Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 4 years ago.
Improve this question
How do I get the kth combination inNCR. without iterating through all possible outcomes. e.g. say I have 3C2 for 3 positions and 2identical-items. I am aware it's [011],[101] and [110]. how do I get e.g. the 2nd term(k=1) which is [101] using a method?
constraints(R < N k >= 0 and k < P where P = NCR).
NB:[101] is the 2nd term(in ascending/lexicographical order) because 011 = 3,101 = 5 ,110 = 6
in decimal. so basically the goal is to get what number k in NCR is,
because every kth output from NCR can be represented as a number.
Yes, you are correct when you say:
because every kth output from NCR can be represented as a number.
There is a bijection from the set of integers 1 to # of combs/perms to the entire set of combs/perms. Finding the specific index of a particular comb/perm is sometimes referred to as getting the rank. According to the example that you have in your question, these are ordinary permutations. Moreover when you mention ascending order, you are referring to the lexicographical order.
It is a straightforward exercise in counting to obtain the nth ordinary permutation of a given set. We first need to obtain the total number of permutations using the well established formula:
P(n, r) = n! / (n - r)!
This next part is the key observation that allows us to quickly obtain each element of our target permutation.
If we look at all permutations of our set of n choose r, there will be n groups that are only different by a permutation of the n elements.
For example, if we look at the first two group of the permutations of [0 1 2 3] choose 3, we have:
[,0] [,1] [,2]
[0,] 0 1 2
[1,] 0 1 3
[2,] 0 2 1
[3,] 0 2 3
[4,] 0 3 1
[5,] 0 3 2
[6,] 1 0 2
[7,] 1 0 3
[8,] 1 2 0
[9,] 1 2 3
[10,] 1 3 0
[11,] 1 3 2
Note that the last permutations are simply the first 6 permutations of the set [1 0 2 3].. that is, 0 is mapped to 1, 1 is mapped to 0, and the final 2 elements are mapped to themselves.
This pattern continues as we move to the right only instead of n identical groups, we will get n - 1 similar groups for the second column, n -2 for the third, and so on.
So to determine the first element of our permutation, we need to determine the 1st group. We do that by simply dividing the number of permutations by n. For our example above of permutations of 4 choose 3, if we were looking for the 15th permutation, we have the following for the first element:
Possible indices : [0 1 2 3]
P(4, 3) = 24
24 / 4 = 6 (elements per group)
15 / 6 = 2 (integer division) 2 means the 3rd element here (base zero)
Now that we have used the 3rd element, we need to remove it from our array of possible indices. How do we get the next element?
Easy, we get our next subindex by subtracting the product of the group we just found and the elements per group from our original index.
Possible indices : [0 1 3]
Next index is 15 - 6 * 2 = 3
Now, we just repeat this until we have filled all entries:
Possible indices : [0 1 3]
Second element
6 / 3 = 2 (elements per group)
3 / 2 = 1
Next index is 3 - 3 * 1 = 0
Possible indices : [0 3]
Third element
2 / 2 = 1
0 / 1 = 0
So our 15th element is : [2 1 0]
Here is a C++ implementation that should be pretty easy to translate to Java:
double NumPermsNoRep(int n, int k) {
double result = 1;
double i, m = n - k;
for (i = n; i > m; --i)
result *= i;
return result;
}
std::vector<int> nthPermutation(int n, int r, double myIndex) {
int j = 0, n1 = n;
double temp, index1 = myIndex;
std::vector<int> res(r);
temp = NumPermsNoRep(n, r);
std::vector<int> indexVec(n);
std::iota(indexVec.begin(), indexVec.end(), 0);
for (int k = 0; k < r; ++k, --n1) {
temp /= n1;
j = (int) std::trunc(index1 / temp);
res[k] = indexVec[j];
index1 -= (temp * (double) j);
indexVec.erase(indexVec.begin() + j);
}
}
These concepts extends to other types of combinatorial problems, such as finding the nth combination, or permutation with repetition, etc.
