Related
I have been trying to follow the example here, but it is not working, and I have not been able to find any other sources:
[ http://www.softsynth.com/jsyn/tutorial/osc_control.php ][1]
As far as I can tell, I have followed this sample code snippet exactly (except that I found out that AddUnit changed to Add sometime since that webpage was updated):
[...]make the frequency to waver slightly about a central frequency that is in a more useful range. We can do this by using an AddUnit to add the output of an oscillator to a constant value that we can set. We can also reduce the amplitude of the first oscillator to be within a smaller range.
AddUnit freqAdder = new AddUnit();
sineOsc1.output.connect( freqAdder.inputA ); // pass through adder
freqAdder.output.connect( sineOsc2.frequency ); // control second oscillator freq
freqAdder.inputB.set( 500.0 ); // add constant that will center us at 500 Hz
sineOsc1.amplitude.set( 100.0 ); // reduce offset to +/- 100 Hz
Thus the frequency of sineOsc2 will be sineOsc1.output plus inputB.
Can anybody see what is wrong with my code (below)? I already have a simple oscillator sound working. I just can't hear this second, more complicated sound, which is supposed to be siren-like.
It may be a problem with my coding of the siren sound, or it may just be a problem with my coding of generating two sounds. (Are 2 Synthesizers required? I have tried it with 1 and 2 Synthesizers.) (Are 2 lineOuts required? Other web sources say "no".)
Here is my code with 2 synthesizers and 1 output:
(Comments in quotes are from other sample code. I only understand a little of what those comments are getting at.)
import com.jsyn.JSyn;
import com.jsyn.Synthesizer;
import com.jsyn.unitgen.Add;
import com.jsyn.unitgen.LineOut;
import com.jsyn.unitgen.SineOscillator;
[...]
com.jsyn.Synthesizer synthPCMSonification = JSyn.createSynthesizer();
com.jsyn.Synthesizer synthPCMAlarm = JSyn.createSynthesizer();
// "an instance of Synthesizer"
com.jsyn.unitgen.SineOscillator oscData = new SineOscillator();
SineOscillator oscAlarmWaverEnvelope = new SineOscillator();
SineOscillator oscAlarmComplete = new SineOscillator();
// "a unit"
com.jsyn.unitgen.LineOut oscsLineOut = new LineOut();
// "a unit"
[...]
// "start synthesis engine"
synthPCMSonification.start();
synthPCMAlarm.start();
// "build unit generators"
synthPCMSonification.add(oscData);
//synthPCM.add(oscAlarmWaverEnvelope); //TODO: Figure out if need line
synthPCMAlarm.add(oscAlarmComplete);
synthPCMSonification.add(oscsLineOut);
synthPCMAlarm.add(oscsLineOut);
oscData.frequency.set(LOWEST_FREQUENCY_C);
oscData.amplitude.set(volSonification);
//create a frequency adder for a siren-like alarm
com.jsyn.unitgen.Add oscAlarmFreqAdder = new Add(); //used to be AddUnit
//set the alarm centre frequency
alarmCentreFreq = (LOWEST_FREQUENCY_C
* Math.pow(2, OCTAVES_SPANNED_C + 1));
//This formula centres the alarm one octave
//above the threshold's sonification freqency
alarmWaverFreq = alarmCentreFreq / 10;
//This sets the waver at one tenth of the centre freq
//Unfortunately, the waver appears to need to be the
//same amount above and below the centre
//(linear, vice perceptually-linear (exponential))
System.out.println(alarmCentreFreq + "-Hz alarm centre frequency");
oscAlarmFreqAdder.inputB.set(alarmCentreFreq);
//set the alarm waver envelope
//(alarm will range between centre-waver and centre+waver)
oscAlarmWaverEnvelope.frequency.set(alarmCentreFreq / 10);
//"pass through adder" (??)
oscAlarmWaverEnvelope.output.connect(oscAlarmFreqAdder.inputA);
//(entered this with by starting to type, then hitting [Ctrl]+[Space]!)
