how to check the divergence of 5 numbers in java - java

I have an array of five integers count[5] and I want to check if their difference is more than 3.
A brute force could be to do : if(count[5]-count[4])>3) ,if(count[5]-count[3]>3)
Is there a better way to do it ?

Not a very efficient way to do it, but
Integer min = Arrays.<Integer>asList(arr).stream().min(Comparator.naturalOrder());
Integer max = Arrays.<Integer>asList(arr).stream().min(Comparator.naturalOrder());
Integer spread = max - min;
will do the trick.
If the array is large, you'll want to do a reduce with a running tracker for min and max at the same time. Let me know if you really need that.

Here a Java code implementation:
public static boolean diff(int[] ar) {
boolean result = true;
for (int i = 0; i < ar.length; i++) {
for (int j = 0; j < ar.length; j++) {
if (Math.abs(ar[i] - ar[j]) > 3) {
result = false;
}
}
}
return result;
}

You can use for loop in case if the numbers in the array are to increase.
int[5] count = {1,2,3,4,5}
for(int i = 0; i < count.length; i++){
for(int j = 0; j < count.length; j++){
if(((count[i] - count[j]) > 3) || ((count[i] - count[j])<-3)){
//TODO
}
}
}

Related

Find number of duplicate that occurs in array - Java

I can't wrap my head around this. Need to find duplicates and I did. All now that is left is to print how many times a duplicate appears in the array. I just started with Java,so this needs to be hard coded for me to understand. Spend last two days trying to figure it out but with no luck.. Any help will be great! Talk is cheap,here is the code..
import java.util.Arrays;
public class LoopTest {
public static void main(String[] args) {
int[] array = {12,23,-22,0,43,545,-4,-55,43,12,0,-999,-87};
int positive_counter = 0;
int negative_counter = 0;
for (int i = 0; i < array.length; i++) {
if(array[i] > 0) {
positive_counter++;
} else if(array[i] < 0) {
negative_counter++;
}
}
int[] positive_array = new int[positive_counter];
int[] negative_array = new int[negative_counter];
positive_counter = 0;
negative_counter = 0;
for (int i = 0; i < array.length; i++) {
if(array[i] > 0) {
positive_array[positive_counter++] = array[i];
} else if(array[i] < 0) {
negative_array[negative_counter++] = array[i];
}
}
System.out.println("Positive array: " + (Arrays.toString(positive_array)));
System.out.println("Negative array: " + (Arrays.toString(negative_array)));
Arrays.sort(array);
System.out.println("Array duplicates: ");
for (int i = 0; i < array.length; i++) {
for (int j = i + 1; j < array.length; j++) {
if(array[i] == array[j]) {
System.out.println(array[j]);
}
}
}
}
}
Since you are already sorting the array you can find the duplicates with just one loop (they will be next to each other right?). So you can do something like:
Arrays.sort(array);
System.out.println("Array duplicates: ");
int lastValueCount=1; //How many times we met the current value (at least 1 - this time)
for (int i = 1; i < array.length; i++){
if(array[i] == array[i-1])
lastValueCount++; //If it is the same as the previous increase the count
else {
if(lastValueCount>1) //If it is duplicate print it
System.out.println(array[i-1]+" was found "+lastValueCount+" times");
lastValueCount=1; //reset the counter
}
}
Result for your array is:
Array duplicates:
0 was found 2 times
12 was found 2 times
43 was found 2 times
Also you can use some of the Java bells and whistles like inserting the values into Map or something like that but I guess you are looking from an algorithmic point of view so the above is the simple answer with just one loop
Just go through your solution, first you separate positive and negative numbers in two different arrays, then you never use them, so what's the purpose of this separation ?
I am giving you just an idea related to your problem, it's better to solve it by your self so that you can get hands on Java.
Solution: you can use Dictionary-key value pair. Go through your array, put element in dictionary as a key and value as zero, on every iteration check if that key already exist in Dictionary, just increment its value. In the end, all of the values are duplicates that occurs in your array.
Hope it helps you.
From the algorithmic point of view, Veselin Davidov's answer is good (the most efficient).
In a production code, you would rather write it like this :
Map<Integer, Long> result =
Arrays.stream(array)
.boxed() //converts IntStream to Stream<Int>
.collect(Collectors.groupingBy(i -> i, Collectors.counting()));
The result is this Map :
System.out.println(result);
{0=2, 545=1, -4=1, -22=1, -87=1, -999=1, -55=1, 23=1, 43=2, 12=2}
An easy way would be using Maps. Without changing code too much:
for (int i = 0; i < array.length; i++) {
int count = 0;
for (int j = i + 1; j < array.length; j++) {
if(array[i] == array[j]) {
System.out.println(array[j]);
count++;
}
}
map.put(array[i], count);
}
Docs:
https://docs.oracle.com/javase/7/docs/api/java/util/Map.html
Edit: As a recommendation, after you are done with the example, you should analize your code and find what isnĀ“t neccesary, what could be done better, etc.
Are all your auxiliary arrays neccesary? Are all loops necessary?
You can do it by creating an array list for duplicate values:-
Arrays.sort(array);
System.out.println("Array duplicates: ");
ArrayList<Integer> duplicates = new ArrayList<Integer>();
for (int i = 0; i < array.length; i++) {
for (int j = 0; j < array.length; j++) {
if(j != i && array[i] == array[j] && !duplicates.contains(array[i])){
duplicates.add(array[i]);
System.Out.println(duplicates[duplicates.size()-1]);
}
}
}
public static void findDuplicate(String s){
char[] charArray=s.toCharArray();
ArrayList<Character> duplicateList = new ArrayList<>();
System.out.println(Arrays.toString(charArray));
for(int i=0 ; i<=charArray.length-1; i++){
if(duplicateList.contains(charArray[i]))
continue;
for(int j=0 ; j<=charArray.length-1; j++){
if(i==j)
continue;
if(charArray[i] == charArray[j]){
duplicateList.add(charArray[j]);
System.out.println("Dupliate at "+i+" and "+j);
}
}
}
}

