Factory Method pattern vs ordinary abstract class implementation - java

I'm trying to understand the Factory Method pattern. I've managed to distinguish it from the Simple Factory, but now I don't get why it's actually called a "pattern". Please, look at my example below:
Class Diagram link
Sample java code for Messenger:
public String exchangeMessages(String messageToSend) {
Socket socket = getSocket();
socket.open();
socket.send(messageToSend);
String receivedMessage = socket.receive();
socket.close();
return receivedMessage;
}
And for Client:
public static void main(String[] args) {
Messenger messenger = new TCPMessenger("127.0.0.1", 4321);
String result = messenger.exchangeMessages("Hello!");
System.out.println(result);
}
If I understand correctly, everything makes sense because exchangeMessages method exists. We use the abstract factory method getSocket inside it and thanks to it we:
let subclasses decide which class to instantiate
But isn't it just an ordinary abstract class implementation? We take advantage of the code shared by both TCPMessenger and UDPMessenger - for me, this is not a pattern but a core feature of Object-Oriented Programming that everybody knows from the beggining of OOP language learning!
Moreover, I think that naming this creational is very confusing. We actually care about exchangeMessages method, so Client (part of the code that uses our "pattern") is not even aware of the Socket class which creation we're all about. It's more like a way to implement Messenger functionallity (which can be easily extended etc...) than a way to really create something.
Am I missing the point or is my example invalid? Please guys, let me know what do you thing about it.
Thanks in advance!

for me, this is not a pattern but a core feature of Object-Oriented
Programming
Most of patterns rely on core OOP features : programming by interface, overriding, polymorphism, and so for...
Moreover, I think that naming this creational is very confusing.
We actually care about exchangeMessages method, so Client (part of the
code that uses our "pattern") is not even aware of the Socket class
which creation we're all about. It's more like a way to implement
Messenger functionality (which can be easily extended etc...) than a
way to really create something.
It depends on the point of view you are taking.
For subclasses of the Messenger abstract class such as TcpManager, their parent class defines all but this factory method that they have to implement to specify what Socket getSocket(); should return.
So for subclasses point of view, talking about a creational pattern for Socket getSocket() makes sense.
For client classes of Messenger, things are indeed different.
Clients may even not need to use directly this method.
For these classes, the important thing is indeed having a way to manipulate indifferently any subclass of Messenger.

The Factory Method pattern is a simple pattern, but still a pattern nonetheless.
Your Client and its relationship to the Factory Method
The Gang of Four (GoF) definition of the Factory Method Pattern does not specifically mention a Client as a participant of the pattern itself. In reality the Client is most likely to use the Factory Method indirectly through some other operation.
In your case as the Client does not care about the Socket being used, but just the Messenger itself. However, the Messenger is dependent upon a Socket as it has some behavior that uses a Socket Object.
So whilst the Client itself does not care about the Socket, it does care about the Messenger which has a use dependency with Socket.
As the Socket itself is abstract it gives us a problem, as we don't want to replicate the same logic in exchangeMessages(String) multiple times for the different implementations of Socket (TCPSocket and UDPSocket), especially when we may want to add more Socket classes at a later date.
This is where the Factory Method pattern comes into play, as we can define all the generalized behavior for exchanging messages at an abstract level, but leave the creation of the actual Socket implementation (TCPSocket and UDPSocket) to subclasses of Messenger (TCPMessenger and UDPMessenger).
Discussion of alternatives to the Factory Method Pattern
You could just set the Socket as a field of Messenger, and inject it using a Strategy pattern approach or have a constructor that takes a Socket as a parameter. A drawback of this approach is that we'll have to maintain a reference to this Socket Object as a class field in anticipation of it's use.
However, with the Factory Method Pattern, the Socket will only be created in the method exchangeMessages() when needed and then discarded when the method terminates, which may be of some benefit. This comes at the cost of having to create one of the Socket Objects each time exchangeMessages() is called, which may not be ideal.
You could also pass the required Socket to the exchangeMessages() method to be used, but this may not as convenient for the user of the method in the long term.
If your Messenger subclasses also have some specific behaviors (new methods / overridden implementations) not applicable to all types of Messenger, then Factory Method is certainly the way to go, as we need to subclass Messenger anyway and it allows us to strictly enforce the type of Socket created by the Factory Method getSocket().
Perhaps others could contribute to the pros/cons of the Factory Method (specifically in Java as this the language tag for the question) and I can update this answer in due course.
Validity of your example
About whether your example is invalid or not. I think it helps to first fully understand the pattern and the important classes, operations and relationships in order to conform to the Factory Method pattern (as specified by the GoF).
The Factory Method Pattern allows you to define an Operation (or possibly several operations) in an abstract Creator class (in your case Messenger) which will use some Object (a Product [Socket]) without knowing the specific Product in advance and deferring its creation (hence the term creational pattern) to the Factory Method.
The Factory Method itself (getSocket()) is abstract in the Creator class and will be implemented by Concrete Creators (TCPMessenger, UDPMessenger) so polymorphism is used to achieve Object creation.
The Factory Method will return a Concrete Product (TCPSocket, UDPSocket) and have a return type applicable to all Concrete Product classes (Socket) used by the Operation in the abstract Creator class.
The Operation(s) (exchangeMessages(String)) that use the Factory Method will use the Concrete Product returned by the Factory Method by the interface Product which is applicable to all Concrete Product classes (Socket).
The result is that this pattern allows new Concrete Product classes to be added by implementing / subclassing the Product interface / class (or its subclasses...) and introducing a new Concrete Creator which returns the newly added Concrete Product from its Factory Method, preventing the need to re-write your Operation(s) that use this Product.
This means that we do not need to modify existing code when introducing new Concrete Products (Open/Closed Principle).
Generalized UML for the Factory Method Pattern
Some notes on the UML:
The factoryMethod() can be given a default implementation in Creator (i.e. a default Product to return), in turn allowing Creator to be non-abstract
The factoryMethod() could be public if desired, but this is superficial to the intention of the pattern since the factoryMethod() is primarily intended to be used by operation()
Product does not have to be abstract class, it could be an interface or it could be a concrete class
Validity of your example (continued)
In reference to the UML (and your example), the important parts of the pattern in less wordy terms are as follows:
There must exist
A Product interface (not neccesarily an interface in Java terms, could be a class or abstract class in reality) (in your case Socket)
ConcreteProduct classes that implement the Product interface (TCPSocket, UDPSocket)
An abstract Creator class (Messenger)
A Product factoryMethod() method that is defined in the Creator class (getSocket())
Note: The Creator and factoryMethod() are usually abstract, but the Creator can define a default Product removing this requirement.
operation() methods in the Creator class that use the ConcreteProduct returned by the factoryMethod() (exchangeMessages(String))
At least one ConcreteCreator class (TCPMessenger and UDPMessenger))
Such that
The ConcreteCreator classes implement the Product factoryMethod() to create and return a ConcreteProduct
The abstract Creator class uses the ConcreteProduct (returned by Product factoryMethod()) through the interface for all Product implementations
The last two points reflect that Creator has a use dependency with the Product interface, and the ConcreteCreator classes have a create dependency with its corresponding ConcreteProduct class.
Again, note that the Client class is not part of the pattern itself (as defined by the GoF).
So in conclusion, your example would appear check out as the Factory Method in regards to the requirements listed above if the TCPMessenger and UDPMessenger class implement the getSocket() method correctly (which I assume they actually do).