//"control the 2nd oscillator frequency" (?)
oscAlarmFreqAdder.output.connect(oscAlarmComplete.frequency);
//set alarm volume
oscAlarmComplete.amplitude.set(volAlarm);
// "connect unit generators"
// connect oscillator to both channels of stereo player
oscAlarmComplete.output.connect(0, oscsLineOut.input, 0);
oscAlarmComplete.output.connect(0, oscsLineOut.input, 1);
// "startUnitGenerators"
// "start execution of units. JSyn 'pulls' data so the only unit
// you have to start() is the last one, in this case our LineOut"
oscsLineOut.start();
How many people out there know and use JSyn? How about meta-oscillators?
If you have ever connected different JSyn parts together, or even just got it to output more than one sound at once, you know more than I do...
There are a number of things that could be improved here.
1) You created two synthesizers:
com.jsyn.Synthesizer synthPCMSonification = JSyn.createSynthesizer();
com.jsyn.Synthesizer synthPCMAlarm = JSyn.createSynthesizer();
That is only needed if you are running some synthesis in non-real-time or at a different sample rate. I highly recommend only using one synthesizer. Connecting units across synthesizers or running the same unit on both synthesizers will cause problems. I suspect that is the main error.
You can have multiple LineOut units in one synth. Or you can mix automatically by connecting multiple units to the LineOut.
2) I recommend starting with just one oscillator connected to a LineOut. After you can get that to make sound, add the modulation.
3) You can get exponential frequency (pitch) modulation using the optimized PowerOfTwo unit.
http://www.softsynth.com/jsyn/docs/javadocs/com/jsyn/unitgen/PowerOfTwo.html
Connect the LFO to a PowerOfTwo unit. Then use a Multiply unit to scale the center frequency. An LFO that goes from +1.0 to -1.0 will scale the frequency up and down an octave.
4) The tutorial uses the old JSyn API. I need to update it. Note that in the new JSyn API you rarely need an Add unit because the input ports will automatically sum any connected inputs.
5) StackOverflow is great but you can get support from the JSyn community of over 600 people by signing up for the JSyn mail list.
http://www.softsynth.com/jsyn/support/index.php
(Note: I really wanted to just add this to the answer #philburk gave, as his answer certainly helped, but my requests to add this to his answer were rejected, so I have to give this as a separate answer. I am torn on whether I should move the 'accept' to this answer or not, though, even though this is the actual fix.)
The code in the question can be fixed by adding (or changing to, in the case of the frequency line) the following lines of code:
synthPCM.add(oscAlarmWaverEnvelope) //(this is the line I already suspected I needed)
oscAlarmWaverEnvelope.frequency.set(4.0);
oscAlarmWaverEnvelope.amplitude.set(alarmCentreFreq / 10);
...meaning:
An oscillator still needs to be connected to the synthesizer even if it will not be heard directly (and a line like this was missing from the sample code, probably because the sample code assumed a person had some previous sample code from the tutorial in it).
An envelope oscillator should be set to a very low frequency in order for its effect to be heard.
An envelope oscillator should be given an amplitude, and this needs to be on the order of the frequency being altered in order for its effect to be heard.
(I'm using Java therefore added the 'Java' tag incase it influences any answers, however some may argue that the tag is unecessary.)
Consider the following:
I have a veranda/balcony to plan graphically. As part of the final plan I am required to list any materials required to construct the veranda. To simplify the calculating process I've split the veranda into different Sections:
Above Deck - which involves the plastic fencing components and fixings (i.e Screws, bolts)
Below Deck - which involves timber subframes and more fixings.
...Plus others which I won't go in depth.
For arguments sake: There are 100 different stock items available due to the different fencing designs we offer. Each item has its own class including information such as dimensions, colour, quantity and its ID reference.
What I would like to do is create a list of fixings required for each section and add them all up into one final list without any duplications.
The final idea is to display the item name and a quantity next to the processed plan.
So for example:
Section 1 requires:
- 25 x Screw A
- 15 x Screw B
- 5 x Screw C
Section 2 requires:
- 25 x Screw A
- 15 x Screw B
- 5 x Screw F
Section 3 requires:
- 45 x Screw B
- 50 x Screw C
- 24 x Screw G
Total List
Section 1 + Section 2 + Section 3 = {Complete list of materials}
What I've tried/considered:
All the screws I've mentioned above have their own class and extend the super class "Fasteners". Each Section mentioned above has a variable:
ArrayList<Fasteners>
So as I'm calculating I can add the screws to this variable. Once each section has calculated how many Fasteners it requires I then add them altogether.
