Double Hash function resulting in infinite loop - java

I'm working on a data structures assignment and my attempt to increment a double hash function is stuck in an infinite loop.
My book defines a strategy to double hash as
h′(k) = q−(k mod q), for some prime number q < N. Also, N
should be a prime.
I've identified that the double hash increment is causing the issue, as switching to linear probing runs fine.
private int findSlot(int h, K k) {
totalProbes = 0;
int avail = -1; // no slot available (thus far)
int j = h; // index while scanning table
do {
totalProbes++;
if (totalProbes > maxProbes) maxProbes = totalProbes;
if (isAvailable(j)) { // may be either empty or defunct
if (avail == -1) avail = j; // this is the first available slot!
if (table[j] == null) {
break;
} // if empty, search fails immediately
} else if (table[j].getKey().equals(k))
return j; // successful match
//j = (j + 1) % capacity; // keep looking (cyclically)
j = hashTwo(k); //increment using double hash
} while (j != h); // stop if we return to the start
return -(avail + 1); // search has failed
}
private int hashTwo(K key) {
String keyString = key.toString(); //convert generic -> string -> int
int keyInt = Integer.parseInt(keyString);
return 7 - (keyInt % 7);
}
There is some ugliness with the hash 2 function - namely converting from a generic to an integer, but besides that it follows the same instructions as the book.

1.error in your code: it has to be "j = hashTwo(j)"
2.error in the formula: for k=q 0> h′(k) = q−(k mod q) = q-0=q=k
(you better look https://en.wikipedia.org/wiki/Double_hashing for a valid formula)
Instead of "Integer.parseInt" you should start iteration with
private int findSlot(K k, int size) {
return findSlot(hashTwo(k.hashCode()), size);
}
private int findSlot(int h, int size) {...}

Related

binary partition an array using java

I am a beginner(first year uni student) programmer trying to solve this problem which i'm finding somewhat difficult. If you are to answer this question, don't provide me with a complex daunting algorithm that will leave me scratching my head. I'll really appreciate it if you explain it step my step (both logically/conceptually then through code)
The problem is as follows:image
I have tried to attempt it and my code only works for a certain case that i tested.
package com.company;
import java.lang.Math;
public class Main {
public static int[][] binary_partition(int array[], int k){
int x = (int) Math.pow(2,k);
int[][] partition = new int[((array.length/x)*2)][array.length/x];
int divisor = array.length/x;
if ((array.length % 2) != 0){
return partition;
}
if (divisor >= array.length-1){
return partition;
}
if (k==1){
return partition;
}
int p = 0;
for(int i=0;i<((array.length/x)*2);i++)
{
for (int j = 0; j<array.length/x;j++)
{
partition[i][j] = array[p];
p += 1;
}
}
return partition;
}
public static void main(String[] args){
int[] array = {3, 2, 4, 7, 8, 9, 2, 3};
int[][] result = binary_partition(array,2);
for (int[] x : result){
for (int y : x)
{
System.out.print(y + " ");
}
System.out.println();
}
}
}
Your question is unclear, but this solution creates a function that partitions an array with the right length into 2^k sets.
First, an interesting fact: using the bitshift operator << on an integer increases its value by a power of two. So to find out the size of your partition, you could write
int numPartitions = 1 << k; // Equivalent to getting the integer value of 2^k
With this fact, the function becomes
public static int[][] partition(int[] set, int k) {
if (set == null)
return null; // Don't try to partition a null reference
// If k = 0, the partition of the set is just the set
if (k == 0) {
int[][] partition = new int[1][set.length];
// Copy the original set into the partition
System.arraycopy(set, 0, partition[0], 0, set.length);
return partition;
}
int numPartitions = 1 << k; // The number of sets to partition the array into
int numElements = set.length / numPartitions; // The number of elements per partition
/* Check if the set has enough elements to create a partition and make sure
that the partitions are even */
if (numElements == 0 || set.length % numElements != 0)
return null; // Replace with an error/exception of your choice
int[][] partition = new int[numPartitions][numElements];
int index = 0;
for (int r = 0; r < numPartitions; r++) {
for (int c = 0; c < numElements; c++) {
partition[r][c] = set[index++]; // Assign an element to the partition
}
}
return partition;
}
There are a few lines of your code where the intention is not clear. For example, it is not clear why you are validating divisor >= array.length-1. Checking k==1 is also incorrect because k=1 is a valid input to the method. In fact, all your validation checks are not needed. All you need to validate is that array.length is divisible by x.
The main problem that you have seems to be that you mixed up the lengths of the resulting array.
The resulting array should have a length of array.length / x, and each of the subarrays should have a length of x, hence:
int[][] partition = new int[array.length/x][x];
If you also fix your bounds on the for loops, your code should work.
Your nested for loop can be rewritten as a single for loop:
for(int i = 0 ; i < array.length ; i++)
{
int index = i / x;
int subArrayIndex = i % x;
partition[index][subArrayIndex] = array[i];
}
You just need to figure out which indices a an element array[i] belongs by dividing and getting the remainder.