The time complexity is O(kn), space is O(n)
public static void main(String[] args) {
//n = 4, r = 2, k = 3
int[] ret1 = getKthPermutation(4, 2, 3);
//ret1 is [1,0,0,1]
//n = 3, r = 2, k = 1
int[] ret2 = getKthPermutation(3, 2, 1);
//ret2 is [1,0,1]
}
static int[] getKthPermutation(int n, int r, int k) {
int[] array = new int[n];
setLastN(array, r, 1);
int lastIndex = n - 1;
for(int count = 0; count < k; count++) {
int indexOfLastOne = findIndexOfLast(array, lastIndex, 1);
int indexOfLastZero = findIndexOfLast(array, indexOfLastOne, 0);
array[indexOfLastOne] = 0;
array[indexOfLastZero] = 1;
//shortcut: swap the part after indexOfLastZero to keep them sorted
int h = indexOfLastZero + 1;
int e = lastIndex;
while(h < e) {
int temp = array[h];
array[h] = array[e];
array[e] = temp;
h++;
e--;
}
}
return array;
}
//starting from `from`, and traveling the array forward, find the first `value` and return its index.
static int findIndexOfLast(int[] array, int from, int value) {
for(int i = from; i > -1; i--)
if(array[i] == value) return i;
return -1;
}
//set the last n elements of an array to `value`
static void setLastN(int[] array, int n, int value){
for(int i = 0, l = array.length - 1; i < n; i++)
array[l - i] = value;
}
This is an adaption of the very typical "find the kth permation" algorithm.
I will try to explain the general idea (yours is a special case as there are only two types of elements: 0 and 1).
Lets say I have [2,1,6,4,7,5]. What is the next smallest permutation that is bigger than the current one? Why do I concern the next smallest permutation bigger than current one? Because if you start with the smallest permutation [1,2,4,5,6,7] and you repeat the action (find the smallest bigger than current) k times, you will find k+1 th smallest permutation.
Now, since the one I am looking for needs to be bigger than current one, I need to increment the current one. To keep the incrementation as small as possible, I am going to try to modify 5 (last one). Now, I cannot just change 5 to a random value, I can only swap it with some digit before it.
If I swap 5 with a bigger number before it, say 7, then I will get [2,1,6,4,5,7], which is smaller than current one. Now obviously I need to swap 5 with some smaller digit before it, but which one? If I swap 5 with 2, I get [5,1,6,4,7,2], this increment is too big. I need to swap 5 with a "lower digit" to keep the increment as small as possible. Thats leads us to find the first(lowest) digit (from right to left) that is smaller than 5. In this case I would need to swap 5 with 4 and get [2,1,6,5,7,4]. This way, I can make the impact of "swap" small. Now the prefix is decided [2,1,6,5. There is no smaller prefix. We need to deal with suffix 7,4]. Clearly, if we sort the suffix and make it 4,7], then we are done.
In our case, there are two differences:
1. we need to swap the last 1, because you cannot make the permutation bigger by swapping the a zero with any digit before it.
2. we can always sort the suffix using a shortcut as shown in the code. I will leave it to you:)
public static String lexicographicPermutation(String str, long n) {
final long[] factorials = { 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 };
n--;
char[] arr = str.toCharArray();
for (int i = 0; i < arr.length - 1; i++) {
long fact = factorials[arr.length - i - 2];
long p = i + n / fact;
n %= fact;
for (int j = i + 1; j <= p; j++)
swap(arr, i, j);
}
return new String(arr);
}
private static void swap(char[] arr, int i, int j) {
char tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
You can replace STR with required string. In the given example, 1st permutation is "abcdefghijklm" (this is a string with 13 chars), 13!st permutation is reverse string "mlkjihgfedcba" and 100st permutation is "abcfklgmeihjd".
To realise this soulution just google Factorial number system. This is a key to solve this problem. This is a Project Euler: Problem 24.
