I'm trying to write a function that gets a MxN size board, with a column and a row where a queen is placed. and then I'm suppose to see whether that queen is under threat or not.
normally I would take that row and check it for any other queens, same for the column and the diagonal using for loops.
however there's a slight change here, there are also walls on the board which could keep the queens safe even if there's another one in the same row :
* * Q X * Q
* * X * * *
* Q X X Q *
Q * X Q Q *
where Q is a queen, X is a wall , and * is an empty tile.
the Queen in the 0,2 position is not threatened even though there's another one in that row.
also the entire board is saved in a 2d array, where queens are given the int value of 1, walls are -1, and blanks are 0.
My idea was to go over the entire row and if there's a queen somewhere then I should look for a wall with another for loop from that position up to the queen I'm looking at . however there's also a second part to it after my queen.
I tried thinking about summing but that didn't quite work either..
anybody have any ideas of how to implement this?
(if threatened return true; if not threatened return false;)
edit: this is my code
`public static boolean isQueenThreatened(int[][] board, int row, int col){
boolean safe=true;
for(int j = 0; j < col & safe ; j++){
if(board[row][j]==1) {
for (int i = j+1 ; i<col ; i++ ) {
if(board[row][i]!=-1) safe = false;
}
}
}
for(int j = col+1; j < board[row].length & safe ; j++){
if(board[row][j]==1) {
for (int i = j+1 ; i<board[row].length ; i++ ) {
if(board[row][i]!=-1) safe = false;
}
}
}
return safe;
}`
So the function gets a location for the queen (assume it's valid) , then I wanna go over that row up until my queen and after it and see if there are other queens, if there are I wanna check if there are any walls between them to keep my queen safe , obviously mine doesn't work because it will give false if there's anything but a wall between them, and it's enough that there's just one wall , it doesn't have to be all walls.
* Q * * X Q' * X Q
I've denoted my queen with a ', my code would return false for that example even though it should be true.. and then I have to do the same for the diagonal and the column.. this is where I need help.
This is a perfect opportunity for working with Iterators.
static class Board {
private final int width;
private final int height;
private final int[][] board;
private static final int EMPTY = 0;
private static final int WALL = -1;
private static final int QUEEN = 1;
public Board(int width, int height) {
this.width = width;
this.height = height;
board = new int[height][width];
}
public Board(String[] setup) {
this(setup[0].length(), setup.length);
for (int y = 0; y < setup.length; y++) {
for (int x = 0; x < setup[y].length(); x++) {
switch (setup[y].charAt(x)) {
case '*':
board[y][x] = EMPTY;
break;
case 'X':
board[y][x] = WALL;
break;
case 'Q':
board[y][x] = QUEEN;
break;
}
}
}
}
public Iterator<Integer> walk(int xStart, int yStart, int dx, int dy) {
return new Iterator<Integer>() {
int x = xStart;
int y = yStart;
#Override
public boolean hasNext() {
return x + dx < width && y + dy < height
&& x + dx >= 0 && y + dy >= 0;
}
#Override
public Integer next() {
return board[y += dy][x += dx];
}
};
}
public int get(int x, int y) {
return board[y][x];
}
}
enum Direction {
NORTH(0, -1),
NORTH_WEST(1, -1),
WEST(1, 0),
SOUTH_WEST(1, 1),
SOUTH(0, 1),
SOUTH_EAST(-1, 1),
EAST(-1, 0),
NORTH_EAST(-1, -1),
;
private final int dx;
private final int dy;
Direction(int dx, int dy) {
this.dx = dx;
this.dy = dy;
}
}
public static boolean isQueenThreatened(Board board, int row, int col) {
for (Direction direction : Direction.values()) {
walk: for (Iterator<Integer> attack = board.walk(col, row, direction.dx, direction.dy); attack.hasNext(); ) {
switch (attack.next()) {
case Board.QUEEN:
return true;
case Board.WALL:
break walk;
}
}
}
return false;
}
private void test() {
String[] test = new String[]{
"**QX*Q",
"**X***",
"*QXXQ*",
"Q*XQQ*"
};
Board board = new Board(test);
for (int y = 0; y < board.height; y++) {
for (int x = 0; x < board.width; x++) {
if (board.get(x, y) == Board.QUEEN) {
System.out.println("Queen at position (" + x + "," + y + ") is " + (isQueenThreatened(board, y, x) ? "" : "NOT") + " threatened");
}
}
}
}
By the way - your queen at (0,2) IS threatened by the queen at (2,4).
