Java Recursivity misunderstanding - java

I'm not understanding this code, why it counts up. If I change the order in the print statement with recursivity call It makes sense to me, but as it is why it is counting up. In by book it says that "System.out.println happens just before each recursive call returns. As a result, it counts up instead of down." And I am not understanding It. Appreciate your help.
public static void countdown(int n)
{
if (n == 0)
{
System.out.println("Blastoff!");
}
else
{
countdown(n - 1);
System.out.println(n);
}
}

So, if n != 0, your program running code in "else" block, where is another call to method countdown(n-1). For example, if you put n = 3, this code will be running as long as n > 0. So, basiclly running method run herself, looks like this:
countdown(3) call method countdown(2), and then countdown(2) call countdown(1). It will happen as long as n will be higher than 0. If n == 0, it will print Your message.

you should change the condition 'n == 0' to 'n <=0'. because if you pass negative value then it wont stop and you might see negative number.
lets says if you passed n = -3. then it would keep printing -3, -4...etc.

countdown(n - 1);
System.out.println(n);
It indeed counts up.
Let's take a look at what actually happens: Each countdown call first calls itself, even before anything is written to System.out.
In the following example, let's say I call countdown with 2 as argument.
countdown(2) is called
within this method call, n == 2, so else block is executed
countdown(1) is called
within this method call, n == 1, so else block is executed
countdown(0) is called
within this method call, n == 0 thus the if-condition is true, so "Blastoff!" is printed
this method exits, returning to the method denoted by step 3.
n is printed, which has the value 1.
the method exits, returning to the method denoted by step 1.
n is printed, which has the value 2.
the method exits
Note that each method call has its own local variables, like n. So the output is:
Blastoff!
1
2
as expected. You see that, just according to what the book says, the method calls itself prior to printing something to sysout.

Related

Recursion - mystery1

Having a tough time with the below code, I have answered the first call correctly as the condition is immediately correct. However, the second call of 4 is causing me great confusion, I came to the answer 2, 1 however it is incorrect- I am clearly getting things mixed up. Can someone explain to me exactly why my answer is wrong and the correct breakdown of the process of Recursive tracing in this example. I do understand elements of recursion however I am having issues following the process of tracing.
public void mystery1(int n) {
if (n <= 1) {
System.out.print(n);
} else {
mystery1(n / 2);
System.out.print(", " + n);
}
}
mystery1(1);
mystery1(4);
mystery1(16);
Recursion is beautiful yet very powerful and when it comes to observe it, people get tricked.
Let me explain you how i learnt it when i was preparing for my GATE(Graduate Aptitude Test in Engineering).
Think of each Function call as 2 parts:
Printing
Calling with halving itself
Now all the operations will be stacked upon the older one until unless we are out of recursion and only Printing is left in the function cycle.
We will print out in stack format i.e FIFO
Example, if we have these elements in stack:
Top:
4
3
7
2
Bottom
It will print 4 3 7 2 .
Now taking your Question:
Lets break your Conditional statements in two halves, 1st will be if condition with Print 2nd will be else with its print.
Note: Only one part i.e 1st will print 1 and that too without commas (,).
I have attached the Image below kindly refer it, think as print statement as on stack, and the lowest print statement will be executed first as we will end out of function calls.
Now combining mystery1(1),mystery1(4),mystery1(16) the final output will be: 1
1
, 2
, 4
1
, 2
, 4
, 8
, 16
PS: If you are going to give interviews of Amazon , Google or any Reputed Product based company they will ask question with flavor of recursion and that too without using any compiler, they wanna test your concepts via programming.
When you call mystery1(4), it goes to the else part and calls mystery1(2) since n>1. The print statement will be executed only after mystery1(2) has finished executing.
The same thing happens for mystery1(2) and it calls mystery1(1). It waits for mystery(1) to finish execution.
When mystery1(1) is called, it prints "1".
Then, mystery1(2) will continue and print ",2".
Finally, mystery1(4) will continue and print ",4".
So your output will be 1,2,4
In your method:
public static void mystery1(int n) {
if (n <= 1) {
System.out.print(n);
} else {
mystery1(n / 2);
System.out.print(", " + n);
}
}
try to replace the position of System.out.print(", " + n); before mystery1(n / 2); call.
In the first case, when System.out after mystery1 call, you have result as 1, 2, 4, because, first you have to get result, then print it.
In the second case, when System.out before mystery1 call, you have result as , 4, 21, because, first you print the result, then calculate the next result in function.