Logic behind multiplication method using a 1D Array of LongNumber class

I am having problems with the logic behind this multiplication method. It is using a 1D array of LongNumber. We can't use the Math class, must write our own logic. The two previous methods were addition and subtraction, I am having issues with how to setup the for loop in order to move one num index as we stay at the index of the other, and then changing to the next index of the number that wasn't moved.
This logic has been more confusing for me, addition and subtraction were all in once simple for loop and it was easy, with multiplication I cant figure out how to setup the loop so it only moves num index and not num2, so we can get the correct product.
public static Long_Number multiply(String num,String num2)
{
//data
String resultString3 = "";
Long_Number result3 = new Long_Number("");
int total, carry = 0, temp;
int v1 = 0, v2 = 0;
//set longest length to indexrange
int indexrange = num.length();
if(num2.length()>indexrange)
indexrange = num2.length();
//logic
for(int i = 0; i < indexrange; i++)
{
if(num.length()-1-i >= 0)
v1 = (num.charAt(num.length()-1-i)-'0');
else
v1 = 0;
if(num2.length()-1-i >= 0)
v2 = (num2.charAt(num2.length()-1-i)-'0');
else
v2 = 0;
sumofdigits = v1 * v2 + carry;
carry = sumofdigits % 10;
System.out.println(sumofdigits + "hi" + carry); //test print
}
result3.setNumber(resultString3);
return result3;
}