I've considered making a "add(Fixings)" method in the "Fasteners" super class which adds any duplicate items together. But because there are 100 items I would of thought the coding wouldn't be very efficient and suspect there is a better way of making use of the polymorphism I've set up here. Any online references or hints would be helpful and very much appreciated.
Here's a suggestion:
Make an enum called FastenerType, then use an EnumMap<FastenerType, AtomicInteger> to hold your fasteners. Let's call it the bag.
Then do something like
public class FastenerBag {
private Map<FastenerType, AtomicInteger> fasteners = new EnumMap<FastenerType, AtomicInteger>(FastenerType.map);
FastenerBag(){
// init your ints to zero
}
public void addFastenersFor(VerandaPart part){
for (FastenerType type : FastenerType.values()){
fasteners.get(type).addAndGet(part.getRequiredFasteners().get(type));
}
}
}
Don't worry too much about performance. First get it working. Then get it readable (refactor), then optimize.
Any clever ideas on how to generate random coordinates (latitude / longitude) of places on Earth? Latitude / Longitude. Precision to 5 points and avoid bodies of water.
double minLat = -90.00;
double maxLat = 90.00;
double latitude = minLat + (double)(Math.random() * ((maxLat - minLat) + 1));
double minLon = 0.00;
double maxLon = 180.00;
double longitude = minLon + (double)(Math.random() * ((maxLon - minLon) + 1));
DecimalFormat df = new DecimalFormat("#.#####");
log.info("latitude:longitude --> " + df.format(latitude) + "," + df.format(longitude));
Maybe i'm living in a dream world and the water topic is unavoidable ... but hopefully there's a nicer, cleaner and more efficient way to do this?
EDIT
Some fantastic answers/ideas -- however, at scale, let's say I need to generate 25,000 coordinates. Going to an external service provider may not be the best option due to latency, cost and a few other factors.
To deal with the body of water problem is going to be largely a data issue, e.g. do you just want to miss the oceans or do you need to also miss small streams. Either you need to use a service with the quality of data that you need, or, you need to obtain the data yourself and run it locally. From your edit, it sounds like you want to go the local data route, so I'll focus on a way to do that.
One method is to obtain a shapefile for either land areas or water areas. You can then generate a random point and determine if it intersects a land area (or alternatively, does not intersect a water area).
To get started, you might get some low resolution data here and then get higher resolution data here for when you want to get better answers on coast lines or with lakes/rivers/etc. You mentioned that you want precision in your points to 5 decimal places, which is a little over 1m. Do be aware that if you get data to match that precision, you will have one giant data set. And, if you want really good data, be prepared to pay for it.
Once you have your shape data, you need some tools to help you determine the intersection of your random points. Geotools is a great place to start and probably will work for your needs. You will also end up looking at opengis code (docs under geotools site - not sure if they consumed them or what) and JTS for the geometry handling. Using this you can quickly open the shapefile and start doing some intersection queries.
File f = new File ( "world.shp" );
ShapefileDataStore dataStore = new ShapefileDataStore ( f.toURI ().toURL () );
FeatureSource<SimpleFeatureType, SimpleFeature> featureSource =
dataStore.getFeatureSource ();
String geomAttrName = featureSource.getSchema ()
.getGeometryDescriptor ().getLocalName ();
ResourceInfo resourceInfo = featureSource.getInfo ();
CoordinateReferenceSystem crs = resourceInfo.getCRS ();
Hints hints = GeoTools.getDefaultHints ();
hints.put ( Hints.JTS_SRID, 4326 );
hints.put ( Hints.CRS, crs );
FilterFactory2 ff = CommonFactoryFinder.getFilterFactory2 ( hints );
GeometryFactory gf = JTSFactoryFinder.getGeometryFactory ( hints );
Coordinate land = new Coordinate ( -122.0087, 47.54650 );
Point pointLand = gf.createPoint ( land );
Coordinate water = new Coordinate ( 0, 0 );
Point pointWater = gf.createPoint ( water );
Intersects filter = ff.intersects ( ff.property ( geomAttrName ),
ff.literal ( pointLand ) );
FeatureCollection<SimpleFeatureType, SimpleFeature> features = featureSource
.getFeatures ( filter );
filter = ff.intersects ( ff.property ( geomAttrName ),
ff.literal ( pointWater ) );
features = featureSource.getFeatures ( filter );
Quick explanations:
This assumes the shapefile you got is polygon data. Intersection on lines or points isn't going to give you what you want.