Demo:
for(int i = 1; i <= 6; i++)
System.out.println(lexicographicPermutation("110", i));
1 - 110
2 - 101
3 - 110
4 - 101
5 - 011
6 - 011
for(int i = 1; i <= 6; i++)
System.out.println(lexicographicPermutation("abc", i));
1 - abc
2 - acb
3 - bac
4 - bca
5 - cab
6 - cba
Related
I came across a problem to find the longest increasing path in a matrix. The Brute-Force solution to it is pretty straight forward:
public class Solution {
private static final int[][] dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
private int m, n;
public int longestIncreasingPath(int[][] matrix) {
if (matrix.length == 0) return 0;
m = matrix.length;
n = matrix[0].length;
int ans = 0;
for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
ans = Math.max(ans, dfs(matrix, i, j));
return ans;
}
private int dfs(int[][] matrix, int i, int j) {
int ans = 0;
for (int[] d : dirs) {
int x = i + d[0], y = j + d[1];
if (0 <= x && x < m && 0 <= y && y < n && matrix[x][y] > matrix[i][j])
ans = Math.max(ans, dfs(matrix, x, y));
}
return ++ans;
}
}
And the time complexity for this was given as O(2^(m+n)) where m is no. of rows, and n is no. of cols in the matrix.
I'm having a hard time understanding this. The first nested for loop is O(mn) which is fine. Now each cell is treated as a root, and a DFS is done on it. However the time complexity for a DFS is O(V + E), and here V = mn and E = 4*mn, so each dfs should be O(mn), so the total time complexity should be O(mn) x O(mn) = O(m^2.n^2) right?
Note: I am aware that this is not an optimal solution and this can be memoized, however my question is about understanding time complexity in this brute for method.
Your DFS isn't O(V+E) = O(nm) because you don't have a visited set. Without this set, the paths your various branches take can overlap and duplicate work such that you can potentially explore the same vertices and traverse the same edges many times over from any given DFS call from longestIncreasingPath. A memory-less search with a branching factor of 4 is what causes exponential behavior.
For example, consider the potential worst case of a perfectly convex matrix:
6 5 4 3 4 5 6
5 4 3 2 3 4 5
4 3 2 1 2 3 4
3 2 1 0 1 2 3
4 3 2 1 2 3 4
5 4 3 2 3 4 5
6 5 4 3 4 5 6
The worst case path for any vertex you search is to climb diagonally to the nearest corner, and such paths are O((n+m)/2) steps long. Every vertex has up to 4 options, and as there's no shared memory in the form of a visited set between recursive calls, you get a naive 4^((n+m)/2) = 2^(n+m) worst-case complexity for DFS. It would be more precise to say that most vertices in this worst case scenario only have 2 to 3 viable neighbors to recurse into, such that the actual worst-case complexity for each search would be between sqrt(2)^(n+m) and sqrt(3)^(n+m), but the exponential run-time is the same.
If you had a visited set, you would get a complexity more like the one you alluded to in your answer. It would be O(nm*((n+m)/2)) = O(n^2*m + m^2*n) because of the restriction that paths be increasing, but without that restriction it would be O((nm)^2).
Can somebody help me with this problem?
Statement: - What is the maximum possible n digit number starting from 0 we can make in K steps
using only 2 operations:-
multiplying by 3 or incrementing by 2.
EXAMPLE :
N =2 K = 5;
-> (0->2->6->8->24->72) 72 IS THE ANSWER
N = 2 , K = 51 -> (0->2->6->8->10->30->32->96->98). 98 is the maximum we can get so need to check for rest of the moves.
My 2 state-recursive solution:-
public static void largestNDigitNumber(long[] highest, long maxValue, long k, long currentValue) {
if (highest[0] == (maxValue - 2)) return; //no need to do anything as we get 98 as highest.
if (k < 0) return; //checking for steps
if (highest[0] < currentValue && currentValue <= (maxValue - 2)) {
highest[0] = currentValue;
}
largestNDigitNumber(highest, maxValue, (k - 1), (currentValue * 3));
largestNDigitNumber(highest, maxValue, (k - 1), (currentValue + 2));
}
public static void main(String[] args) {
int n = 2;
long k = 51;
long maxValue = (long) Math.pow(10, n);
long[] highest = new long[1];
largestNDigitNumber(highest, maxValue, (k - 1), 2);
if (highest[0] < (long) Math.pow(10, (n - 1))) {
System.out.println("-1"); // if it is not possible to make n digit in given steps
} else System.out.println(highest[0]);
}
when "k" is small it is giving the correct answer but for bigger values of "k", it does not show any input. for n=2 and k = 51, it does not show anything.
please help me to improve this code
The question is equivalent to asking what is the largest base 3 number that is less than 10^n/2, and has digit sum plus length less than or equal to k+1. (The answer is then double the base 3 number).