Restaurant Maximum Profit using Dynamic Programming

Its an assignment task,I have spend 2 days to come up with a solution but still having lots of confusion,however here I need to make few points clear. Following is the problem:
Yuckdonald’s is considering opening a series of restaurant along QVH. n possible locations are along a straight line and the distances of these locations from the start of QVH are in miles and in increasing order m1, m2, ...., mn. The constraints are as follows:
1. At each location, Yuckdonald may open one restaurant and expected profit from opening a restaurant at location i is given as pi
2. Any two restaurants should be at least k miles apart, where k is a positive integer
My solution:
public class RestaurantProblem {
int[] Profit;
int[] P;
int[] L;
int k;
public RestaurantProblem(int[] L , int[] P, int k) {
this.L = L;
this.P = P;
this.k = k;
Profit = new int[L.length];
}
public int compute(int i){
if(i==0)
return 0;
Profit[i]= P[i]+(L[i]-L[i-1]< k ? 0:compute(i-1));//if condition satisfies then adding previous otherwise zero
if (Profit[i]<compute(i-1)){
Profit[i] = compute(i-1);
}
return Profit[i];
}
public static void main(String args[]){
int[] m = {0,5,10,15,19,25,28,29};
int[] p = {0,10,4,61,21,13,19,15};
int k = 5;
RestaurantProblem rp = new RestaurantProblem(m, p ,k);
rp.compute(m.length-1);
for(int n : rp.Profit)
System.out.println(n);
}
}
This solution giving me 88 however if I exclude (Restaurant at 25 with Profit 13) and include (Restaurant 28 with profit 19) I can have 94 max...
point me if I am wrong or how can I achieve this if its true.
I was able to identify 2 mistakes:
You are not actually using dynamic programming
, you are just storing the results in a data structure, which wouldn't be that bad for performance if the program worked the way you have written it and if you did only 1 recursive call.
However you do at least 2 recursive calls. Therefore the program runs in Ω(2^n) instead of O(n).
Dynamic programming usually works like this (pseudocode):
calculate(input) {
if (value already calculated for input)
return previously calculated value
else
calculate and store value for input and return result
}
You could do this by initializing the array elements to -1 (or 0 if all profits are positive):
Profit = new int[L.length];
Arrays.fill(Profit, -1); // no need to do this, if you are using 0
public int compute(int i) {
if (Profit[i] >= 0) { // modify the check, if you're using 0 for non-calculated values
// reuse already calculated value
return Profit[i];
}
...
You assume the previous restaurant can only be build at the previous position
Profit[i] = P[i] + (L[i]-L[i-1]< k ? 0 : compute(i-1));
^
Just ignores all positions before i-1
Instead you should use the profit for the last position that is at least k miles away.
Example
k = 3
L 1 2 3 ... 100
P 5 5 5 ... 5
here L[i] - L[i-1] < k is true for all i and therefore the result will just be P[99] = 5 but it should be 34 * 5 = 170.
int[] lastPos;
public RestaurantProblem(int[] L, int[] P, int k) {
this.L = L;
this.P = P;
this.k = k;
Profit = new int[L.length];
lastPos = new int[L.length];
Arrays.fill(lastPos, -2);
Arrays.fill(Profit, -1);
}
public int computeLastPos(int i) {
if (i < 0) {
return -1;
}
if (lastPos[i] >= -1) {
return lastPos[i];
}
int max = L[i] - k;
int lastLastPos = computeLastPos(i - 1), temp;
while ((temp = lastLastPos + 1) < i && L[temp] <= max) {
lastLastPos++;
}
return lastPos[i] = lastLastPos;
}
public int compute(int i) {
if (i < 0) {
// no restaurants can be build before pos 0
return 0;
}
if (Profit[i] >= 0) { // modify the check, if you're using 0 for non-calculated values
// reuse already calculated value
return Profit[i];
}
int profitNoRestaurant = compute(i - 1);
if (P[i] <= 0) {
// no profit can be gained by building this restaurant
return Profit[i] = profitNoRestaurant;
}
return Profit[i] = Math.max(profitNoRestaurant, P[i] + compute(computeLastPos(i)));
}
To my understanding, the prolem can be modelled with a two-dimensional state space, which I don't find in the presented implementation. For each (i,j) in{0,...,n-1}times{0,...,n-1}` let
profit(i,j) := the maximum profit attainable for selecting locations
from {0,...,i} where the farthest location selected is
no further than at position j
(or minus infinity if no such solution exist)
and note that the recurrence relation
profit(i,j) = min{ p[i] + profit(i-1,lastpos(i)),
profit(i-1,j)
}
where lastpos(i) is the location which is farthest from the start, but no closer than k to position i; the first case above corresponds to selection location i into the solution while the second case corresponds to omitting location j in the solution. The overall solution can be obtained by evaluating profit(n-1,n-1); the evaluation can be done either recursively or by filling a two-dimensional array in a bottom-up manner and returning its contents at (n-1,n-1).

Using Binary Search with sorted Array with duplicates [duplicate]