SelectionSort and for loop

I have a question regarding SelectionSort.
Please, take a look at my Code:
public static int[] sortiert(int[] array) {
for (int i = 0; i < array.length - 1; i++) {
for (int j = i + 1; j < array.length; j++) {
if (array[j] > array[i]) {
int speicher = array[i];
array[i] = array[j];
array[j] = speicher;
}
}
}
return array;
Can you please tell me why I have j = i + 1 in the second for-loop?
It bothers me...
array.length - 1 in the first loop is clear.
It would be nice to get an answer detailed
public static class SelectionSort
{
static int min;
public static void Sort(int[] data)
{
for (int i = 0; i < data.Length; i++)
{
for (int j = 0; j < data.Length; j++)
{
min = j;
if (data[i] < data[j])
Swap(x: ref data[i], y: ref data[min]);
}
}
}
private static void Swap(ref int x, ref int y)
{
x = x+y;
y = x-y;
x = x-y;
}
}
The sortiert method is running through the array multiple times. With every pair of elements, if the second element (the one later in the list) is greater than the first element (if (array[j] > array[i])), then it swaps the two elements, such that eventually the list will be sorted in decreasing order.
The i index represents the "first value" being compared above and the j index represents the "second value" being compared above. Thus, j will always start at i+1 as it must always be after the first value in the list. If j = i in the for loop, then you would be checking array[i] > array[i] because j = i in that case; since a number is never strictly less than itself, this would always return false and is thus an unnecessary operation.