For example, N=2 K=5. What's the largest base 3 number that's less than 50, with length plus digit sum less than or equal to 6. Answer: 1100 (36 decimal), so the answer to the original question is 36*2=72.
For N=2, K=51, the largest base-3 number that's less than 50 is 2001 (49 decimal) and has length sum plus digit sum = 7, which is way less than K+1.
Given this representation, it's easy to solve the problem in O(n) time (in fact, you can solve it using pencil and paper). The length d of the base-3 number is as large as possible such that 3^d < 10^n/2 and d<=K. Then fill in the digits of the number greedily from the most-significant first until you have digit sum K+1-d (or you run out of digits).
Equivalence
First note that without loss of generality you can assume you never have three +2 operations in a row, since that can be done more efficiently by inserting a single +2 operation to before the most recent *3 (or simply replacing it by +2 * 3 if there's no *3 operation). Suppose you have represented the current number as a doubled base-3 number. A +2 operation corresponds to adding 1 to the bottom digit (this never overflows into the next column thanks to the observation above). A *3 operation moves all the digits up one column, introducing a 0 as the bottom digit. Note that because the number is doubled, the +2 operation adds just 1 to the base-3 number!
From this, you can see that you can count the number of operations from observation of the doubled base-3 number. Because *3 introduces a new digit, and +2 increases the digit sum by 1, so the number of operations is equal to the number of digits plus 1, plus the digit sum.
As an example. Suppose you have the doubled base-3 number 2 * 2101, then this is equivalent to 2 * (1+3*3*(1+3*(1+1)))) = (2 + 3*3*(2+3*(2+2))).
I tried something like this. it seems to work fine.
getMaxNumber(2, 5) ==> 72
getMaxNumber(2, 51) ==> 98
private int getMaxNumber(int n, int k){
int N = 0;
for (int i = 0; i < n; i++) {
N = N * 10 + 9;
}
int[] result = new int[1];
helper(N, k, 0, 0, result);
return result[0];
}
private void helper(int N, int K, int n, int k, int[] result){
if(n > N) return;
if(k <= K){
result[0] = Math.max(result[0], n);
}
if(n > 0)
helper(N, K, n * 3, k + 1, result);
helper(N, K, n + 2, k + 1, result);
}
Keeping with the style of your original recursive method. I modified it a bit to produce a working solution:
public static long largestNDigitNumber(int n, long currentK, long maxK, long currentValue) {
if (currentK > maxK || n < 1 || maxK < 1) return 0;
if (currentValue >= Math.pow(10, n))
return 0;
long c1 = largestNDigitNumber(n, currentK + 1, maxK, currentValue * 3);
long c2 = largestNDigitNumber(n, currentK + 1, maxK, currentValue + 2);
if (c1 == 0 && c2 == 0)
return currentValue;
return c1 > c2 ? c1 : c2;
}
public static void main(String[] args) {
int n = 2;
long k = 51;
long largest = largestNDigitNumber(n, 0, k, 0);
System.out.println(largest); //98
}
This recursive method returns values here instead of using an array. Hence the check if one returned value is bigger than the other or they are both 0 before returning.
Both the +2 and *3 operations preserve odd/even parity, so starting from 0 we can only reach even numbers. We could start our search at the highest even number: 8, 98, 998, 9998 etc. and see what the shortest distance to 0 is.
If we are looking for the shortest distance, then there are less choices to make. If the current number is a multiple of 3 then there are two choices, either we divide by 3 or subtract 2. Otherwise the only choice is to subtract 2. I suspect that in the majority of cases, dividing by 3 is the better option, so that might be the first to try to keep the tree smaller.
If the minimum number of steps is less than K then as many divide by 3 operations as needed can be used to make the correct K
If the minimum number of steps is equal to K then the problem is solved.
If the minimum number of steps is more than K then you need to pick a lower starting number. Some even numbers will already have been covered as part of the initial calculation. You get those 'for free', provide you include a small amount of record keeping. You only need to examine large even numbers that were missed earlier due to a 'divide by 3' step.