Related

What exactly can we describe Factory Method of design pattern?

I am confused with the concept ? Is it just as simple as incorporating a static method to return the object instead of a constructor ? So that client doesn't need to change the code while we update the library or there is something more to it ?
The book Head First Design Patterns will be your definitive guide for Java. That is a great book. If you check out my answer to this Stack Overflow Question, you will be able to see my implementation for an ArbitraryPointFactory class in the Point Example code that uses the Factory Method pattern as well as how it differs from Abstract Factory pattern seen in the Point Factory class. Although this answer is presented with C# code samples, the design pattern language I am using to describe their usage, should warrant you an answer.
What you are thinking of in your question is not a design pattern at all. This static method that returns an object to encapsulate the instantiation, is known as the Simple Factory as seen in the Wiki page. The Factory Method pattern more or less abstracts the type being returned via an interface. This is typically done where the sole job of the factory method class is to control creation of the objects for one concrete class that implements the interface being returned. The Abstract Factory provides encapsulation for a group of related products. In my example I was showing for different types of points, however they could implement different interfaces and all use the same Abstract Factory.
The idea is that you are programming to interfaces, not implementations. True factories pull creation logic to a single location in your application and encapsulate the instantiation via interfaces.

"Factory Method Design Pattern" in context of Java interfaces?

I am a beginner in Java and the book that I use to learn it seems to have cryptic examples and sentences that completely confuse me.
I understand what interfaces are and how/where to apply the concept in real world. But what are Factory Methods? The term "factory method" is ambiguous (JavaScript has a different meaning for that) so I am providing the snippet that the book has, in order to make my question clear. Here is the code:
interface Service {
void method1();
void method2();
}
interface ServiceFactory {
Service getService();
}
The Service interface is just a normal interface. ServiceFactory interface looks like a normal interface but it is a "Factory Method". What's that? What does it solve and why I should use them?
A factory method is simply a method that encaspulate the creation of an object. Instead of using the new operator as you normally would for creating an instead of a Service, in your example, you're using the factory method on some object.
ServiceFactory sf = new ServiceFactoryImpl();
// factory method
Service s = sf.getService();
To better illustrate the role of the method, it could be called createService instead. Now the method encapsulates the details of the creation of a Service, you can provide many flavors of the methods (by overloading), you can have it return different subclasses depending on the context, or parameters passed to the factory method.
A "factory method" is a method that constructs an object.
More specifically, the term usually refers to a static method that returns an instance of its declaring class (either a direct instance, or an instance of a subclass). In my experience, there are a few cases where that's particularly commonly done:
If you need to have multiple different constructors, using factory methods lets you give them appropriate names (whereas calls to different constructors can only be distinguished by the argument-types, which aren't always obvious at a glance).
If you need to have a few different implementations of a single abstract class that serves as the entry-point, the factory method can instantiate the appropriate subtype.
If you need any sort of caching logic or shared instances, the factory method can handle that, returning an already-existing instance if appropriate.
If you need to do some work with side effects, a factory method can be named in such a way that it's more clear what those side effects are.
So, your example doesn't really involve a "factory method" IMHO, but you can cheat a bit and describe getService() as one. (Rather, I would just describe ServiceFactory as a "factory" at leave it at that.) The benefits of ServiceFactory.getService() are the same as those of a factory method, plus the usual benefits of having an instance instead of a static method.