First section opens the shapefile - nothing interesting
you have to fetch the geometry property name for the given file
coordinate system stuff - you specified lat/long in your post but GIS can be quite a bit more complicated. In general, the data I pointed you at is geographic, wgs84, and, that is what I setup here. However, if this is not the case for you then you need to be sure you are dealing with your data in the correct coordinate system. If that all sounds like gibberish, google around for a tutorial on GIS/coordinate systems/datum/ellipsoid.
generating the coordinate geometries and the filters are pretty self-explanatory. The resulting set of features will either be empty, meaning the coordinate is in the water if your data is land cover, or not empty, meaning the opposite.
Note: if you do this with a really random set of points, you are going to hit water pretty often and it could take you a while to get to 25k points. You may want to try to scope your point generation better than truly random (like remove big chunks of the Atlantic/Pacific/Indian oceans).
Also, you may find that your intersection queries are too slow. If so, you may want to look into creating a quadtree index (qix) with a tool like GDAL. I don't recall which index types are supported by geotools, though.
This has being asked a long time ago and I now have the similar need. There are two possibilities I am looking into:
1. Define the surface ranges for the random generator.
Here it's important to identify the level of precision you are going for. The easiest way would be to have a very relaxed and approximate approach. In this case you can divide the world map into "boxes":
Each box has it's own range of lat lon. Then you first randomise to get a random box, then you randomise to get a random lat and random long within the boundaries of that box.
Precisions is of course not the best at all here... Though it depends:) If you do your homework well and define a lot of boxes covering most complex surface shapes - you might be quite ok with the precision.
2. List item
Some API to return continent name from coordinates OR address OR country OR district = something that WATER doesn't have. Google Maps API's can help here. I didn't research this one deeper, but I think it's possible, though you will have to run the check on each generated pair of coordinates and rerun IF it's wrong. So you can get a bit stuck if random generator keeps throwing you in the ocean.
Also - some water does belong to countries, districts...so yeah, not very precise.
For my needs - I am going with "boxes" because I also want to control exact areas from which the random coordinates are taken and don't mind if it lands on a lake or river, just not open ocean:)
Download a truckload of KML files containing land-only locations.
Extract all coordinates from them this might help here.
Pick them at random.
Definitely you should have a map as a resource. You can take it here: http://www.naturalearthdata.com/
Then I would prepare 1bit black and white bitmap resource with 1s marking land and 0x marking water.
The size of bitmap depends on your required precision. If you need 5 degrees then your bitmap will be 360/5 x 180/5 = 72x36 pixels = 2592 bits.
Then I would load this bitmap in Java, generate random integer withing range above, read bit, and regenerate if it was zero.
P.S. Also you can dig here http://geotools.org/ for some ready made solutions.
To get a nice even distribution over latitudes and longitudes you should do something like this to get the right angles:
double longitude = Math.random() * Math.PI * 2;
double latitude = Math.acos(Math.random() * 2 - 1);
As for avoiding bodies of water, do you have the data for where water is already? Well, just resample until you get a hit! If you don't have this data already then it seems some other people have some better suggestions than I would for that...
Hope this helps, cheers.
There is another way to approach this using the Google Earth Api. I know it is javascript, but I thought it was a novel way to solve the problem.
Anyhow, I have put together a full working solution here - notice it works for rivers too: http://www.msa.mmu.ac.uk/~fraser/ge/coord/
The basic idea I have used is implement the hiTest method of the GEView object in the Google Earth Api.