This isn't really a homework, but rather a practice and optimization, but this seemed like the best section for this type of questions.
It is a dynamical programming issue, and it's the following:
-Given an unsorted array of N elements, pick K number of elements from it, such that their absolute difference is the largest.
An absolute difference is calculated between adjacent elements here. So if we have an array of 5 elements: 1 5 3 2 1, and k = 3, the absolute differences would be:
1 5 3 = |5-1| + |3-5| = 6
1 5 2 = |5-1| + |2-5| = 7
1 5 1 = [5-1| + |1-5| = 8
etc
With 1 5 1 being the largest and needed one with 8
What i've tried so far is solving this by finding all possible combinations of K numbers with a recursion and then returning the biggest(brute force).
This showed as a terrible idea, because when tried with an array of N=50 and k=25 for example, there are 1.264106064E+14 combinations.
The recursion i used is a simple one used for printing all K-digit integers from an array, just instead of printing them, keeping them in an array:
static void solve(int[] numbers, int k, int startPosition, int[] result) {
if (k == 0) {
System.out.println(absoluteDifferenceSum(result));
return;
}
for (int i = startPosition; i <= numbers.length - k; i++) {
result[result.length - k] = numbers[i];
solve(numbers, k - 1, i + 1, result);
}
}
What I want to achieve is the optimal complexity (which i suppose can't be lower than O(n^2) here, but i'm out of ideas and don't know how to start. Any help is appreciated!
Generally, we can have a naive O(n^2 * k) formulation, where f(i, k) represents the best result for selecting k elements when the ith element is rightmost in the selection,
f(i, k) = max(
f(j, k - 1) + abs(Ai - Aj)
)
for all j < i
which we can expand to
max( f(j, k - 1) + Ai - Aj )
= Ai + max(f(j, k - 1) - Aj)
when Ai >= Aj
and
max( f(j, k - 1) + Aj - Ai )
= -Ai + max(f(j, k - 1) + Aj)
when Ai < Aj
Since the right summand is independent of Ai, we can build a tree with nodes that store both f(j, k - 1) - Aj, as well as f(j, k - 1) + Aj. Additionally, we'll store in each node both maxes for each subtree. We'll need O(k) trees. Let's skip to the examination of the tree for k = 2 when we reach the last element:
1
5 -> 4 -> (-1, 9)
3 -> 2 -> (-1, 5)
2 -> 3 -> (-1, 5)
3 -> (-3, 5)
tree for k = 2 so far:
3 (-1, 5)
/ \
2 (-1, 5) 5 (-1, 9)
1 is less than 3 so we first add -1
to the max for the right subtree
stored for f(j, k - 1) + Aj
-1 + 9 = 8
(note that this represents {1,5,1})
then we continue left in the tree
and compare 8 to a similar calculation
with node 2: -1 + 5 = 4
(note that this represents {5,2,1})
This way, we can reduce the time complexity to O(n log n * k) with space O(n * k).
I was trying to solve a problem from the Codility with a given solution. The problem is provided below:
You are given N counters, initially set to 0, and you have two possible operations on them:
increase(X) − counter X is increased by 1,
max counter − all counters are set to the maximum value of any counter.
A non-empty array A of M integers is given. This array represents consecutive operations:
if A[K] = X, such that 1 ≤ X ≤ N, then operation K is increase(X),
if A[K] = N + 1 then operation K is max counter.
For example, given integer N = 5 and array A such that:
A[0] = 3
A[1] = 4
A[2] = 4
A[3] = 6
A[4] = 1
A[5] = 4
A[6] = 4
the values of the counters after each consecutive operation will be:
(0, 0, 1, 0, 0)
(0, 0, 1, 1, 0)
(0, 0, 1, 2, 0)
(2, 2, 2, 2, 2)
(3, 2, 2, 2, 2)
(3, 2, 2, 3, 2)
(3, 2, 2, 4, 2)
The goal is to calculate the value of every counter after all operations.
Write a function:
class Solution { public int[] solution(int N, int[] A); }
that, given an integer N and a non-empty array A consisting of M integers, returns a sequence of integers representing the values of the counters.