For a given queen position, you need to iterate over the row, the column, and each diagonal. In each direction, you can follow the same rules:
If you hit another queen, you are threatened, return true.
If you hit a wall, you are safe in that direction, move on to the next check.
If you hit the edge of the board, you are safe in that direction, move on to the next check.
public static boolean isQueenThreatened(int[][] board, int row, int col) {
// Go over the row, to the left:
for (int i = col - 1; i >= 0; --i) {
int val = board[row][i];
if (val == 1) {
return true;
}
if (val == -1) {
break;
}
}
// Same logic for:
// - Going over the row to the right
// - Going over the column to the top
// - Going over the column to the bottom
// - Going over the top left diagonal
// - Going over the top right diagonal
// - Going over the bottom left diagonal
// - Going over the bottom right diagonal
// If you reached here, it means that no early return was performed,
// and the queen is safe
return false;
}
EDIT:
To answer the requirement in in the comments, you could add extra booleans for finding a threat of hitting a wall, but TBH, I think the code would look considerably worse:
public static boolean isQueenThreatened(int[][] board, int row, int col) {
boolean threat = false;
// Go over the row, to the left:
boolean wall = false;
for (int i = col - 1; i >= 0 && !threat && !wall; --i) {
int val = board[row][i];
if (val == 1) {
threat = true;
}
if (val == -1) {
wall = true;
}
}
// Go over the row, to the right.
// Reset the wall variable, as you haven't detected a wall in this direction yet
// The threat potentially found in the previous loop is still present
// so if it still exists, the loop will be skipped
boolean wall = false;
for (int i = col + 1; i < board[row].length && !threat && !wall; ++i) {
int val = board[row][i];
if (val == 1) {
threat = true;
}
if (val == -1) {
wall = true;
}
}
// Same logic for:
// - Going over the column to the top
// - Going over the column to the bottom
// - Going over the top left diagonal
// - Going over the top right diagonal
// - Going over the bottom left diagonal
// - Going over the bottom right diagonal
// If you reached here, it means that no early return was performed,
// and the queen is safe
return threat;
}
Related
I have this program called knight tour where the knight moves around a chess board. I have been trying to figure out how to make the knight move randomly, instead of following a pattern.
I would like to know how to randomly move the knight.
Here's my code:
package assignment3;
import java.util.Random;
/*
* knows its current position (row and column)
* knows the eight types of moves it can make
* can tell you it’s current row and column
* can determine whether a move of a given type is legal or not
* can move
*/
public class Knight {
private int boardSize = 8;
private int[] rowMoves = {-1, -2, -2, -1, 1, 2, 2, 1};
private int[] colMoves = {2, 1, -1, -2, -2, -1, 1, 2};
public Knight() {
//ignore this constructor
}
public void InitializeBoard() {
//initialize board
for (int i = 0; i < boardSize; i++)
Arrays.fill(chessboard2[i], Integer.MIN_VALUE); //setting array to negative value
}
/**
* calls method canMove to check if knight can move
* moves knight
*/
public boolean move(int moveNum, int x, int y, int[][] chessboard2) {
Random rand = new Random();
//if moveNum == 64 all squares have been visited
if (moveNum == 64) {
System.out.println("\ntrue board is 64\n");
return true;
}
//int nextRow = rand.nextInt(boardSize);
//int nextCol = rand.nextInt(boardSize);
//for loop to try 8 possibe moves
for (int i = 0; i < rowMoves.length; i++) {
int nextRow = x + rowMoves[i];
int nextCol = y + colMoves[i];
//check if postion is valid and not visited yet
if (canMove(nextRow, nextCol) && chessboard2[nextRow][nextCol] == Integer.MIN_VALUE) {
//if move is valid knight moves
chessboard2[nextRow][nextCol] = moveNum + 1;
//make next move