Abstract Factory Design: Replacing if else with enum

When we use Abstract Factory Pattern, we generally have FactoryMaker class which has a getFactory function in which we pass argument and we have switch or if-else logic in the function on the passed parameter to decide which factory to return. Is creating passed parameter an enum or an object and then having the logic of which factory to return inside those object will be better. For example :
Let us say this us our factory maker which are passed enum CountryCode to decide factory.
public class FacoryMaker {
public final static FacoryMaker fctry= new FacoryMaker();
public static RetailFactory getFactory(CountryCode code){
RetailFactory rt = null;
if(code == CountryCode.UK){
rt = new UKFactory();
}
if(code == CountryCode.US){
rt = new USFactory();
}
return rt;
}
}
Instead of this we will have :
public class FacoryMaker {
public final static FacoryMaker fctry= new FacoryMaker();
public static RetailFactory getFactory(CountryCode code){
return code.getFactory();
}
}
and enum will be modified like this:
public enum CountryCode {
US(){
#Override
public RetailFactory getFactory() {
return new USFactory();
}
},
UK(){
#Override
public RetailFactory getFactory() {
return new UKFactory();
}
};
public abstract RetailFactory getFactory();
}
But I don't see this being followed generally. Why is it so? Why can't we make the passing parameter always an object and have the logic inside the object of which factory to get? Can it fail under any abstract factory design. It looks very generic to me. Also by this it is possible to even remove the factory maker and use the object directly to get the Factory instance.
When designing software, one aspect to consider is Separation of Concerns it doesn't sound very reasonable to me to let a CountryCode create a RetailFactory. Both concepts have a pretty low cohesion towards each other, which should be avoided.
Further, if you already have a country code, why would you need a factory at all, what's preventing you to call the getFactory method directly? It simply makes no sense.
The CountryCode is merely a hint for the FactoryMaker's getFactory method, how to create the factory. It may even completely ignore the country code. What if there is a country without a RetailFactory? Do you return null? a DefaultFactory or the Factory of another country?
Of course it is possible to do it that way, but if you look at your code a half year from now, you may think "Wtf? Why the heck did I create the Factory in the Country Code?!"
Besides, the first example you provided seem to be more of a Factory Method than a Factory because the FactoryMaker is not used at all.
I think that Abstract Factory is a general pattern for all OOP languages. When people describe it, they should show a general implementation which is possible to be applied in all of those languages. Then people follow the pattern, they follow genernal implementation.
And your implementation is using Enum which is specifically supported in Java but not other OOP languages.
Very often in practice, factory methods don't know in advance the implementations. The implementing classes may not exist at the time the factory is created. This is the case for example in service provider frameworks such as the Java Database Connectivity API (JDBC). JDBC defines the interfaces that service providers must implement, but the concrete implementations are not known in advance.
This framework allows adding implementations later, for example for database drivers of new cutting edge databases.
The service provider framework includes a provider registration API to register implementations (ex: DriverManager.registerDriver), and a service access API for clients to obtain an instance of the service (ex: DriverManager.getConnection).
It is common to instantiate the service implementation using reflection (ex: Class.forName("org.blah.Driver")).
Your example is different. You know all the implementation classes you intended.
And you are not considering (yet) the pluggability of other implementations.
Whether you create the instances using a switch or an enum,
it makes little difference.
Both alternatives are fine, equivalent.
Another related alternative is that the various methods in Collections do, for example Collections.emptyList(), Collections.singletonList(...), and so on.
The implementations are not decided by a switch,
but have explicit names by way of using specialized methods.
When you want to make it possible to use implementations of your interfaces not known in advance, and not hard-coded in your factory, look into service provider frameworks such as JDBC.
But I don't see this being followed generally. Why is it so?
Your technique only works because you know all the implementations of RetailFactory in advance.
In frameworks like JDBC, all the implementations of Driver, Connection, and so on, are not known in advance, for all the databases out there, so using such technique with a single enum referencing all implementations is not possible, and not scaleable. So they use a different mechanism, to register and load implementations dynamically at runtime.
Why can't we make the passing parameter always an object and have the logic inside the object of which factory to get?
You can. If you don't need dynamic loading of implementations like JDBC (and most probably don't), your way of using enums has some advantages.
For example, your original implementation does rt = ..., which is not as good as doing return .... Such "mistake" is not possible using your enum solution. On the other hand, if you want dynamic loading, then using an enum will not make much sense.
The bottomline is, there is no big difference between the two alternatives you presented. Both are fine.

If I use abstract class instead of interface while implementing factory pattern. Would it still be a factory pattern?

For example : http://www.tutorialspoint.com/design_pattern/factory_pattern.htm
If I change interface shape on abstract class Shape, make concrete classes to extend Shape and Make the Shape factory return Shape abstract class typed objects. Is it still going to be a factory pattern ?
I would go with yes.
Lets look at definition of Factory method pattern:
the factory method pattern is a creational pattern which uses factory methods to deal with the problem of creating objects without specifying the exact class of object that will be created
The motivation behind this pattern is to separate object creation from the client using the object. Client should provide specification to factory but details how the object is built are abstracted away by the factory.
If this is an interface or abstract class is an implementation detail specific to situation, as long as your implementation of the factory lets you achieve the motivation behind pattern.
Consider using abstract classes if any of these statements apply to your situation:
You want to share code among several closely related classes.
You expect that classes that extend your abstract class have many common methods or fields, or require access modifiers other than public (such as protected and private).
You want to declare non-static or non-final fields. This enables you to define methods that can access and modify the state of the object to which they belong.
Consider using interfaces if any of these statements apply to your situation:
You expect that unrelated classes would implement your interface. For example, the interfaces Comparable and Cloneable are implemented by many unrelated classes.
You want to specify the behavior of a particular data type, but not concerned about who implements its behavior.
You want to take advantage of multiple inheritance of type.
In some implementations it might even make more sense to use abstract class rather then interface for the Products created by the factory. If there is shared set of features/behavior between all products then it does make sense to put these into base abstract class. This could apply even if products are built from different factories.
It boils down to: do you wish to and does it make sense to introduce coupling
between products or not?
In the end, client will get same result - Product built based upon specification, with details of construction abstracted away.
When it comes to these kind of differences, the answer can always be both yes and no. Design patterns are not any kind of precise specification, they are more like a set of best and recommended practices and their implementation varies from case to case.
In my opinion the answer is no, technically this would not be a factory pattern. And it does not have to be, as long as it solves your use case and makes the code readable and maintainable (trying to literally adhere to design patterns often leads to misusing them and to over-architecturing).
If we look at the Abstract Factory Pattern (right below the Factory Pattern in the linked page), we'll see that it is a factory for creating factories. Now suppose that we have two Shape factories that can be created by the AbstractFactory: ShapeFactory2D and ShapeFactory3D, both producing Shape objects.
If Shape were abstract class, then you would force both 2D and 3D objects to inherit the same implementation, although it might make no sense (they could be implemented in totally different ways).
So, technically, in order for this to really be a factory pattern, there must exist no assumptions about the implementation details, meaning abstract classes containing partial implementation should not be used at the factory interface level.
Of course you can have Abstract2DShape and Abstract3DShape abstract classes implementing Shape; the point is that you are able to create and use Shape without being aware whether it is a 2D or a 3D shape.