Can anyone explain how this code prints 1 to 10?

Can anyone explain how this code prints 1 to 10???
class demo
{
public static void main(String[] args)
{
display(10);
}
private static void display(int n)
{
if (n > 1)
{
display(n - 1);
}
System.out.println(n);
}
}
It's a recursive call to display method. Here the argument value passed to display method is stored in a stack. when the if condition fails then the value of n if poped from stack and printed by line "System.out.println(n)".
In other words, Every time display method called by passing a number, the number will be stored in a stack so that when code will come out of recursion, it will use that number from stack.
Doing the dry run you can see when the value 1 is passed to display method the if condition fails and the next line prints the value 1 then 2 will be printed which was in stack and so on it will print up to 10 which is the first value passed.
So the main method runs the display method and passes a value of 10. Then, the value is checked to see if it is greater than 1 (which it is). Next. the display method is called again with a value of n-1, which is 9 in this case. Lastly, 10 is printed out.
Now 9 goes through the same cycle. 9 is greater than 1 and display is called with a value of n-1, which is now 8. 9 is printed out and now 8 goes through the display method. This continues to happen until the value is 1 in which case 1 is not greater than 1 and 1 is printed out and the program exits.
This is called a recursive method if you would like to look into it more.

In a recursive statment, how does java store the past values?

public class Factorial {
int factR(int n){
int result;
if(n==1)return 1;
result=factR(n-1)*n;
System.out.println("Recursion"+result);
return result;
}
I know that this method will have the output of
Recursion2
Recursion6
Recursion24
Recursion120
Recursive120
However, my question is how does java store the past values for the factorial? It also appears as if java decides to multiply the values from the bottom up. What is the process by which this occurs? It it due to how java stores memory in its stack?
http://www.programmerinterview.com/index.php/recursion/explanation-of-recursion/
The values are stored on Java's call stack. It's in reverse because of how this recursive function is defined. You're getting n, then multiplying it by the value from the same function for n-1 and so on, and so on, until it reaches 1 and just returns 1 at that level. So, for 5, it would be 5 * 4 * 3 * 2 * 1. Answer is the same regardless of the direction of multiplication.
You can see how this works by writing a program that will break the stack and give you a StackOverflowError. You cannot store infinite state on the call stack!
public class StackTest {
public static void main(String[] args) {
run(1);
}
private static void run(int index) {
System.out.println("Index: " + index);
run(++index);
}
}
It actually isn't storing 'past values' at all. It stores the state of the program in the stack, with a frame for each method call containing data such as the current line the program is on. But there is only one value for the variable result at any time, for the current method on top of the stack. That gets returned and used to compute result in the frame that called this, and so on backwards, hence the bottom up behaviour you see.
One way to make this less confusing is to take recursion out of the picture temporarily. Suppose Java did not support recursion, and methods were only allowed to call other, different methods. If you wanted to still take a similar approach, one crude way would be to copy paste the factR method into multiple distinct but similar methods, something like:
int fact1(int n){
int result;
if(n==1)return 1;
// Here's the difference: call the 'next' method
result=fact2(n-1)*n;
System.out.println("Recursion"+result);
return result;
}
Similarly define a fact2 which calls fact3 and so on, although eventually you have to stop defining new methods and just hope that the last one doesn't get called. This would be a horrible program but it should be very obvious how it works as there's nothing magical. With some thought you can realise that factR is essentially doing the same thing. Then you can see that Java doesn't 'decide' to multiply the values bottom up: the observed behaviour is the only logical possibility given your code.
well i am trying to understand you,
if someone call likewise then
factR(3) it's recursive process so obviously java uses Stack for maintaining work flow,
NOTE : please see below procedural task step by step and again note
where it get back after current task complete.
result=factR(2)*3 // again call where n=2
-> result=factR(1)*2 // again call where n=1
-> now n=1 so that it will return 1
-> result=1*2 // after return it will become 6
print "Recursion2" // print remaning stuff
return 2;
result=2*3 // after return it will become 6
print "Recursion3" // print remaning stuff
return 3