if(move(moveNum + 1, nextRow, nextCol, chessboard2))
return true;
//move(moveNum + 1, nextRow, nextCol);
//if cant find next move: backtrack
chessboard2[nextRow][nextCol] = Integer.MIN_VALUE;
}
}
return false;
}
/**
* calls method moveLegal from class Chessboard to see if move is legal
* #return true if move is legal, else return false
*/
public boolean canMove(int x, int y) {
//if statement to check if currentRow and currentCol is whithin
//boundaries
return(x >= 0 && x < boardSize && y >= 0 && y < boardSize);
}
public void print() {
for (int i = 0; i < boardSize; i++)
System.out.println(String.join(" ", chessboard2[i]));
}
public void solve() {
//setting array location [0][0] to 0
chessboard2[0][0] = 1;
//check move
if (move(1, 0, 0)) // if true, it will print chess board
print();
else //if false, there is no solution
System.out.print("no solution");
}
}
public class TesterMain {
/**
* #param args the command line arguments
*/
public static void main(String[] args) {
Knight test = new Knight();
test.solve();
}
}
Sorry if my code is a bit messy, I am still working on the program.
There is a solution but it would require some refactoring:
Create a ChessMove class that stores a row and a column move (integers)
Add a ChessMove[] to store all possible moves that your knight can possibly do
Refactor the move method:
Create an ArrayList<ChessMove> that stores all possible moves that your knight can do in its current position
Randomly select a move in this list using rand.nextInt(possibleMoves.size());
Here is the complete code:
package assignment3;
import java.lang.*;
import java.util.*;
public class Knight {
private int boardSize = 8;
private int[][] chessboard2 = new int[boardSize][boardSize];
private final ChessMove[] moves = {
new ChessMove(-1, 2),
new ChessMove(-2, 1),
new ChessMove(-2, -1),
new ChessMove(-1, -2),
new ChessMove(1, -2),
new ChessMove(2, -1),
new ChessMove(2, 1),
new ChessMove(1, 2)
};
public Knight() {
initializeBoard();
}
public void initializeBoard() {
for (int i = 0; i < boardSize; i++)
Arrays.fill(chessboard2[i], Integer.MIN_VALUE); //setting array to negative value
}
public boolean move(int moveNum, int x, int y) {
//if moveNum == 64 all squares have been visited
if (moveNum == 64) {
System.out.println("\ntrue board is 64\n");
return true;
}
ArrayList<ChessMove> possibleMoves = new ArrayList<ChessMove>();
for (ChessMove move : moves) {
int nextRow = x + move.row;
int nextCol = y + move.col;
//check if postion is valid and not visited yet
if (canMove(nextRow, nextCol) && chessboard2[nextRow][nextCol] == Integer.MIN_VALUE)
possibleMoves.add(move);
}
if (!possibleMoves.isEmpty()) {
Random rand = new Random();
// Move choice is done here
ChessMove chosenMove = possibleMoves.get(rand.nextInt(possibleMoves.size()));
int nextRow = x + chosenMove.row;
int nextCol = y + chosenMove.col;
//if move is valid knight moves
chessboard2[nextRow][nextCol] = moveNum + 1;
//make next move
move(moveNum + 1, nextRow, nextCol);
return true;
} else
return false;
}
public boolean canMove(int x, int y) {
return (x >= 0 && x < boardSize && y >= 0 && y < boardSize);
}
public void print() {
for (int i = 0; i < boardSize; i++) {
for (int cell : chessboard2[i])
if (cell == Integer.MIN_VALUE)
System.out.print("*** ");
else
System.out.print(String.format("%3d", cell) + " ");
System.out.println();
}
}
public void solve() {
chessboard2[0][0] = 1;
if (move(1, 0, 0)) // if true, it will print chess board
print();
else //if false, there is no solution
System.out.print("no solution");
}
class ChessMove {
int row = 0, col = 0;
ChessMove(int r, int c) {
this.row = r;
this.col = c;
}
}
}
public class TesterMain {
public static void main(String[] args) {
Knight test = new Knight();
test.solve();
}
}
The easiest way to randomise your move is to create a list of valid moves for a given position of the knight and then select one at random. List and Random APIs go hand in hand:
//List<Integer> moves = ...