Why to use Interfaces, Multiple Inheritance vs Interfaces, Benefits of Interfaces?

I still have some confusion about this thing. What I have found till now is
(Similar questions have already been asked here but I was having some other points.)
Interface is collection of ONLY abstract methods and final fields.
There is no multiple inheritance in Java.
Interfaces can be used to achieve multiple inheritance in Java.
One Strong point of Inheritance is that We can use the code of base class in derived class without writing it again. May be this is the most important thing for inheritance to be there.
Now..
Q1. As interfaces are having only abstract methods (no code) so how can we say that if we are implementing any interface then it is inheritance ? We are not using its code.
Q2. If implementing an interface is not inheritance then How interfaces are used to achieve multiple inheritance ?
Q3. Anyhow what is the benefit of using Interfaces ? They are not having any code. We need to write code again and again in all classes we implement it.
Then why to make interfaces ?
NOTE : I have found one case in which interfaces are helpful. One example of it is like in Runnable interface we have public void run() method in which we define functionality of thread and there is built in coding that this method will be run as a separate thread. So we just need to code what to do in thread, Rest is pre-defined. But this thing also can be achieved using abstract classes and all.
Then what are the exact benefits of using interfaces? Is it really Multiple-Inheritance that we achieve using Interfaces?
Q1. As interfaces are having only abstract methods (no code) so how can we say that if we are implementing any interface then it is inheritance ? We are not using its code.
We can't. Interfaces aren't used to achieve multiple inheritance. They replace it with safer, although slightly less powerful construct. Note the keyword implements rather than extends.
Q2. If implementing an interface is not inheritance then How interfaces are used to achieve multiple inheritance ?
They are not. With interfaces a single class can have several "views", different APIs or capabilities. E.g. A class can be Runnable and Callable at the same time, while both methods are effectively doing the same thing.
Q3. Anyhow what is the benefit of using Interfaces ? They are not having any code. We need to write code again and again in all classes we implement it.
Interfaces are kind-of multiple inheritance with no problems that the latter introduces (like the Diamond problem).
There are few use-cases for interfaces:
Object effectively has two identities: a Tank is both a Vehicle and a Weapon. You can use an instance of Tank where either the former or the latter is expected (polymorphism). This is rarely a case in real-life and is actually a valid example where multiple inheritance would be better (or traits).
Simple responsibilities: an instance of Tank object in a game is also Runnable to let you execute it in a thread and an ActionListener to respond to mouse events.
Callback interfaces: if object implements given callback interface, it is being notified about its life-cycle or other events.
Marker interfaces: not adding any methods, but easily accessible via instanceof to discover object capabilities or wishes. Serializable and Cloneable are examples of this.
What you are looking for are trait (like in Scala), unfortunately unavailable in Java.
Interfaces are collection of final static fields and abstract methods (Newly Java 8 added support of having static methods in an interface).
Interfaces are made in situations when we know that some task must be done, but how it should be done can vary. In other words we can say we implement interfaces so that our class starts behaving in a particular way.
Let me explain with an example, we all know what animals are. Like Lion is an animal, monkey is an animal, elephant is an animal, cow is an animal and so on. Now we know all animals do eat something and sleep. But the way each animal can eat something or sleep may differ. Like Lion eats by hunting other animals where as cow eats grass. But both eat. So we can have some pseudo code like this,
interface Animal {
public void eat();
public void sleep();
}
class Lion implements Animal {
public void eat() {
// Lion's way to eat
}
public void sleep(){
// Lion's way to sleep
}
}
class Monkey implements Animal {
public void eat() {
// Monkey's way to eat
}
public void sleep() {
// Monkey's way to sleep
}
}
As per the pseudo code mentioned above, anything that is capable of eating or sleeping will be called an animal or we can say it is must for all animals to eat and sleep but the way to eat and sleep depends on the animal.
In case of interfaces we inherit only the behaviour, not the actual code as in case of classes' inheritance.
Q1. As interfaces are having only abstract methods (no code) so how can we say that if we are implementing any interface then it is inheritance ? We are not using its code.
Implementing interfaces is other kind of inheritance. It is not similar to the inheritance of classes as in that inheritance child class gets the real code to reuse from the base class.
Q2. If implementing an interface is not inheritance then How interfaces are used to achieve multiple inheritance ?
It is said because one class can implement more than one interfaces. But we need to understand that this inheritance is different than classes' inheritance.
Q3. Anyhow what is the benefit of using Interfaces ? They are not having any code. We need to write code again and again in all classes we implement it.
Implementing an interface puts compulsion on the class that it must override its all abstract methods.
Read more in my book here and here
Q1. As interfaces are having only abstract methods (no code) so how can we say that if we are implementing any interface then it is inheritance ? We are not using its code.
Unfortunately, in colloquial usage, the word inheritance is still frequently used when a class implements an interface, although interface implementation would be a preferable term - IMO, the term inheritance should strictly be used with inheritance of a concrete or abstract class. In languages like C++ and C#, the same syntax (i.e. Subclass : Superclass and Class : Interface) is used for both class inheritance and interface implementation, which may have contributed to the spread of the misuse of the word inheritance with interfaces. Java has different syntax for extending a class as opposed to implementing an interface, which is a good thing.
Q2 If implementing an interface is not inheritance then How interfaces are used to achieve multiple inheritance ?