Factorial of a number using recursion

I have the below recursive function to compute factorial of a number. The program works fine except when I remove the if condition. Can someone explain why?
This is the code that works fine --
public static long factUsingRecursion(int number) {
if (number == 1) {
return 1;
} else {
return number * factUsingRecursion(number - 1);
}
}
Without the if condition (Code that throws the error),
public static long factUsingRecursion(int number) {
return number * factUsingRecursion(number - 1);
}
I get the stack overflow error.
Exception in thread "main" java.lang.StackOverflowError
at birst.FactorialUsingRecursion.factUsingRecursion(FactorialUsingRecursion.java:10)
Request experts to please advise me why this is the case?
In recursion, there must always be a base case that stops the recursion. Without the if, you have no base case and nothing stops it. Eventually too many method calls are on the stack and a StackOverflowError results.
This line causing number variable to be decreased by 1
return number * factUsingRecursion(number - 1);
and it will handle all values of number except when it is 1
so this line of code is a break condition
if (number == 1) {
return 1;
}
and it prevent you to avoid stackoverflow exception
Recursion requires a base case. Without it, it will continue calling the function over and over and never stop. The if statement is the base case, which terminates the recursion. That is why if you remove it, you get a StackOverflowError.
Imagine what happens when you call:
factUsingRecursion(3);
With the if:
3*factUsingRecursion(2)
3*2*factUsingRecursion(1)
3*2*1
Without the if:
3*factUsingRecursion(2)
3*2*factUsingRecursion(1)
3*2*1*factUsingRecursion(0)
3*2*1*0*factUsingRecursion(-1)
3*2*1*0*-1*factUsingRecursion(-2)
3*2*1*0*-1*-2*factUsingRecursion(-3)
...
And so on... It will not stop until you encounter the StackOverflow error
It loses one of the things that makes a recursive function recursive in that it has no exit condition.
All recursive solutions must satisfy three rules or properties:
A recursive solution must contain a base case.
A recursive solution must contain a recursive case.
A recursive solution must make progress toward the base case.
From: Data Structures and Algorithms Using Python
The program will no longer work when you remove the if condition because you will just be left with return number * factUsingRecursion(number - 1); and the factUsingRecursion(number - 1) here would have the same return calling return number * factUsingRecursion(number - 1);. Your function constantly calls itself, never able to evaluate to anything. By setting the condition, you function is able to evaluate to a definitive value at some point in the recursive chain, and the first call can evaluate.
For every integer i, you are calling the function with i -1. Integersa are infinite, so you would never stop calling the function. eg: -1000 would call -1001 and this would keep going as long as JVM has some space in it's stack.