Take a look at the following example of the hitest from Google.
http://earth-api-samples.googlecode.com/svn/trunk/examples/hittest.html
The hitTest method is supplied a random point on the screen in (pixel coordinates) for which it returns a GEHitTestResult object that contains information about the geographic location corresponding to the point. If one uses the GEPlugin.HIT_TEST_TERRAIN mode with the method one can limit results only to land (terrain) as long as we screen the results to points with an altitude > 1m
This is the function I use that implements the hitTest:
var hitTestTerrain = function()
{
var x = getRandomInt(0, 200); // same pixel size as the map3d div height
var y = getRandomInt(0, 200); // ditto for width
var result = ge.getView().hitTest(x, ge.UNITS_PIXELS, y, ge.UNITS_PIXELS, ge.HIT_TEST_TERRAIN);
var success = result && (result.getAltitude() > 1);
return { success: success, result: result };
};
Obviously you also want to have random results from anywhere on the globe (not just random points visible from a single viewpoint). To do this I move the earth view after each successful hitTestTerrain call. This is achieved using a small helper function.
var flyTo = function(lat, lng, rng)
{
lookAt.setLatitude(lat);
lookAt.setLongitude(lng);
lookAt.setRange(rng);
ge.getView().setAbstractView(lookAt);
};
Finally here is a stripped down version of the main code block that calls these two methods.
var getRandomLandCoordinates = function()
{
var test = hitTestTerrain();
if (test.success)
{
coords[coords.length] = { lat: test.result.getLatitude(), lng: test.result.getLongitude() };
}
if (coords.length <= number)
{
getRandomLandCoordinates();
}
else
{
displayResults();
}
};
So, the earth moves randomly to a postition
The other functions in there are just helpers to generate the random x,y and random lat,lng numbers, to output the results and also to toggle the controls etc.
I have tested the code quite a bit and the results are not 100% perfect, tweaking the altitude to something higher, like 50m solves this but obviously it is diminishing the area of possible selected coordinates.
Obviously you could adapt the idea to suit you needs. Maybe running the code multiple times to populate a database or something.
As a plan B, maybe you can pick a random country and then pick a random coordinate inside of this country. To be fair when picking a country, you can use its area as weight.
There is a library here and you can use its .random() method to get a random coordinate. Then you can use GeoNames WebServices to determine whether it is on land or not. They have a list of webservices and you'll just have to use the right one. GeoNames is free and reliable.
Go there http://wiki.openstreetmap.org/
Try to use API: http://wiki.openstreetmap.org/wiki/Databases_and_data_access_APIs
I guess you could use a world map, define a few points on it to delimit most of water bodies as you say and use a polygon.contains method to validate the coordinates.
A faster algorithm would be to use this map, take some random point and check the color beneath, if it's blue, then water... when you have the coordinates, you convert them to lat/long.
You might also do the blue green thing , and then store all the green points for later look up. This has the benifit of being "step wise" refinable. As you figure out a better way to make your list of points you can just point your random graber at a more and more acurate group of points.
Maybe a service provider has an answer to your question already: e.g. https://www.google.com/enterprise/marketplace/viewListing?productListingId=3030+17310026046429031496&pli=1
Elevation api? http://code.google.com/apis/maps/documentation/elevation/ above sea level or below? (no dutch points for you!)
Generating is easy, the Problem is that they should not be on water. I would import the "Open Streetmap" for example here http://ftp.ecki-netz.de/osm/ and import it to an Database (verry easy data Structure). I would suggest PostgreSQL, it comes with some geo functions http://www.postgresql.org/docs/8.2/static/functions-geometry.html . For that you have to save the points in a "polygon"-column, then you can check with the "&&" operator if it is in an Water polygon. For the attributes of an OpenStreetmap Way-Entry you should have a look at http://wiki.openstreetmap.org/wiki/Category:En:Keys
Supplementary to what bsimic said about digging into GeoNames' Webservices, here is a shortcut:
they have a dedicated WebService for requesting an ocean name.
(I am aware the of OP's constraint to not using public web services due to the amount of requests. Nevertheless I stumbled upon this with the same basic question and consider this helpful.)
Go to http://www.geonames.org/export/web-services.html#astergdem and have a look at "Ocean / reverse geocoding". It is available as XML and JSON. Create a free user account to prevent daily limits on the demo account.