The sequence should be returned as:
a structure Results (in C), or
a vector of integers (in C++), or
a record Results (in Pascal), or
an array of integers (in any other programming language).
For example, given:
A[0] = 3
A[1] = 4
A[2] = 4
A[3] = 6
A[4] = 1
A[5] = 4
A[6] = 4
the function should return [3, 2, 2, 4, 2], as explained above.
Assume that:
N and M are integers within the range [1..100,000];
each element of array A is an integer within the range [1..N + 1].
Complexity:
expected worst-case time complexity is O(N+M);
expected worst-case space complexity is O(N) (not counting the storage required for input arguments).
I have a solution provided,
public static int[] solution(int N, int[] A) {
int[] counters = new int[N];
int currMax = 0;
int currMin = 0;
for (int i = 0; i < A.length; i++) {
if (A[i] <= N) {
counters[A[i] - 1] = Math.max(currMin, counters[A[i] - 1]);
counters[A[i] - 1]++;
currMax = Math.max(currMax, counters[A[i] - 1]);
} else if (A[i] == N + 1) {
currMin = currMax;
}
}
for (int i = 0; i < counters.length; i++) {
counters[i] = Math.max(counters[i], currMin);
}
return counters;
}
It seems they use 2 storage to hold and update the min/max values and use them inside the algorithm. Obviously, there is a more direct way to solve the problem ie. increase the value by 1 or set all the values to max as suggested and I can do that. The drawback will be to lower perfromance and increased time complexity.
However, I would like to understand what is going on here. I spend times debugging with the example array but the algorithm is still little confusing.
Anyone understand it and can explain to me briefly?
It is quite simple, they do lazy update. You keep track at all times of what is the value of the counter that has the highest value (currMax). Then, when you get a command to increase all counters to that maxValue, as that is too expensive, you just save that the last time you had to increase all counters to maxValue, that value was currMin.
So, when do you update a counter value to that value? You do it lazily, you just update it when you get a command to update that counter (increase it). So when you need to increase a counter, you update the counter to the max between its old value and currMin. If this was the first update on this counter since a N + 1 command, the correct value it should have is actually currMin, and that will be higher (or equal) to its old value. One you updated it, you add 1 to it. If now another increase happens, currMin doesn't actually matter, as the max will take its old value until another N + 1 command happens.
The second for is to account for counters that did not get an increase command after the last N + 1 command.
Note that there can be any number of N + 1 commands between 2 increase operations on a counter. It still follows that the value it should have is the maxValue at the time of the last N + 1 command, it doesn't really matter that we didn't update it before with the other maxValue from a previous N + 1, we only care about latest.
Given a string of even size, say:
abcdef123456
How would I interleave the two halves, such that the same string would become this:
a1b2c3d4e5f6
I tried attempting to develop an algorithm, but couldn't. Would anybody give me some hints as to how to proceed? I need to do this without creating extra string variables or arrays. One or two variable is fine.
I just don't want a working code (or algorithm), I need to develop an algorithm and prove it correctness mathematically.