You can achieve the 'effect' of multiple inheritance through composition - by implementing multiple interfaces on a class, and then providing implementations for all methods, properties and events required of all the interfaces on the class. One common technique of doing this with concrete classes is by doing 'has-a' (composition) relationships with classes which implement the external interfaces by 'wiring up' the implementation to each of the internal class implementations. (Languages such as C++ do support multiple concrete inheritance directly, but which creates other potential issues like the diamond problem).
Q3 Anyhow what is the benefit of using Interfaces ? They are not having any code. We need to write code again and again in all classes we implement it.
Interfaces allow existing classes (e.g. frameworks) to interact with your new classes without having ever 'seen' them before, because of the ability to communicate through a known interface. Think of an interface as a contract. By implementing this interface on a class, you are contractually bound to meet the obligations required of it, and once this contract is implemented, then your class should be able to be used interchangeably with any other code which consumes the interface.
Real World Example
A 'real world' example would be the legislation and convention (interface) surrounding an electrical wall socket in a particular country. Each electrical appliance plugged into the socket needs to meet the specifications (contract) that the authorities have defined for the socket, e.g. the positioning of the line, neutral and earth wires, the position and colouring of the on / off switch, and the conformance the the electrical voltage, frequency and maximum current that will be supplied through the interface when it is switched on.
The benefit of decoupling the interface (i.e. a standard wall socket) rather than just soldering wires together is that you can plug (and unplug) a fan, a kettle, a double-adapter, or some new appliance to be invented next year into it, even though this appliance didn't exist when the interface was designed. Why? Because it will conform to the requirements of the interface.
Why use interfaces?
Interfaces are great for loose coupling of classes, and are one of the mainstay's of Uncle Bob's SOLID paradigm, especially the Dependency Inversion Principle and Interface Segregation Principles.
Simply put, by ensuring that dependencies between classes are coupled only on interfaces (abstractions), and not on other concrete classes, it allows the dependency to be substituted with any other class implementation which meets the requirements of the interface.
In testing, stubs and mocks of dependencies can be used to unit test each class, and the interaction the class has with the dependency can be 'spyed' upon.
KISS
I have searched for days, nay weeks trying to understand interfaces and seem to read the same generic help; I'm not trying to disparage the contributions, but i think the light-bulb just clicked so I'm chuffed :))
I prefer to Keep It Simple Stupid, so will proffer my new found view of interfaces.
I'm a casual coder but i want to post this code i wrote in VB.NET (the principle is the same for other languages), to help others understand interfaces.
If i have it wrong, then please let others know in follow up comments.
Explanation
Three buttons on a form, clicking each one saves a different class reference to the interface variable (_data). The whole point of different class references into an interface variable, is what i didn't understand as it seemed redundant, then its power becomes evident with the msgbox, i only need to call the SAME method to perform the task i need, in this case 'GetData()', which uses the method in the class that's currently held by the interface reference variable (_data).
So however i wish to get my data (from a database, the web or a text file), it's only ever done using the same method name; the code behind that implementation...i don't care about.
It's then easy to change each class code using the interface without any dependency...this is a key goal in OO and encapsulation.
When to use
Code classes and if you notice the same verb used for methods, like 'GetData()', then it's a good candidate to implement an interface on that class and use that method name as an abstraction / interface.
I sincerely hope this helps a fellow noob with this difficult principle.
Public Class Form1
Private _data As IData = Nothing
Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click
_data = New DataText()
MsgBox(_data.GetData())
End Sub
Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button2.Click
_data = New DataDB()
MsgBox(_data.GetData())
End Sub
Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button3.Click
_data = New DataWeb()
MsgBox(_data.GetData())
End Sub
End Class
Public Interface IData
Function GetData() As String
End Interface
Friend Class DataText : Implements IData
Friend Function GetData() As String Implements IData.GetData
Return "DataText"
End Function
End Class
Friend Class DataDB : Implements IData
Friend Function GetData() As String Implements IData.GetData
Return "DataDB"
End Function
End Class
Friend Class DataWeb : Implements IData
Friend Function GetData() As String Implements IData.GetData
Return "DataWeb"
End Function
End Class
Old question. I'm suprised that nobody quoted the canonical sources: Java: an Overview by James Gosling, Design Patterns: Elements of Reusable Object-Oriented Software by the Gang of Four or Effective Java by Joshua Bloch (among other sources).
I will start with a quote:
An interface is simply a specification of a set of methods that an object responds to. It does not include any instance variables or implementation. Interfaces can be multiply-inherited (unlike classes) and they can be used in a more flexible way than the usual rigid class
inheritance structure. (Gosling, p.8)
Now, let's take your assumptions and questions one by one (I'll voluntarily ignore the Java 8 features).
Assumptions
Interface is collection of ONLY abstract methods and final fields.
Did you see the keyword abstract in Java interfaces? No. Then you should not consider an interface as a collection of abstract methods. Maybe you are misleaded by the C++ so-called interfaces, which are classes with only pure virtual methods. C++, by design, does not have (and does not need to have) interfaces, because it has mutliple inheritance.
As explained by Gosling, you should rather consider an interface as "a set of methods that an object responds to". I like to see an interface and the associated documentation as a service contract. It describes what you can expect from an object that implements that interface. The documentation should specify the pre and post-conditions (e.g. the parameters should be not null, the output is always positive, ...) and the invariants (a method that does not modify the object internal state). This contract is the heart, I think, of OOP.
There is no multiple inheritance in Java.
Indeed.