int move = moves.get(new Random().nextInt(moves.size()));
Restructuring your move method to something like this should do the job:
public boolean move(int moveNum, int x, int y, int [][] chessboard2) {
// 1. List all valid moves
List<Integer> validMoves = new ArrayList<Integer>();
//for loop to try 8 possibe moves
for(int i = 0; i < rowMoves.length; i++) {
if (
canMove(x + rowMoves[i], y + colMoves[i])
&& chessboard2[x + rowMoves[i]][y + colMoves[i]] == Integer.MIN_VALUE
) {
validMoves.add(i);
}
}
// 2. Try to make the move if any available
if (validMoves.isEmpty()) {
return false;
}
Random rand = new Random();
int move = validMoves.get(rand.nextInt(validMoves.size()));
int nextRow = x + rowMoves[move];
int nextCol = y + colMoves[move]:
chessboard2[nextRow][nextCol] = moveNumb + 1;
return move(moveNum + 1, nextRow, nextCol, chessboard2);
}
You can use an enum, let's call it Move, to represent every single move, and then make a list of these moves using Move.values().
Then you can shuffle the list with Collections.shuffle every time you want to move and take the first legal move.
I am working a problem that seems to be somewhat famous among beginning programmers, the 8 queens puzzle. I have seen several solutions to this problems using 2D arrays, recursion etc, but this problem is an assignment given in CS course book chapter introducing 1D arrays, so the available techniques to solve this problem are limited.
The procedure I have used, is by first creating a 1D array with the size of 64, which makes possible positions to place queens from index 0 to 63. A random position index is then generated, and a test is preformed to check if there is any queens attacking this position. If this position is not attacked by any queens, a queen is placed by setting the board[position] = true. When a queen is placed, the queenCount is incremented, and this process repeats until 8 queens have been placed.
If queens are placed in such a way that it is impossible to place 8, the board resets after 1 millisecond by preforming a timecheck, and retries to place the 8 queens. At the best I am able to place 7 queens, but the last remaining one is never placed. Each attempt is printed, along with queenCount for this attempt. Is it possible to use this approach, or is it a dead end?
Code example below:
package ch7;
public class Chapter_07_E22_EightQueens64bool {
public static void main(String[] args) {
int queenCount = 0;
int attemptCount = 0;
boolean[] board = new boolean[8 * 8];
final long TIME_LIMIT = 1; //Milliseconds
long startTime = System.currentTimeMillis();
while (queenCount < 8) {
int position = placeQueen(board.length);
if(checkPosition(position, board) && !board[position]) {
board[position] = true;
queenCount++;
}
long timeCheck = System.currentTimeMillis();
if (timeCheck - startTime > TIME_LIMIT) {
clearBoard(board);
queenCount = 0;
startTime = System.currentTimeMillis();
}
System.out.println("Attempt #" + ++attemptCount);
System.out.println(queenCount + " queens placed.");
printBoard(board);
}
}
public static void printBoard(boolean[] board) {
for (int i = 0; i < board.length; i++) {
if (board[i])
System.out.print("|Q");
else
System.out.print("| ");
if ((i + 1) % 8 == 0)
System.out.println("|");
}
}
public static int placeQueen(int boardSize) {
return (int)(Math.random() * boardSize);
}
public static boolean[] clearBoard(boolean[] board) {
for (int i = 0; i < board.length; i++)
board[i] = false;
return board;
}
public static boolean checkPosition(int position, boolean[] board) {
return checkTop(position, board) && checkBottom(position, board) && checkLeft(position, board) &&
checkRight(position, board) && checkTopLeft(position, board) && checkTopRight(position, board) &&
checkBottomLeft(position, board) && checkBottomRight(position, board);
}
public static boolean checkTop(int position, boolean[] board) {
// Checks each field above the current position while i >= 8
for (int i = position; i >= 8; i -= 8) {
if (board[i - 8])
return false;
}
return true;
}
public static boolean checkBottom(int position, boolean[] board) {
