length/2];
}
public static void main(String[] args) {
int arr[]= {1,2,3,4,5,6};
System.out.println( middleArrayElement(arr));
}
}