Request example on ocean area (Baltic Sea, JSON-URL):
http://api.geonames.org/oceanJSON?lat=54.049889&lng=10.851388&username=demo
results in
{
"ocean": {
"distance": "0",
"name": "Baltic Sea"
}
}
while some coordinates on land result in
{
"status": {
"message": "we are afraid we could not find an ocean for latitude and longitude :53.0,9.0",
"value": 15
}
}
Do the random points have to be uniformly distributed all over the world? If you could settle for a seemingly uniform distribution, you can do this:
Open your favorite map service, draw a rectangle inside the United States, Russia, China, Western Europe and definitely the northern part of Africa - making sure there are no big lakes or Caspian seas inside the rectangles. Take the corner coordinates of each rectangle, and then select coordinates at random inside those rectangles.
You are guaranteed non of these points will be on any sea or lake. You might find an occasional river, but I'm not sure how many geoservices are going to be accurate enough for that anyway.
This is an extremely interesting question, from both a theoretical and practical perspective. The most suitable solution will largely depend on your exact requirements. Do you need to account for every body of water, or just the major seas and oceans? How critical are accuracy and correctness; Will identifying sea as land or vice-versa be a catastrophic failure?
I think machine learning techniques would be an excellent solution to this problem, provided that you don't mind the (hopefully small) probability that a point of water is incorrectly classified as land. If that's not an issue, then this approach should have a number of advantages against other techniques.
Using a bitmap is a nice solution, simple and elegant. It can be produced to a specified accuracy and the classification is guaranteed to be correct (Or a least as correct as you made the bitmap). But its practicality is dependent on how accurate you need the solution to be. You mention that you want the coordinate accuracy to 5 decimal places (which would be equivalent to mapping the whole surface of the planet to about the nearest metre). Using 1 bit per element, the bitmap would weigh in at ~73.6 terabytes!
We don't need to store all of this data though; We only need to know where the coastlines are. Just by knowing where a point is in relation to the coast, we can determine whether it is on land or sea. As a rough estimate, the CIA world factbook reports that there are 22498km of coastline on Earth. If we were to store coordiates for every metre of coastline, using a 32 bit word for each latitude and longitude, this would take less than 1.35GB to store. It's still a lot if this is for a trivial application, but a few orders of magnitude less than using a bitmap. If having such a high degree of accuracy isn't neccessary though, these numbers would drop considerably. Reducing the mapping to only the nearest kilometre would make the bitmap just ~75GB and the coordinates for the world's coastline could fit on a floppy disk.
What I propose is to use a clustering algorithm to decide whether a point is on land or not. We would first need a suitably large number of coordinates that we already know to be on either land or sea. Existing GIS databases would be suitable for this. Then we can analyse the points to determine clusters of land and sea. The decision boundary between the clusters should fall on the coastlines, and all points not determining the decision boundary can be removed. This process can be iterated to give a progressively more accurate boundary.
Only the points determining the decision boundary/the coastline need to be stored, and by using a simple distance metric we can quickly and easily decide if a set of coordinates are on land or sea. A large amount of resources would be required to train the system, but once complete the classifier would require very little space or time.
Assuming Atlantis isn't in the database, you could randomly select cities. This also provides a more realistic distribution of points if you intend to mimic human activity:
https://simplemaps.com/data/world-cities
There's only 7,300 cities in the free version.
I have written a kernel density estimator in Java that takes input in the form of ESRI shapefiles and outputs a GeoTIFF image of the estimated surface. To test this module I need an example shapefile, and for whatever reason I have been told to retrieve one from the sample data included in R. Problem is that none of the sample data is a shapefile...
So I'm trying to use the shapefiles package's funciton convert.to.shapefile(4) to convert the bei dataset included in the spatstat package in R to a shapefile. Unfortunately this is proving to be harder than I thought. Does anyone have any experience in doing this? If you'd be so kind as to lend me a hand here I'd greatly appreciate it.