This question already has answers here:
Finding multiple entries with binary search
(15 answers)
Closed 3 years ago.
I've been tasked with creating a method that will print all the indices where value x is found in a sorted array.
I understand that if we just scanned through the array from 0 to N (length of array) it would have a running time of O(n) worst case. Since the array that will be passed into the method will be sorted, I'm assuming that I can take advantage of using a Binary Search since this will be O(log n). However, this only works if the array has unique values. Since the Binary Search will finish after the first "find" of a particular value. I was thinking of doing a Binary Search for finding x in the sorted array, and then checking all values before and after this index, but then if the array contained all x values, it doesn't seem like it would be that much better.
I guess what I'm asking is, is there a better way to find all the indices for a particular value in a sorted array that is better than O(n)?
public void PrintIndicesForValue42(int[] sortedArrayOfInts)
{
// search through the sortedArrayOfInts
// print all indices where we find the number 42.
}
Ex: sortedArray = { 1, 13, 42, 42, 42, 77, 78 } would print: "42 was found at Indices: 2, 3, 4"
You will get the result in O(lg n)
public static void PrintIndicesForValue(int[] numbers, int target) {
if (numbers == null)
return;
int low = 0, high = numbers.length - 1;
// get the start index of target number
int startIndex = -1;
while (low <= high) {
int mid = (high - low) / 2 + low;
if (numbers[mid] > target) {
high = mid - 1;
} else if (numbers[mid] == target) {
startIndex = mid;
high = mid - 1;
} else
low = mid + 1;
}
// get the end index of target number
int endIndex = -1;
low = 0;
high = numbers.length - 1;
while (low <= high) {
int mid = (high - low) / 2 + low;
if (numbers[mid] > target) {
high = mid - 1;
} else if (numbers[mid] == target) {
endIndex = mid;
low = mid + 1;
} else
low = mid + 1;
}
if (startIndex != -1 && endIndex != -1){
for(int i=0; i+startIndex<=endIndex;i++){
if(i>0)
System.out.print(',');
System.out.print(i+startIndex);
}
}
}
Well, if you actually do have a sorted array, you can do a binary search until you find one of the indexes you're looking for, and from there, the rest should be easy to find since they're all next to each-other.
once you've found your first one, than you go find all the instances before it, and then all the instances after it.
Using that method you should get roughly O(lg(n)+k) where k is the number of occurrences of the value that you're searching for.
EDIT:
And, No, you will never be able to access all k values in anything less than O(k) time.
Second edit: so that I can feel as though I'm actually contributing something useful:
Instead of just searching for the first and last occurrences of X than you can do a binary search for the first occurence and a binary search for the last occurrence. which will result in O(lg(n)) total. once you've done that, you'll know that all the between indexes also contain X(assuming that it's sorted)
You can do this by searching checking if the value is equal to x , AND checking if the value to the left(or right depending on whether you're looking for the first occurrence or the last occurrence) is equal to x.
public void PrintIndicesForValue42(int[] sortedArrayOfInts) {
int index_occurrence_of_42 = left = right = binarySearch(sortedArrayOfInts, 42);
while (left - 1 >= 0) {
if (sortedArrayOfInts[left-1] == 42)
left--;
}
while (right + 1 < sortedArrayOfInts.length) {
if (sortedArrayOfInts[right+1] == 42)
right++;
}
System.out.println("Indices are from: " + left + " to " + right);
}
This would run in O(log(n) + #occurrences)
Read and understand the code. It's simple enough.
Below is the java code which returns the range for which the search-key is spread in the given sorted array:
public static int doBinarySearchRec(int[] array, int start, int end, int n) {
if (start > end) {
return -1;
}
int mid = start + (end - start) / 2;
if (n == array[mid]) {
return mid;
} else if (n < array[mid]) {
return doBinarySearchRec(array, start, mid - 1, n);
} else {
return doBinarySearchRec(array, mid + 1, end, n);
}
}
/**
* Given a sorted array with duplicates and a number, find the range in the
* form of (startIndex, endIndex) of that number. For example,
*
* find_range({0 2 3 3 3 10 10}, 3) should return (2,4). find_range({0 2 3 3
* 3 10 10}, 6) should return (-1,-1). The array and the number of
* duplicates can be large.
*
*/
public static int[] binarySearchArrayWithDup(int[] array, int n) {
if (null == array) {
return null;
}
int firstMatch = doBinarySearchRec(array, 0, array.length - 1, n);
int[] resultArray = { -1, -1 };
if (firstMatch == -1) {
return resultArray;
}
int leftMost = firstMatch;
int rightMost = firstMatch;
for (int result = doBinarySearchRec(array, 0, leftMost - 1, n); result != -1;) {
leftMost = result;
result = doBinarySearchRec(array, 0, leftMost - 1, n);
}
for (int result = doBinarySearchRec(array, rightMost + 1, array.length - 1, n); result != -1;) {
rightMost = result;
result = doBinarySearchRec(array, rightMost + 1, array.length - 1, n);
}
resultArray[0] = leftMost;
resultArray[1] = rightMost;
return resultArray;
}
Another result for log(n) binary search for leftmost target and rightmost target. This is in C++, but I think it is quite readable.
The idea is that we always end up when left = right + 1. So, to find leftmost target, if we can move right to rightmost number which is less than target, left will be at the leftmost target.
For leftmost target:
int binary_search(vector<int>& nums, int target){