You may be able to do it in O(N*log(N)) time:
Want: abcdefgh12345678 -> a1b2c3d4e5f6g7h8
a b c d e f g h
1 2 3 4 5 6 7 8
4 1-sized swaps:
a 1 c 3 e 5 g 7
b 2 d 4 f 6 h 8
a1 c3 e5 g7
b2 d4 f6 h8
2 2-sized swaps:
a1 b2 e5 f6
c3 d4 g7 h8
a1b2 e5f6
c3d4 g7h8
1 4-sized swap:
a1b2 c3d4
e5f6 g7h8
a1b2c3d4
e5f6g7h8
Implementation in C:
#include <stdio.h>
#include <string.h>
void swap(void* pa, void* pb, size_t sz)
{
char *p1 = pa, *p2 = pb;
while (sz--)
{
char tmp = *p1;
*p1++ = *p2;
*p2++ = tmp;
}
}
void interleave(char* s, size_t len)
{
size_t start, step, i, j;
if (len <= 2)
return;
if (len & (len - 1))
return; // only power of 2 lengths are supported
for (start = 1, step = 2;
step < len;
start *= 2, step *= 2)
{
for (i = start, j = len / 2;
i < len / 2;
i += step, j += step)
{
swap(s + i,
s + j,
step / 2);
}
}
}
char testData[][64 + 1] =
{
{ "Aa" },
{ "ABab" },
{ "ABCDabcd" },
{ "ABCDEFGHabcdefgh" },
{ "ABCDEFGHIJKLMNOPabcdefghijklmnop" },
{ "ABCDEFGHIJKLMNOPQRSTUVWXYZ0<({[/abcdefghijklmnopqrstuvwxyz1>)}]\\" },
};
int main(void)
{
unsigned i;
for (i = 0; i < sizeof(testData) / sizeof(testData[0]); i++)
{
printf("%s -> ", testData[i]);
interleave(testData[i], strlen(testData[i]));
printf("%s\n", testData[i]);
}
return 0;
}
Output (ideone):
Aa -> Aa
ABab -> AaBb
ABCDabcd -> AaBbCcDd
ABCDEFGHabcdefgh -> AaBbCcDdEeFfGgHh
ABCDEFGHIJKLMNOPabcdefghijklmnop -> AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPp
ABCDEFGHIJKLMNOPQRSTUVWXYZ0<({[/abcdefghijklmnopqrstuvwxyz1>)}]\ -> AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz01<>(){}[]/\
Generically that problem is quite hard -- and it reduces to finding permutation cycles. The number and length of those varies quite a lot depending on the length.
The first and last cycles are always degenerate; the 10 entry array has 2 cycles of lengths 6 and 2 and the 12 entry array has a single cycle of length 10.
Withing a cycle one does:
for (i=j; next=get_next(i) != j; i=next) swap(i,next);
Even though the function next can be implemented as some relatively easy formula of N, the problem is postponed to do book accounting of what indices have been swapped. In the left case of 10 entries, one should [quickly] find the starting positions of the cycles (they are e.g. 1 and 3).
Ok lets start over. Here is what we are going to do:
def interleave(string):
i = (len(string)/2) - 1
j = i+1
while(i > 0):
k = i
while(k < j):
tmp = string[k]
string[k] = string[k+1]
string[k+1] = tmp
k+=2 #increment by 2 since were swapping every OTHER character
i-=1 #move lower bound by one
j+=1 #move upper bound by one
Here is an example of what the program is going to do. We are going to use variables i,j,k. i and j will be the lower and upper bounds respectively, where k is going to be the index at which we swap.
Example
`abcd1234`
i = 3 //got this from (length(string)/2) -1
j = 4 //this is really i+1 to begin with
k = 3 //k always starts off reset to whatever i is
swap d and 1
increment k by 2 (k = 3 + 2 = 5), since k > j we stop swapping
result `abc1d234` after the first swap
i = 3 - 1 //decrement i
j = 4 + 1 //increment j
k= 2 //reset k to i
swap c and 1, increment k (k = 2 + 2 = 4), we can swap again since k < j
swap d and 2, increment k (k = 4 + 2 = 6), k > j so we stop
//notice at EACH SWAP, the swap is occurring at index `k` and `k+1`
result `ab1c2d34`
i = 2 - 1
j = 5 + 1
k = 1
swap b and 1, increment k (k = 1 + 2 = 3), k < j so continue
swap c and 2, increment k (k = 3 + 2 = 5), k < j so continue
swap d and 3, increment k (k = 5 + 2 = 7), k > j so were done
result `a1b2c3d4`
As for proving program correctness, see this link. It explains how to prove this is correct by means of a loop invariant.
A rough proof would be the following:
Initialization: Prior to the first iteration of the loop we can see that i is set to
(length(string)/2) - 1. We can see that i <= length(string) before we enter the loop.
Maintenance. After each iteration, i is decremented (i = i-1, i=i-2,...) and there must be a point at which i<length(string).
Termination: Since i is a decreasing sequence of positive integers, the loop invariant i > 0 will eventually equate to false and the loop will exit.
The solution is here J. Ellis and M. Markov. In-situ, stable merging by way of perfect shuffle.
The Computer Journal. 43(1):40-53, (2000).