// Checks each field below the current position while i <= 55;
for (int i = position; i <= 55; i += 8) {
if (board[i + 8])
return false;
}
return true;
}
public static boolean checkRight(int position, boolean[] board) {
// Checks each field to the right of the current position while i % 8 < 7
for (int i = position; i % 8 < 7; i += 1) {
if (board[i + 1])
return false;
}
return true;
}
public static boolean checkLeft(int position, boolean[] board) {
// Checks each field to the left of the current position while i % 8 != 0
for (int i = position; i % 8 != 0; i -= 1) {
if (board[i - 1])
return false;
}
return true;
}
public static boolean checkTopLeft(int position, boolean[] board) {
// Checks each field top left of the current position while i >= 9
for (int i = position; i >= 9; i -= 9) {
if (board[i - 9])
return false;
}
return true;
}
public static boolean checkTopRight(int position, boolean[] board) {
// Checks each field top right of the current position while i >= 7
for (int i = position; i >= 7; i -= 7) {
if (board[i - 7])
return false;
}
return true;
}
public static boolean checkBottomRight(int position, boolean[] board) {
// Checks each field below the current position while i <= 54
for (int i = position; i <= 54; i += 9) {
if (board[i + 9])
return false;
}
return true;
}
public static boolean checkBottomLeft(int position, boolean[] board) {
// Checks each field below the current position while i <= 56
for (int i = position; i <= 56; i += 7) {
if (board[i + 7])
return false;
}
return true;
}
}
First, array of size 8 is perfectly sufficient.
The array index represents the column in which was the queen placed and the value represents the row.
[0, 2, 4, 6, 1, 3, 5, 7]
Means that queen in the first column was placed in the first row, second queen was placed in the 3rd row, 3rd queen in 5th row, etc...
So when you place a new queen, check if the row you add it in, isn't already in the array. This way, you only need to worry about diagonal collisions.
Simplest way of solving the problem is recursion (backtracking). If that is not allowed, you can simulate recursion with a stack. If that is not allowed either, you could use 8 nested loops - ugly.
You can improve your collision checking using a simple trick. It works like this -
Let's say your queen #0 is on row #3.
Which cells does she attack diagonally?
On the first column, it's row #2 and row #4 (-1 and +1)
On the second column, it's row #1 and row #5 (-2 and +2)
On the third column it's row #0 and row #6 (-3 and +3)
So when you add a new queen, you iterate previous queens checking one diagonal with (newIndex - oldIndex) + oldRow == newRow and the other diagonal with (newIndex - oldIndex) - oldRow == newRow
So, considering all this, the checking function could look like
boolean canAdd(List<Integer> p, int newRow) {
if (p.contains(newRow))
return false;
int insertIndex = p.size();
for (int i = 0; i < p.size(); i++) {
if (p.get(i) + (insertIndex - i) == newRow || p.get(i) - (insertIndex - i) == newRow)
return false;
}
return true;
}
While the main recursive function could look like
void solve(List<Integer> p, int index) {
if (index == 8) {
System.out.println(p);
return;
}
for (int i = 0; i < 8; i++) {
if (canAdd(p, i)) {
p.add(i);
solve(p, index + 1);
p.remove(p.size() - 1);
}
}
}
And you could call it like this
solve(new ArrayList<Integer>(), 0);
After working on this problem for a few days, I now have a solution that works that in a reasonable amount of time for N <= 20. It goes like this.
For i < N, initialize queens[i] = i. Each row can only hold 1 value, so no need to check for collisions on the left or right. As long as there is no duplicate values in the array, there will not be any column collisions either.
Use the method to check if a queen at a given point, shares a diagonal with a queen at another given point. The method checks to see if the distance between x1 and x0 is equal to the distance of y1 and y0. If the distance is equal, then the co-ordinates (x0,y0) and (x1,y1) share the same diagonal.