Thanks,
Ryan
References:
spatstat,
shapefiles
There are converter functions for Spatial objects in the spatstat and maptools packages that can be used for this. A shapefile consists of at least points (or lines or polygons) and attributes for each object.
library(spatstat)
library(sp)
library(maptools)
data(bei)
Coerce bei to a Spatial object, here just points without attributes since there are no "marks" on the ppp object.
spPoints <- as(bei, "SpatialPoints")
A shapefile requires at least one column of attribute data, so create a dummy.
dummyData <- data.frame(dummy = rep(0, npoints(bei)))
Using the SpatialPoints object and the dummy data, generate a SpatialPointsDataFrame.
spDF <- SpatialPointsDataFrame(spPoints, dummyData)
At this point you should definitely consider what the coordinate system used by bei is and whether you can represent that with a WKT CRS (well-known text coordinate reference system). You can assign that to the Spatial object as another argument to SpatialPointsDataFrame, or after create with proj4string(spDF) <- CRS("+proj=etc...") (but this is an entire problem all on its own that we could write pages on).
Load the rgdal package (this is the most general option as it supports many formats and uses the GDAL library, but may not be available because of system dependencies.
library(rgdal)
(Use writePolyShape in the maptools package if rgdal is not available).
The syntax is the object, then the "data source name" (here the current directory, this can be a full path to a .shp, or a folder), then the layer (for shapefiles the file name without the extension), and then the name of the output driver.
writeOGR(obj = spDF, dsn = ".", layer = "bei", driver = "ESRI Shapefile")
Note that the write would fail if the "bei.shp" already existed and so would have to be deleted first unlink("bei.shp").
List any files that start with "bei":
list.files(pattern = "^bei")
[1] "bei.dbf" "bei.shp" "bei.shx"
Note that there is no general "as.Spatial" converter for ppp objects, since decisions must be made as to whether this is a point patter with marks and so on - it might be interesting to try writing one, that reports on whether dummy data was required and so on.
See the following vignettes for further information and details on the differences between these data representations:
library(sp); vignette("sp")
library(spatstat); vignette("spatstat")
A general solution is:
convert the "ppp" or "owin" classed objects to appropriate classed objects from the sp package
use the writeOGR() function from package rgdal to write the Shapefile out
For example, if we consider the hamster data set from spatstat:
require(spatstat)
require(maptools)
require(sp)
require(rgdal)
data(hamster)
first convert this object to a SpatialPointsDataFrame object:
ham.sp <- as.SpatialPointsDataFrame.ppp(hamster)
This gives us a sp object to work from:
> str(ham.sp, max = 2)
Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
..# data :'data.frame': 303 obs. of 1 variable:
..# coords.nrs : num(0)
..# coords : num [1:303, 1:2] 6 10.8 25.8 26.8 32.5 ...
.. ..- attr(*, "dimnames")=List of 2
..# bbox : num [1:2, 1:2] 0 0 250 250
.. ..- attr(*, "dimnames")=List of 2
..# proj4string:Formal class 'CRS' [package "sp"] with 1 slots
This object has a single variable in the #data slot:
> head(ham.sp#data)
marks
1 dividing
2 dividing
3 dividing
4 dividing
5 dividing
6 dividing
So say we now want to write out this variable as an ESRI Shapefile, we use writeOGR()
writeOGR(ham.sp, "hamster", "marks", driver = "ESRI Shapefile")
This will create several marks.xxx files in directory hamster created in the current working directory. That set of files is the ShapeFile.
One of the reasons why I didn't do the above with the bei data set is that it doesn't contain any data and thus we can't coerce it to a SpatialPointsDataFrame object. There are data we could use, in bei.extra (loaded at same time as bei), but these extra data or on a regular grid. So we'd have to
convert bei.extra to a SpatialGridDataFrame object (say bei.spg)
convert bei to a SpatialPoints object (say bei.sp)
overlay() the bei.sp points on to the bei.spg grid, yielding values from the grid for each of the points in bei
that should give us a SpatialPointsDataFrame that can be written out using writeOGR() as above
As you see, that is a bit more involved just to give you a Shapefile. Will the hamster data example I show suffice? If not, I can hunt out my Bivand et al tomorrow and run through the steps for bei.
I have a bunch of data coming in (calls to an automated callcenter) about whether or not a person buys a particular product, 1 for buy, 0 for not buy.
I want to use this data to create an estimated probability that a person will buy a particular product, but the problem is that I may need to do it with relatively little historical data about how many people bought/didn't buy that product.