Also see the various discussions here:
https://cs.stackexchange.com/questions/332/in-place-algorithm-for-interleaving-an-array/400#400
https://cstheory.stackexchange.com/questions/13943/linear-time-in-place-riffle-shuffle-algorithm.
Alright, here's a rough draft. You say you don't just want an algorithm, but you are taking hints, so consider this algorithm a hint:
Length is N.
k = N/2 - 1.
1) Start in the middle, and shift (by successive swapping of neighboring pair elements) the element at position N/2 k places to the left (1st time: '1' goes to position 1).
2) --k. Is k==0? Quit.
3) Shift (by swapping) the element at N/2 (1st time:'f' goes to position N-1) k places to the right.
4) --k.
Edit: The above algorithm is correct, as the code below shows. Actually proving that it's correct is waaay beyond my capabilities, fun little question though.
#include <iostream>
#include <algorithm>
int main(void)
{
std::string s("abcdefghij1234567890");
int N = s.size();
int k = N/2 - 1;
while (true)
{
for (int j=0; j<k; ++j)
{
int i = N/2 - j;
std::swap(s[i], s[i-1]);
}
--k;
if (k==0) break;
for (int j=0; j<k; ++j)
{
int i = N/2 + j;
std::swap(s[i], s[i+1]);
}
--k;
}
std::cout << s << std::endl;
return 0;
}
Here's an algorithm and working code. It is in place, O(N), and conceptually simple.
Walk through the first half of the array, swapping items into place.
Items that started in the left half will be swapped to the right
before we need them, so we use a trick to determine where they
were swapped to.
When we get to the midpoint, unscramble the unplaced left items that were swapped to the right.
A variation of the same trick is used to find the correct order for unscrambling.
Repeat for the remaining half array.
This goes through the array making no more than N+N/2 swaps, and requires no temporary storage.
The trick is to find the index of the swapped items. Left items are swapped into a swap space vacated by the Right items as they are placed. The swap space grows by the following sequence:
Add an item to the end(into the space vacated by a Right Item)
Swap an item with the oldest existing (Left) item.
Adding items 1..N in order gives:
1 2 23 43 435 465 4657 ...
The index changed at each step is:
0 0 1 0 2 1 3 ...
This sequence is exactly OEIS A025480, and can be calculated in O(1) amortized time:
def next_index(n):
while n&1: n=n>>1
return n>>1
Once we get to the midpoint after swapping N items, we need to unscramble. The swap space will contain N/2 items where the actual index of the item that should be at offset i is given by next_index(N/2+i). We can advance through the swaps space, putting items back in place. The only complication is that as we advance, we may eventually find a source index that is left of the target index, and therefore has already been swapped somewhere else. But we can find out where it is by doing the previous index look up again.
def unscramble(start,i):
j = next_index(start+i)
while j<i: j = next_index(start+j)
return j
Note that this only an indexing calculation, not data movement. In practice, the total number of calls to next_index is < 3N for all N.
That's all we need for the complete implementation:
def interleave(a, idx=0):
if (len(a)<2): return
midpt = len(a)//2
# the following line makes this an out-shuffle.
# add a `not` to make an in-shuffle
base = 1 if idx&1==0 else 0
for i in range(base,midpt):
j=next_index(i-base)
swap(a,i,midpt+j)
for i in range(larger_half(midpt)-1):
j = unscramble( (midpt-base)//2, i);
if (i!=j):
swap(a, midpt+i, midpt+j)
interleave(a[midpt:], idx+midpt)
The tail-recursion at the end can easily be replaced by a loop. It's just less elegant with Python's array syntax. Also note that for this recursive version, the input must be a numpy array instead of a python list, because standard list slicing creates copies of the indexes that are not propagated back up.
Here's a quick test to verify correctness. (8 perfect shuffles of a 52 card deck restore it to the original order).
A = numpy.arange(52)
B = A.copy()
C =numpy.empty(52)
for _ in range(8):
#manual interleave
C[0::2]=numpy.array(A[:26])
C[1::2]=numpy.array(A[26:])
#our interleave
interleave(A)
print(A)
assert(numpy.array_equal(A,C))
assert(numpy.array_equal(A, B))