Use another method to invoke shareDiagonal(int x0, int y0, int x1, int y1) to check if a queen at a given row, for example on row 7, collides with a queen on any rows above row 7. As mentioned, only the rows above the given row are checked. The reason is that if you for example are checking row2 for any diagonal collisions, any collision with rows below row 2 will be revealed when checking a row with a higher index value. If a queen on row 2 collides with a queen on row 4, this will be revealed when checking row 4 and the rows above.
A third checking method invokes checkRowForCollision(int[] queens, int row), where each row is traversed checking for collisions on the rows above. Row 1 is checked if there is any collisions with queens on row 0, Row 2 is checked if there is any collisions on row 0 and 1, row 3 is checked if there is any collisions on row 0, 1 and 2, etc..
While there is diagonal collisions between any of the queens, the board shuffles until it shows a solution where no queens attack each other.
Code example below:
package ch7;
public class Chapter_07_E22_EightQueens {
static final int N = 8;
public static void main(String[] args) {
int[] queens = new int[N];
int attempts = 0;
for (int i = 0; i < N; i++)
queens[i] = i;
while (checkBoardForCollision(queens)) {
shuffleBoard(queens);
attempts++;
}
printBoard(queens);
System.out.println("Solution found in " + attempts + " attempts");
}
public static void printBoard(int[] queens) {
for (int row = 0; row < N; row++) {
System.out.printf("%-1c", '|');
for (int column = 0; column < N; column++) {
System.out.printf("%-1c|", (queens[row] == column) ? 'Q' : ' ');
}
System.out.println();
}
}
public static boolean shareDiagonal(int x0, int y0, int x1, int y1) {
int dy = Math.abs(y1 - y0);
int dx = Math.abs(x1 - x0);
return dx == dy;
}
public static boolean checkRowForCollision(int[] queens, int row) {
for (int i = 0; i < row; i++) {
if (shareDiagonal(i, queens[i], row, queens[row]))
return true;
}
return false;
}
public static boolean checkBoardForCollision(int[] queens) {
for (int row = 0; row < queens.length; row++)
if (checkRowForCollision(queens, row))
return true;
return false;
}
public static int[] shuffleBoard(int[] queens) {
for (int i = queens.length - 1; i > 0; i--) {
int j = (int)(Math.random() * (i + 1));
int temp = queens[i];
queens[i] = queens[j];
queens[j] = temp;
}
return queens;
}
}
One of the problems, there may be more though, is in the checkTop method.
public static boolean checkTop(int position, boolean[] board)
{
// Checks each field above the current position while i - 8 > - 1
for (int i = position; i > (i - 8); i -= 8)
{
if ((i - 8) > -1)
{
if (board[i - 8])
return false;
}
}
return true;
}
There are cases when the method doesn't find a slot (board[i - 8] = true) and i reaches the value of 7. After this point, the condition of the for loop (i > (i - 8)) will always be true and the condition of the outermost if inside the loop (if ( (i - 8) > -1) will always be false. This causes the program to infinitely stay in the loop.
Example (i reaches -5):
i = -5;
i > ( i - 8) : -5 > (-5 -8 = -13) (always true)
(i - 8) > -1 : -13 > -1 (false) always false for i <= 7
Ok so I've been following this tutorial on Connect4 in java and I've tried to modify it to fit what I already had and to fit into libgdx. After implementing it, i have a few odd problems.
Problem 1: After i make the first move, the computer fills the entire bottom row with his chips and then makes his first move.
Problem 2: The computer isn't displaying any A.I. and simply starts at the first column and first row available and places a chip there. The computer will keep following this pattern.
Problem 3: My winning checker no longer realizes if I have won the game but does realize when the computer has won. When I first designed the game I started by having the computer place chips at random (for testing) and my winning checker worked for the computer and for myself.
The article I followed was here: Connect4 in Java
Here is my code.
ConnectFour.java
package com.comp452.tme31;
import com.badlogic.gdx.ApplicationAdapter;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.Input;
import com.badlogic.gdx.InputProcessor;
import com.badlogic.gdx.graphics.Color;
import com.badlogic.gdx.graphics.GL20;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.BitmapFont;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
public class ConnectFour extends ApplicationAdapter implements InputProcessor {
// Create final ints for number of columns and rows in game.
protected final static int COLUMNS = 7;
protected final static int ROWS = 6;
protected final static int TILESIZE = 64;
// Create boolean to determine if player can take a turn.
protected boolean playersTurn = true;
// Create boolean for gameover.
protected boolean gameOver = false;
// Create boolean for winners.
private boolean winner = false;
// Sprite batch for texture drawing.