A subset sum algorithm which uses negative and positive integers

The checkNum is the target value. array is the array of integers i am looking at. I am using the matrix to hold True and False value to see my possible sums. The checkPower method is only checking if the index i+1 is = 2^n. I am having trouble writing an algorithm that can solve the subset sum problem using negative integers also. I wrote an algorithm but I cannot use it, because as the input size increases I am running out of memory. I was wondering if anyone came up with an algorithm to solve the problem. I would prefer if it was written java, or it could be a pseudo code.
public static ArrayList<Integer> populateArray(boolean[][]matrix, int []array, int checkNum){
int usedElement = 0;
ArrayList<Integer>resultArray = new ArrayList<>();
for(int i = 0; i < matrix.length; i++){
if(checkPower(i+1)){
matrix[i][usedElement] = true;
usedElement++;
if(array[usedElement-1] == checkNum){
resultArray.add(array[usedElement-1]);
return resultArray;
}
}
else{
int tempSum = 0;
int remainingIndex = (int) (i - Math.pow(2, usedElement-1));
matrix[i][usedElement-1] = true;
tempSum += array[usedElement-1];
for(int k = 0 ; k < matrix[remainingIndex].length; k++){
if(matrix[remainingIndex][k]){
matrix[i][k] = true;
tempSum += array[k];
}
}
if(tempSum == checkNum){
for(int j = 0 ; j < matrix[j].length; j++){
if(matrix[i][j]){
resultArray.add(array[j]);
}
}
return resultArray;
}
}
}
return resultArray;
}

Finding uniques integers in an array

i have an array of integers like this one :
A={1,1,4,4,4,1,1}
i want to count the each number once , for this example the awnser is 2 becuase i want to count 1 once and 4 once
i dont want to use sorting methods
i am unable to find a way to solve it using java.
i did this but it gives me 0
public static void main(String args[]) {
int a[] = { 1,1,4,4,4,4,1,1};
System.out.print(new Test4().uniques(a));
}
public int uniques(int[] a) {
int unique = 0;
int tempcount = 0;
for (int i = 0; i < a.length; i++) {
for (int j = 0; j < a.length; j++) {
if (a[i] == a[j]) {
tempcount++;
}
}
if (tempcount <= 2) {
unique=a[i];
}
tempcount = 0;
}
return unique;
}
the purpose of the question is to understand the logic of it but not solving it using ready methods or classes
This one should work. I guess this might be not the most elegant way, but it is pretty straightforward and uses only simple arrays. Method returns number of digits from array, but without counting duplicates - and this I believe is your goal.
public int uniques(int[] a) {
int tempArray[] = new int[a.length];
boolean duplicate = false;
int index = 0;
int digitsAdded = 0;
for (int i = 0; i < a.length; i++) {
for (int j = 0; j < tempArray.length; j++) {
if (a[i] == tempArray[j]) {
duplicate = true;
}
}
if(!duplicate) {
tempArray[index] = a[i];
index++;
digitsAdded++;
}
duplicate = false;
}
//this loop is needed if you have '0' in your input array - when creating temp
//array it is filled with 0s and then any 0 in input is treated as a duplicate
//again - not most elegant solution, maybe I will find better later...
for(int i = 0; i < a.length; i++) {
if(a[i] == 0) {
digitsAdded++;
break;
}
}
return digitsAdded;
}
Okay first of all in your solution you are returning the int unique, that you are setting as the value that is unique a[i]. So it would only return 1 or 4 in your example.
Next, about an actual solution. You need to check if you have already seen that number. What you need to check is that for every number in the array is only appears in front of your position and not before. You can do this using this code below.
public int uniques(int[] a) {
int unique = 1;
boolean seen = false;
for (int i = 1; i < a.length; i++) {
for (int j = 0; j < i; j++) {
if (a[i] == a[j]) {
seen = true;
}
}
if (!seen) {
unique++;
}
seen = false;
}
return unique;
}
In this code you are iterating over the number you have seen and comparing to the number you are checking (a[i]). You know that for it to be unique you cant have seen it before.
I see two possible solutions:
using set
public int unique(int[] a) {
Set<Integer> set = new HashSet<>();
for (int i : a) {
set.add(i);
}
return set.size();
}
using quick sort
public int unique(int[] a) {
Arrays.sort(a);
int cnt = 1;
int example = a[0];
for (int i = 1; i < a.length; i++) {
if (example != a[i]) {
cnt++;
example = a[i];
}
}
return cnt;
}
My performance tests say that second solution is faster ~ 30%.
if restricted to only arrays, consider trying this:
Lets Take a temporary array of the same size of orignal array, where we store each unique letter and suppose a is your orignal array,
int[] tempArray= new int[a.length];
int tempArraycounter = 0;
bool isUnique = true;
for (int i = 0; i < a.length; i++)
{
isUnique = true;
for (int j = 0; j < tempArray.length; j++)
{
if(tempArray[j] == a[i])
isUnique = false;
}
if(isUnique)
{
tempArray[tempArraycounter] = a[i];
tempArraycounter++;
isUnique = false;
}
}
now tempArraycounter will be your answer ;)
Try Following code:
int test[]={1,1,4,4,4,1,1};
Set<Integer> set=new LinkedHashSet<Integer>();
for(int i=0;i<test.length;i++){
set.add(test[i]);
}
System.out.println(set);
Output :
[1, 4]
At the end set would contain unique integers.