int n = nums.size();
int left = 0, right = n - 1;
// carry right to the greatest number which is less than target.
while(left <= right){
int mid = (left + right) / 2;
if(nums[mid] < target)
left = mid + 1;
else
right = mid - 1;
}
// when we are here, right is at the index of greatest number
// which is less than target and since left is at the next,
// it is at the first target's index
return left;
}
For the rightmost target, the idea is very similar:
int binary_search(vector<int>& nums, int target){
while(left <= right){
int mid = (left + right) / 2;
// carry left to the smallest number which is greater than target.
if(nums[mid] <= target)
left = mid + 1;
else
right = mid - 1;
}
// when we are here, left is at the index of smallest number
// which is greater than target and since right is at the next,
// it is at the first target's index
return right;
}
I came up with the solution using binary search, only thing is to do the binary search on both the sides if the match is found.
public static void main(String[] args) {
int a[] ={1,2,2,5,5,6,8,9,10};
System.out.println(2+" IS AVAILABLE AT = "+findDuplicateOfN(a, 0, a.length-1, 2));
System.out.println(5+" IS AVAILABLE AT = "+findDuplicateOfN(a, 0, a.length-1, 5));
int a1[] ={2,2,2,2,2,2,2,2,2};
System.out.println(2+" IS AVAILABLE AT = "+findDuplicateOfN(a1, 0, a1.length-1, 2));
int a2[] ={1,2,3,4,5,6,7,8,9};
System.out.println(10+" IS AVAILABLE AT = "+findDuplicateOfN(a2, 0, a2.length-1, 10));
}
public static String findDuplicateOfN(int[] a, int l, int h, int x){
if(l>h){
return "";
}
int m = (h-l)/2+l;
if(a[m] == x){
String matchedIndexs = ""+m;
matchedIndexs = matchedIndexs+findDuplicateOfN(a, l, m-1, x);
matchedIndexs = matchedIndexs+findDuplicateOfN(a, m+1, h, x);
return matchedIndexs;
}else if(a[m]>x){
return findDuplicateOfN(a, l, m-1, x);
}else{
return findDuplicateOfN(a, m+1, h, x);
}
}
2 IS AVAILABLE AT = 12
5 IS AVAILABLE AT = 43
2 IS AVAILABLE AT = 410236578
10 IS AVAILABLE AT =
I think this is still providing the results in O(logn) complexity.
A Hashmap might work, if you're not required to use a binary search.
Create a HashMap where the Key is the value itself, and then value is an array of indices where that value is in the array. Loop through your array, updating each array in the HashMap for each value.
Lookup time for the indices for each value will be ~ O(1), and creating the map itself will be ~ O(n).
Find_Key(int arr[], int size, int key){
int begin = 0;
int end = size - 1;
int mid = end / 2;
int res = INT_MIN;
while (begin != mid)
{
if (arr[mid] < key)
begin = mid;
else
{
end = mid;
if(arr[mid] == key)
res = mid;
}
mid = (end + begin )/2;
}
return res;
}
Assuming the array of ints is in ascending sorted order; Returns the index of the first index of key occurrence or INT_MIN. Runs in O(lg n).
It is using Modified Binary Search. It will be O(LogN). Space complexity will be O(1).
We are calling BinarySearchModified two times. One for finding start index of element and another for finding end index of element.
private static int BinarySearchModified(int[] input, double toSearch)
{
int start = 0;
int end = input.Length - 1;
while (start <= end)
{
int mid = start + (end - start)/2;
if (toSearch < input[mid]) end = mid - 1;
else start = mid + 1;
}
return start;
}
public static Result GetRange(int[] input, int toSearch)
{
if (input == null) return new Result(-1, -1);
int low = BinarySearchModified(input, toSearch - 0.5);
if ((low >= input.Length) || (input[low] != toSearch)) return new Result(-1, -1);
int high = BinarySearchModified(input, toSearch + 0.5);
return new Result(low, high - 1);
}
public struct Result
{
public int LowIndex;
public int HighIndex;
public Result(int low, int high)
{
LowIndex = low;
HighIndex = high;
}
}
public void printCopies(int[] array)
{
HashMap<Integer, Integer> memberMap = new HashMap<Integer, Integer>();
for(int i = 0; i < array.size; i++)
if(!memberMap.contains(array[i]))
memberMap.put(array[i], 1);
else
{
int temp = memberMap.get(array[i]); //get the number of occurances
memberMap.put(array[i], ++temp); //increment his occurance
}
//check keys which occured more than once
//dump them in a ArrayList
//return this ArrayList
}
Alternatevely, instead of counting the number of occurances, you can put their indices in a arraylist and put that in the map instead of the count.
HashMap<Integer, ArrayList<Integer>>
//the integer is the value, the arraylist a list of their indices
public void printCopies(int[] array)
{
HashMap<Integer, ArrayList<Integer>> memberMap = new HashMap<Integer, ArrayList<Integer>>();
for(int i = 0; i < array.size; i++)
if(!memberMap.contains(array[i]))
{
ArrayList temp = new ArrayList();
temp.add(i);
memberMap.put(array[i], temp);
}
else
{
ArrayList temp = memberMap.get(array[i]); //get the lsit of indices
temp.add(i);
memberMap.put(array[i], temp); //update the index list
}
//check keys which return lists with length > 1
//handle the result any way you want
}
heh, i guess this will have to be posted.
int predefinedDuplicate = //value here;
int index = Arrays.binarySearch(array, predefinedDuplicate);
int leftIndex, rightIndex;
//search left
for(leftIndex = index; array[leftIndex] == array[index]; leftIndex--); //let it run thru it
//leftIndex is now the first different element to the left of this duplicate number string
for(rightIndex = index; array[rightIndex] == array[index]; rightIndex++); //let it run thru it
//right index contains the first different element to the right of the string
//you can arraycopy this [leftIndex+1, rightIndex-1] string or just print it
for(int i = leftIndex+1; i<rightIndex; i++)
System.out.println(array[i] + "\t");