A friend recommended that with Bayesian probability you can "help" your probability estimate by coming up with a "prior probability distribution", essentially this is information about what you expect to see, prior to taking into account the actual data.
So what I'd like to do is create a method that has something like this signature (Java):
double estimateProbability(double[] priorProbabilities, int buyCount, int noBuyCount);
priorProbabilities is an array of probabilities I've seen for previous products, which this method would use to create a prior distribution for this probability. buyCount and noBuyCount are the actual data specific to this product, from which I want to estimate the probability of the user buying, given the data and the prior. This is returned from the method as a double.
I don't need a mathematically perfect solution, just something that will do better than a uniform or flat prior (ie. probability = buyCount / (buyCount+noBuyCount)). Since I'm far more familiar with source code than mathematical notation, I'd appreciate it if people could use code in their explanation.
Here's the Bayesian computation and one example/test:
def estimateProbability(priorProbs, buyCount, noBuyCount):
# first, estimate the prob that the actual buy/nobuy counts would be observed
# given each of the priors (times a constant that's the same in each case and
# not worth the effort of computing;-)`
condProbs = [p**buyCount * (1.0-p)**noBuyCount for p in priorProbs]
# the normalization factor for the above-mentioned neglected constant
# can most easily be computed just once
normalize = 1.0 / sum(condProbs)
# so here's the probability for each of the prior (starting from a uniform
# metaprior)
priorMeta = [normalize * cp for cp in condProbs]
# so the result is the sum of prior probs weighed by prior metaprobs
return sum(pm * pp for pm, pp in zip(priorMeta, priorProbs))
def example(numProspects=4):
# the a priori prob of buying was either 0.3 or 0.7, how does it change
# depending on how 4 prospects bought or didn't?
for bought in range(0, numProspects+1):
result = estimateProbability([0.3, 0.7], bought, numProspects-bought)
print 'b=%d, p=%.2f' % (bought, result)
example()
output is:
b=0, p=0.31
b=1, p=0.36
b=2, p=0.50
b=3, p=0.64
b=4, p=0.69
which agrees with my by-hand computation for this simple case. Note that the probability of buying, by definition, will always be between the lowest and the highest among the set of priori probabilities; if that's not what you want you might want to introduce a little fudge by introducing two "pseudo-products", one that nobody will ever buy (p=0.0), one that anybody will always buy (p=1.0) -- this gives more weight to actual observations, scarce as they may be, and less to statistics about past products. If we do that here, we get:
b=0, p=0.06
b=1, p=0.36
b=2, p=0.50
b=3, p=0.64
b=4, p=0.94
Intermediate levels of fudging (to account for the unlikely but not impossible chance that this new product may be worse than any one ever previously sold, or better than any of them) can easily be envisioned (give lower weight to the artificial 0.0 and 1.0 probabilities, by adding a vector priorWeights to estimateProbability's arguments).
This kind of thing is a substantial part of what I do all day, now that I work developing applications in Business Intelligence, but I just can't get enough of it...!-)
A really simple way of doing this without any difficult math is to increase buyCount and noBuyCount artificially by adding virtual customers that either bought or didn't buy the product. You can tune how much you believe in each particular prior probability in terms of how many virtual customers you think it is worth.
In pseudocode:
def estimateProbability(priorProbs, buyCount, noBuyCount, faithInPrior=None):
if faithInPrior is None: faithInPrior = [10 for x in buyCount]
adjustedBuyCount = [b + p*f for b,p,f in
zip(buyCount, priorProbs, faithInPrior]
adjustedNoBuyCount = [n + (1-p)*f for n,p,f in
zip(noBuyCount, priorProbs, faithInPrior]
return [b/(b+n) for b,n in zip(adjustedBuyCount, adjustedNoBuyCount]
Sounds like what you're trying to do is Association Rule Learning. I don't have time right now to provide you with any code, but I will point you in the direction of WEKA which is a fantastic open source data mining toolkit for Java. You should find plenty of interesting things there that will help you solve your problem.
As I see it, the best you could do is use the uniform distribution, unless you have some clue regarding the distribution. Or are you talking about making a relationship between this products and products previously bought by the same person in the Amazon Fashion "people who buy this product also buy..." ??