Raising a matrix to the power method JAVA

I am having a really hard time creating a method to raise a matrix to the power. I tried using this
public static int powerMethod(int matrix, int power) {
int temp = matrix ;
for (int i = power; i == 1; i--)
temp = temp * matrix ;
return temp ;
but the return is WAYYY off. Only the first (1,1) matrix element is on point.
I tried using that method in a main like so
// Multiplying matrices
for (i = 0; i < row; i++)
{
for (j = 0; j < column; j++)
{
for (l = 0; l < row; l++)
{
sum += matrix[i][l] * matrix[l][j] ;
}
matrix[i][j] = sum ;
sum = 0 ;
}
}
// Solving Power of matrix
for (i = 0; i < row; i++) {
for (j = 0; j < column; j++)
matrixFinal[power][i][j] = Tools.powerMethod(matrix[i][j], power) ;
}
Where "power", "row", and "column" is an int that the user enters.
Any ideas how I can do this??
Thanks!!!
You have a lot of issues here.
First, your matrix squaring algorithm has a (common) error. You have:
for (i = 0; i < row; i++) {
for (j = 0; j < column; j++) {
for (l = 0; l < row; l++) {
sum += matrix[i][l] * matrix[l][j] ;
}
matrix[i][j] = sum ;
sum = 0 ;
}
}
However, you need to store the result in a temporary second matrix, because when you do matrix[i][j] = sum, it replaces the value at that position with the output, then later results end up being incorrect. Also I suggest initializing sum to 0 first, since it appears you declare it outside of this loop, and initializing it first protects you against any arbitrary value sum may have before going into the loop. Furthermore, it is not immediately clear what you mean by row and column -- make sure you are iterating over the entire matrix. E.g.:
int temp[][] = new int[matrix.length];
for (i = 0; i < matrix.length; i++) {
temp[i] = new int[matrix[i].length];
for (j = 0; j < matrix[i].length; j++) {
sum = 0 ;
for (l = 0; l < matrix.length; l++) {
sum += matrix[i][l] * matrix[l][j] ;
}
temp[i][j] = sum ;
}
}
// the result is now in 'temp', you could do this if you wanted:
matrix = temp;
Note that matrix.length and matrix[i].length are fairly interchangeable above if the matrix is square (which it must be, in order to be multiplied by itself).
Secondly, your multiplication squares a matrix. This means if you repeatedly apply it, you keep squaring the matrix every time, which means you will only be able to compute powers that are themselves powers of two.
Your third issue is your final bit doesn't make much sense:
for (i = 0; i < row; i++) {
for (j = 0; j < column; j++)
matrixFinal[power][i][j] = Tools.powerMethod(matrix[i][j], power) ;
}
It's not immediately clear what you are trying to do here. The final part seems to be trying to raise individual elements to a certain power. But this is not the same as raising a matrix to a power.
What you need to do is define a proper matrix multiplication method that can multiply two arbitrary matrices, e.g.:
int[][] multiplyMatrices (int[][] a, int[][] b) {
// compute and return a x b, similar to your existing multiplication
// algorithm, and of course taking into account the comments about
// the 'temp' output matrix above
}
Then computing a power becomes straightforward:
int[][] powerMatrix (int[][] a, int p) {
int[][] result = a;
for (int n = 1; n < p; ++ n)
result = multiplyMatrices(result, a);
return result;
}
Why not just use Math.pow?
import java.lang.Math;
Then you just have to do
matrixFinal[power][i][j] = (int) Math.pow(matrix[i][j],power); //might have to cast this to an int

Categories

Resources