JAVA omits many rarely used, poorly understood, confusing features of C++ that in our experience bring more grief than benefit. This primarily consists of operator overloading (although it does have method overloading), multiple inheritance, and extensive automatic coercions. (Gosling, p.2)
Nothing to add.
Interfaces can be used to achieve multiple inheritance in Java.
No, simlpy because there is no multiple inheritance in Java. See above.
One Strong point of Inheritance is that We can use the code of base class in derived class without writing it again. May be this is the most important thing for inheritance to be there.
That's called "implementation inheritance". As you wrote, it's a convenient way to reuse code.
But it has an important counterpart:
parent classes often define at least part of their subclasses' physical representation. Because inheritance exposes a subclass to details of its parent's implementation, it's often said that "inheritance breaks encapsulation" [Sny86]. The implementation of a subclass becomes so bound up with the implementation of its parent class that any change in the parent's implementation will force the subclass to change. (GOF, 1.6)
(There is a similar quote in Bloch, item 16.)
Actually, inheritance serves also another purpose:
Class inheritance combines interface inheritance and implementation inheritance. Interface inheritance defines a new interface in terms of one
or more existing interfaces. Implementation inheritance defines a new implementation in terms of one or more existing implementations. (GOF, Appendix A)
Both use the keyword extends in Java. You may have hierarchies of classes and hierarchies of interfaces. The first ones share implementation, the second ones share obligation.
Questions
Q1. As interfaces are having only abstract methods (no code) so how can we say that if we are implementing any interface then it is inheritance ? We are not using its code.**
Implementation of an interface is not inheritance. It's implementation. Thus the keyword implements.
Q2. If implementing an interface is not inheritance then How interfaces are used to achieve multiple inheritance ?**
No multiple inheritance in Java. See above.
Q3. Anyhow what is the benefit of using Interfaces ? They are not having any code. We need to write code again and again in all classes we implement it./Then why to make interfaces ?/What are the exact benefits of using interfaces? Is it really Multiple-Inheritance that we achieve using Interfaces?
The most important question is: why would you like to have multiple-inheritance? I can think of two answers: 1. to give mutliple types to an object; 2. to reuse code.
Give mutliple types to an object
In OOP, one object may have different types. For instance in Java, an ArrayList<E> has the following types: Serializable, Cloneable, Iterable<E>, Collection<E>, List<E>, RandomAccess, AbstractList<E>, AbstractCollection<E> and Object (I hope I have not forgotten anyone). If an object has different types, various consumers will be able use it without be aware of its specificities. I need an Iterable<E> and you give me a ArrayList<E>? It's ok. But if I need now a List<E> and you give me a ArrayList<E>, it's ok too. Etc.
How do you type an object in OOP? You took the Runnable interface as an example, and this example is perfect to illustrate the answer to this question. I quote the official Java doc:
In addition, Runnable provides the means for a class to be active while not subclassing Thread.
Here's the point: Inheritance is a convenient way of typing objects. You want to create a thread? Let's subclass the Thread class. You want an object to have different types, let's use mutliple-inheritance. Argh. It doesn't exist in Java. (In C++, if you want an object to have different types, multiple-inheritance is the way to go.)
How to give mutliple types to an object then? In Java, you can type your object directly. That's what you do when your class implements the Runnable interface. Why use Runnable if your a fan of inheritance? Maybe because your class is already a subclass of another class, let's say A. Now your class has two types: A and Runnable.
With multiple interfaces, you can give multiple types to an object. You just have to create a class that implements multiple interfaces. As long as you are compliant with the contracts, it's ok.
Reuse code
This is a difficult subject; I've already quoted the GOF on breaking the encapsulation. Other answer mentionned the diamond problem. You could also think of the Single Responsibility Principle:
A class should have only one reason to change. (Robert C. Martin, Agile Software Development, Principles, Patterns, and Practices)
Having a parent class may give a class a reason to change, besides its own responsibilities:
The superclass’s implementation may change from release to release, and if it does, the subclass may break, even though its code has not been touched. As a consequence, a subclass must evolve in tandem with its superclass (Bloch, item 16).
I would add a more prosaic issue: I always have a weird feeling when I try to find the source code of a method in a class and I can't find it. Then I remember: it must be defined somewhere in the parent class. Or in the grandparent class. Or maybe even higher. A good IDE is a valuable asset in this case, but it remains, in my mind, something magical. Nothing similar with hierarchies of interfaces, since the javadoc is the only thing I need: one keyboard shortcut in the IDE and I get it.
Inheritance howewer has advantages:
It is safe to use inheritance within a package, where the subclass and the superclass implementations are under the control of the same programmers. It is also safe to use inheritance when extending classes specifically designed and documented for extension (Item 17: Design and document for inheritance or else prohibit it). (Bloch, item 16)
An example of a class "specifically designed and documented for extension" in Java is AbstractList.
But Bloch and GOF insist on this: "Favor composition over inheritance":
Delegation is a way of making composition as powerful for reuse as inheritance [Lie86, JZ91]. In delegation, two objects are involved in handling a request: a receiving object delegates operations to its delegate. This is analogous to subclasses deferring requests to parent classes. (GOF p.32)
If you use composition, you won't have to write the same code again and again. You just create a class that handles the duplications, and you pass an instance of this class to the classes that implements the interface. It's a very simple way to reuse code. And this helps you to follow the Single Responsibility Principle and make the code more testable. Rust and Go don't have inheritance (they don't have classes either), but I don't think that the code is more redundant than in other OOP languages.
Furthermore, if you use composition, you will find yourself naturally using interfaces to give your code the structure and the flexibility it needs (see other answers on use cases of interfaces).