count binary roots of an integer (java)

I've been trying to find the right solution for the same question as here but in Java, and slightly modified since the count is supposed to be returned.
I came up with the following solution:
public static int count(int n) {
// check for 0 or smaller
if (n <= 0) {
return -1;
}
// find root of N
int root = (int) Math.ceil(Math.sqrt(n));
int count = 0;
for (int i = 1; i < root; i++) {
if (n % i == 0) {
// calculate bit_rev(i)
int reverse = bit_rev(i);
// calculate bit_rev(N/i)
int reverseDiv = bit_rev((int)Math.floor(n/i));
// check whether i * bit_rev(i) == N or i == bit_rev(N/i)
if (reverse*i == n
|| i == reverseDiv) {
System.out.println(String.format("Found reverse (N = %d, i = %d, bit_rev(i) = %d, bit_rev(i) * i = %d, bit_rev(N/i) = %d)", n, i, reverse, reverse*i, reverseDiv));
count++;
} else {
System.out.println(String.format("N = %d mod i = %d == 0, but no match (bit_rev(i) = %d, bit_rev(i) * i = %d, bit_rev(N/i) = %d)", n, i, reverse, reverse*i, reverseDiv));
}
}
}
if (count == 0) {
// didn't match -> return -1
return -1;
} else {
// return whatever the count was
return count;
}
}
public static int bit_rev(int n) {
String string = Integer.toBinaryString(n);
String reverseString = new StringBuffer(string).reverse().toString();
int reverse = Integer.parseInt(reverseString, 2);
return reverse;
}
In the reference sample the solution for N = 3245 is supposed to be count = 55.
However, my solution finds that count = 1 (i = 55, bit_rev(i) = 59).
The other reference samples were:
-) N = 50 -> count = 1
-) N = 286 -> count = 2
I understand that the solution for finding bit_rev() isn't the greatest (most efficient one), but I don't think it's wrong, is it?
Is there any other mistake in here, or is the reference sample for N = 3245 wrong?
I think you've misread the question, or the reference answer is wrong. If it's anything like the question at http://algorithmsforever.blogspot.com/2011/12/integer-binary-roots.html?m=1 then you need to be returning the smallest binary root, not the number of binary roots.
Regardless, I think your implementation is correctly working them out. 55 is indeed the smallest binary root of 3245 (not the count of roots).

Categories

Resources