Understanding recursion in Java a little better

Ok I'm really confused about something about recursion in Java. Say I have the following code:
static int findShortestString(String[] paths, int lo, int hi) {
if(lo==hi)
return lo;
int minindex=findShortestString(paths,lo+1, hi);
if(safeStringLength(paths[lo])<safeStringLength(paths[minindex]))
return lo;
return minindex;
Now the question is not really about the code itself, but just about how recursion works. minindex is being set equal to a recursive call. So the first time the function run and tries to set minindex to something, it does so, and then the function calls itself. But when does the if statement run then? Will it only run when minindex finally actually holds a real value? I just cant wrap my head around this. If minindex causes the function to recurse and recurse, then when will the if statement ever be checked? When lo==hi? I dont get it:(
minindex is not assigned until findShortestString returns, which won't happen until lo == hi.
Each time the method calls itself, it narrows the difference between lo and hi by 1, so eventually they'll be equal* and that value will be returned.
An example, with paths = ["p1", "path2", "longpath3"]:
lo = 0, hi = 2
lo != hi -> call findShortestString(paths, 1, 2)
lo = 1, hi = 2
lo != hi -> call findShortestString(paths, 2, 2)
lo = 2, hi = 2
lo == hi -> return lo (=2)
lo = 1, hi = 2, minindex = 2
length of "path2" < length of "longpath3" -> return lo (= 1)
lo = 0, hi = 2, minindex = 1
length of "p1" < length of "path2" -> return lo (= 0)
I've tried to illustrate the variable values at each level of recursion using increasing amounts of indentation. At the beginning of each recursive call, the previous values of lo, hi and minindex are saved off (in a structure called a "stack") and the new values used instead. When each invocation of the method returns, the previously saved values are "popped" off the stack for use, and minindex assigned from the previous return value.
*unless lo > hi to begin with, I guess...
Here's a play by play of the execution:
You call findShortestString() yourself
if lo doesn't not equal hi things continue. Otherwise they stop here and the function returns.
Once you call findShortestString() again, everything in this instance of the function completely stops and will not resume until the computer has a value to give minindex (aka the function returns.) We start over in a new instance of the function at the top. The only code executed until one of the functions return is the code BEFORE the method call. This could be compared to a while loop.
We only get beyond that line once one of the function instances has lo==hi and returns.
Control switches to the function instance before that, which assigns the returned lo value to minindex.
If (safeStringLength(paths[lo])<safeStringLength(paths[minindex])) then we return lo. Else, we return minindex. Either way, this function instance is complete and control returns to the one before it.
Each function called is now only executing the code AFTER the method call, as the method will not get called again. We are unwinding the stack of calls. All of the returns will now be from the last 2 statements, as the code at the top does not get executed again. Note how only one function instance returns with the top part of the code, terminating the while loop. All the rest terminate with the return statements in the part of the function after the recursive call.
Eventually the last function returns and you go back to the code you called the function from originally.
Here's a more readable version of what the code is actually doing:
In the code before the recursive call, all that happens is the creation of a chain of calls until lo==hi. Each time the function is called with lo being 1 greater. Here's a sample stack of calls:
findShortestString(2,5);
findShortestString(3,5);
findShortestString(4,5);
findShortestString(5,5);
When they unwind, each function instance compares the string lengths of the strings at the indexes lo and the index the previous index with the shortest string.
compare strings at indexes 2 and 5
if the string at 2 is smaller, compare the strings at indexes 2 and 4.
Otherwise, compare the strings with indexes at 3 and 5.
If lo>hi at the beginning, the code will continue to run until lo overflows an integer and becomes negative, then until lo finally gets all the way up to hi, or 4,94,967,296 - (original lo - original hi). In other words, in will take a long time. To fix this, add a check at the beginning of the method that throws an exception if lo>hi.
The code could be better rewritten as this:
static int findShortestString(String[] paths, int lo, int hi) {
int indexWithShortestString=lo;
for( int i=lo; i<=hi-1; i++) {
//assumption: lo and hi are both valid indexes of paths
if (paths[i+1].length < paths[i].length)
indexWithShortestString=i+1;
}
}
Think of a stack. Every time the recursive method is called a new "frame" is put on top of the stack. The frame contains its own "slots" for each variable, independent and distinct from those in the frames below.
Eventually, a new frame will be created where the value of lo and hi are equal, and the method will return without pushing another frame. (This is called the "base case".) When that return occurs, that frame is popped off the stack, and the frame that was just below it continues its execution at the second if statement. Eventually that frame is also popped off and the same happens to the frame just below, and so on, until execution returns to the original caller.
Each time findShortestString calls itself, minindex will eventually be assigned, then the value is used in the if statement. It is always set the index of the shortest string at a higher index than lo.
So if there is a call stack with 10 levels of findShortestString, minindex is assigned 9 times (the first call is from another function).
This is a really confusing recursive function. But you generally have it correct. Every call to findShortestString() will push the function onto the stack. It will keep doing this until lo==hi. At that point, the stack is unwound and corresponding recursive calls will be assigned to their corresponding ints.
In this function, it seems that you'll only ever be returning lo. Because either (safeStringLength(paths[lo])<safeStringLength(paths[minindex]) will be true and you'll return lo. Or lo==hi will be true and you'll return lo
In order for the statement
int minindex=findShortestString(paths,lo+1, hi);
to evaluate, the method call findShortestString(paths,lo+1, hi) must return a value. Thus the following if statement will not happen until this method call returns a value. However, this method might call itself again, and you get a nesting effect.
Basically an execution of a function ends when a return statement is called. Everything after a return statement which is called no longer matters (or "exists").
Hence, the local variable minindex will only exist in an execution of a findShortestString function when the first if-statement is false.
Treat each execution of a findShortestString function independently, whether they are called recursively or from somewhere else in the code. i.e. different execution of a findShortestString function may return at different paths and have their own values and local variables. Depending on the input values, they may return at line 3, 6 or 7.
minindenx only exists in an execution that can run line 4, and it is assigned findShortestString(paths,lo+1, hi) which is guaranteed have a value, if the code is correct, otherwise you will get an infinite recursion, resulting in a stack overflow (pun unintended).

Categories

Resources