Note: you can share code with Java 8 interfaces
And finally, one last quote:
During the memorable Q&A session, someone asked him [James Gosling]: "If you could do Java over again, what would you change?" "I'd leave out classes" (anywhere on the net, don't know if this is true)
This is very old question and java-8 release have added more features & power to interface.
An interface declaration can contain
method signatures
default methods
static methods
constant definitions.
The only methods that have implementations in interface are default and static methods.
Uses of interface:
To define a contract
To link unrelated classes with has a capabilities (e.g. classes implementing Serializable interface may or may not have any relation between them except implementing that interface
To provide interchangeable implementation e.g. Strategy_pattern
default methods enable you to add new functionality to the interfaces of your libraries and ensure binary compatibility with code written for older versions of those interfaces
Organize helper methods in your libraries with static methods ( you can keep static methods specific to an interface in the same interface rather than in a separate class)
Have a look at this related SE question for code example to understanding the concepts better:
How should I have explained the difference between an Interface and an Abstract class?
Coming back to your queries:
Q1. As interfaces are having only abstract methods (no code) so how can we say that if we are implementing any interface then it is inheritance ? We are not using its code.
Q2. If implementing an interface is not inheritance then How interfaces are used to achieve multiple inheritance ?
Interface can contain code for static and default methods. These default methods provides backward compatibility & static methods provides helper/utility functions.
You can't have true multiple inheritance in java and interface is not the way to get it. Interface can contain only constants. So you can't inherit state but you can implement behaviour.
You can replace inheritance with capability. Interface provides multiple capabilities to implementing classes.
Q3. Anyhow what is the benefit of using Interfaces ? They are not having any code. We need to write code again and again in all classes we implement it.
Refer to "uses of interface" section in my answer.
Inheritance is when one class derives from another class (which can be abstract) or an Interface. The strongest point of object oriented (inheritance) is not reuse of code (there are many ways to do it), but polymorphism.
Polymorphism is when you have code that uses the interface, which it's instance object can be of any class derived from that interface. For example I can have such a method:
public void Pet(IAnimal animal) and this method will get an object which is an instance of Dog or Cat which inherit from IAnimal. or I can have such a code:
IAnimal animal
and then I can call a method of this interface:
animal.Eat() which Dog or Cat can implement in a different way.
The main advantage of interfaces is that you can inherit from some of them, but if you need to inherit from only one you can use an abstract class as well. Here is an article which explains more about the differences between an abstract class and an interface:
http://www.codeproject.com/KB/cs/abstractsvsinterfaces.aspx
Both Methods Work (Interfaces and Multiple Inheritance).
Quick Practical Short Answer
Interfaces are better when you have several years of experience using Multiple Inheritance that have Super Classes with only method definition, and no code at all.
A complementary question may be: "How and Why to to migrate code from Abstract Classes to Interfaces".
If you are not using many abstract classes, in your application, or you don't have many experience with it, you may prefer to skip interfaces.
Dont rush to use interfaces.
Long Boring Answer
Interfaces are very similar, or even equivalent to abstract Classes.
If your code has many Abstract classes, then its time you start thinking in terms of Interfaces.
The following code with abstract classes:
MyStreamsClasses.java
/* File name : MyStreamsClasses.java */
import java.lang.*;
// Any number of import statements
public abstract class InputStream {
public void ReadObject(Object MyObject);
}
public abstract class OutputStream {
public void WriteObject(Object MyObject);
}
public abstract class InputOutputStream
imnplements InputStream, OutputStream {
public void DoSomethingElse();
}
Can be replaced with:
MyStreamsInterfaces.java
/* File name : MyStreamsInterfaces.java */
import java.lang.*;
// Any number of import statements
public interface InputStream {
public void ReadObject(Object MyObject);
}
public interface OutputStream {
public void WriteObject(Object MyObject);
}
public interface InputOutputStream
extends InputStream, OutputStream {
public void DoSomethingElse();
}
Cheers.
So. There are a lot of excellent answers here explaining in detail what an interface is. Yet, this is an example of its use, in the way one of my best colleagues ever explained it to me years ago, with what I have learned at university in the last couple of years mixed in.
An interface is a kind of 'contract'. It exposes some methods, fields and so on, that are available. It does not reveal any of its implementation details, only what it returns, and which parameters it takes. And in here lies the answer to question three, and what I feel is one of the greatest strengths of modern OOP:
"Code by addition, Not by modification" - Magnus Madsen, AAU
That's what he called it at least, and he may have it from some other place. The sample code below is written in C#, but everything shown can be done just about the same way in Java.
What we see is a class called SampleApp, that has a single field, the IOContext. IOContext is an interface.
SampleApp does not care one wit about how it saves its data, it just needs to do so, in its "doSomething()" method.
We can imagine that saving the data may have been more important than HOW it was saved at the beginning of the development process, so the developer chose to simply write the FileContext class. Later on, however, he needed to support JSON for whatever reason. So he wrote the JSONFileContext class, which inherits FileContext. This means that it is effectively an IOContext, which has the functionality of FileContext, save the replacement of FileContexts SaveData and LoadData, it still uses its 'write/read' methods.
Implementing the JSON class has been a small amount of work, comparing to writing the class, and having it just inherit IOContext.
The field of SampleApp could have been just of type 'FileContext', but that way, it would have been restricted to ever only using children of that class. By making the interface, we can even do the SQLiteContext implementation, and write to a database, SampleApp will never know or care, and when we have written the SQL lite class, we need only make one change to our code: new JSONFileContext(); instead becomes new SQLiteContext();
We still have our old implementations and can switch back to those if the need arises. We have broken nothing, and all the changes to our code are half a line, that can be changed back within the blink of an eye.
so: Code by addition, NOT by modification.
namespace Sample
{
class SampleApp
{
private IOContext context;
public SampleApp()
{
this.context = new JSONFileContext(); //or any of the other implementations
}
public void doSomething()
{
//This app can now use the context, completely agnostic of the actual implementation details.
object data = context.LoadData();
//manipulate data
context.SaveData(data);
}
}
interface IOContext
{
void SaveData(object data);
object LoadData();
}
class FileContext : IOContext
{
public object LoadData()
{
object data = null;
var fileContents = loadFileContents();
//Logic to turn fileContents into a data object
return data;
}
public void SaveData(object data)
{
//logic to create filecontents from 'data'
writeFileContents(string.Empty);
}
protected void writeFileContents(string fileContents)
{
//writes the fileContents to disk
}
protected string loadFileContents()
{
string fileContents = string.Empty;
//loads the fileContents and returns it as a string
return fileContents;
}
}
class JSONFileContext : FileContext
{
public new void SaveData(object data)
{
//logic to create filecontents from 'data'
base.writeFileContents(string.Empty);
}
public new object LoadData()
{
object data = null;
var fileContents = loadFileContents();
//Logic to turn fileContents into a data object
return data;
}
}
class SQLiteContext : IOContext
{
public object LoadData()
{
object data = null;
//logic to read data into the data object
return data;
}
public void SaveData(object data)
{
//logic to save the data object in the database
}
}
}
Interfaces
An interface is a contract defining how to interact with an object. They are useful to express how your internals intend to interact with an object. Following Dependency Inversion your public API would have all parameters expressed with interfaces. You don't care how it does what you need it to do, just that it does exactly what you need it to do.
Example: You may simply need a Vehicle to transport goods, you don't care about the particular mode of transport.
Inheritance
Inheritance is an extension of a particular implementation. That implementation may or may not satisfy a particular interface. You should expect an ancestor of a particular implementation only when you care about the how.
Example: You may need a Plane implementation of a vehicle for fast transport.
Composition
Composition can be used as an alternative to inheritance. Instead of your class extending a base class, it is created with objects that implement smaller portions of the main class's responsibility. Composition is used in the facade pattern and decorator pattern.
Example: You may create a DuckBoat (DUKW) class that implements LandVehicle and WaterVehicle which both implement Vehicle composed of Truck and Boat implementations.
Answers
Q1. As interfaces are having only abstract methods (no code) so how can we say that if we are implementing any interface then it is inheritance ? We are not using its code.
Interfaces are not inheritance. Implementing an interface expresses that you intend for your class to operate in the way that is defined by the interface. Inheritance is when you have a common ancestor, and you receive the same behavior (inherit) as the ancestor so you do not need to define it.
Q2. If implementing an interface is not inheritance then How interfaces are used to achieve multiple inheritance ?
Interfaces do not achieve multiple inheritance. They express that a class may be suitable for multiple roles.
Q3. Anyhow what is the benefit of using Interfaces ? They are not having any code. We need to write code again and again in all classes we implement it.
One of the major benefits of interfaces is to provide separation of concerns:
You can write a class that does something with another class without caring how that class is implemented.
Any future development can be compatible with your implementation without needing to extend a particular base class.
In the spirit of DRY you can write an implementation that satisfies an interface and change it while still respecting the open/closed principal if you leverage composition.
Q1. As interfaces are having only abstract methods (no code) so how can we say that if we are implementing an interface then it is inheritance? We are not using its code.
It is not equal inheritance. It is just similiar. Let me explain:
VolvoV3 extends VolvoV2, and VolvoV2 extends Volvo (Class)
VolvoV3 extends VolvoV2, and VolvoV2 implements Volvo (Interface)
line1: Volvo v = new VolvoV2();
line2: Volvo v = new VolvoV3();
If you see only line1 and line2 you can infer that VolvoV2 and VolvoV3 have the same type. You cannot infer if Volvo a superclass or Volvo is an interface.
Q2. If implementing an interface is not inheritance then How interfaces are used to achieve multiple inheritances?
Now using interfaces:
VolvoXC90 implements XCModel and Volvo (Interface)
VolvoXC95 implements XCModel and Volvo (Interface)
line1: Volvo a = new VolvoXC90();
line2: Volvo a = new VolvoXC95();
line3: XCModel a = new VolvoXC95();
If you see only line1 and line2 you can infer that VolvoXC90 and VolvoXC95 have the same type (Volvo). You cannot infer that Volvo is a superclass or Volvo is an interface.
If you see only line2 and line3 you can infer that Volvo95 implements two types, XCModel and Volvo, in Java you know that at least one has to be an interface. If this code was written in C++, for instance, they could be both classes. Therefore, multiple inheritances.
Q3. Anyhow, what is the benefit of using Interfaces? They are not having any code. We need to write code again and again in all classes we implement it.
Imagine a system where you use a VolvoXC90 class in 200 other classes.
VolvoXC90 v = new VolvoXC90();
If you need to evolve your system to launch VolvoXC95 you have to alter 200 other classes.
Now, imagine a system where you use a Volvo interface in 10,000,000 classes.
// Create VolvoXC90 but now we need to create VolvoXC95
Volvo v = new VolvoFactory().newCurrentVolvoModel();
Now, if you need to evolve your system to create VolvoXC95 models you have to alter only one class, the Factory.
It is a common sense question. If your system is composed only of few classes and have few updates use Interfaces everywhere is counterproductive. For big systems, it can save you a lot of pain and avoid risk adopting Interfaces.
I recommend you read more about S.O.L.I.D principles and read the book Effective Java. It has good lessons from experienced software engineers.
Interfaces are made so that a class will implement the functionality within the interface and behave in accordance with that interface.

Categories

Resources