SpriteBatch batch;
// Create textures to represent board and player pieces.
Texture drawingTile, empty, player, computer;
// Create 2D array to hold game board.
private final static int[][] gameBoard = new int[COLUMNS][ROWS];
public static int[][] getGameBoard() {
return gameBoard;
}
// Create variables to display status message.
BitmapFont mainStatusDisplay;
public static String mainStatusString;
public static String winningString;
// Create and set max depth for tree search
private final int MAX_DEPTH = 4;
// Create win, loss and nothing for zero sum game.
private final float WIN = 1f;
private final float LOSE = -1f;
private final float TIE = 0f;
#Override
public void create () {
batch = new SpriteBatch();
empty = new Texture("empty.jpg");
player = new Texture("player.jpg");
computer = new Texture("computer.jpg");
Gdx.input.setInputProcessor(this);
// Initialize display for status messages.
mainStatusDisplay = new BitmapFont();
mainStatusString = "Player's Turn";
winningString = "";
}
#Override
public void render () {
update();
Gdx.gl.glClearColor(0, 0, 0, 1);
Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);
batch.begin();
drawBoard();
mainStatusDisplay.setColor(Color.YELLOW);
mainStatusDisplay.draw(batch, mainStatusString, 32, 416);
batch.end();
}
public void drawBoard() {
for (int i = 0; i < COLUMNS; i ++) {
for (int j = 0; j < ROWS; j++) {
if (gameBoard[i][j] == 0) {
drawingTile = empty;
}
else if (gameBoard[i][j] == 1) {
drawingTile = player;
}
else if (gameBoard[i][j] == 2) {
drawingTile = computer;
}
batch.draw(drawingTile, i * 64, j * 64);
}
}
}
// Method update handles updates to game logic.
public void update() {
// If it's gameover, end the game.
if (gameOver) {
// Set players turn to true to prevent computer from taking another turn.
playersTurn = true;
// Set status message to winning message;
mainStatusString = winningString;
// Disable input processor to prevent player from taking another turn.
Gdx.input.setInputProcessor(null);
}
// If it's not players turn, call computersTurn.
else if (!playersTurn) {
mainStatusString = "Computer's Turn";
computersTurn();
}
if (checkForWin(1) && checkForWin(2)) {
gameOver = true;
}
}
public void computersTurn() {
double maxScore = 2. * Integer.MIN_VALUE;
int xValue = 0;
// Search the gameboard and find the best move.
for (int x = 0; x < COLUMNS; x++) {
// If x column is a value move...
if (canMove(x)) {
// Set score of move from function.
double score = moveScore(x);
// If score is greater than max score...
if (score > maxScore) {
// Set score to max score and xValue to column.
maxScore = score;
xValue = x;
// If the score is a win, break from loop.
if (score == WIN) {
break;
}
}
}
}
// Set the piece for player at column as x.
setPiece(2, xValue);
// Set players turn and string status.
playersTurn = true;
mainStatusString = "Player's Turn";
}
// Method moveScore determines the value of a move and returns it.
public double moveScore(int xValue) {
// Set the piece in place.
setPiece(2, xValue);
// Get the score and check it's value with alpha beta pruning.
double score = alphaBetaPrune(MAX_DEPTH, Integer.MIN_VALUE, Integer.MAX_VALUE, 1);
// Remove the piece.
takeAwayPiece(xValue);
return score;
}
public double alphaBetaPrune(int depth, double alpha, double beta, int whoPlayed) {
winner = checkForWin(1) || checkForWin(2);
// If we've reached the max depth of the tree or there is a winner...
if (depth == 0 || winner) {
double score;
// If there is a winner...
if (winner) {
// If player is the winner...
if (checkForWin(1)) {
// Set a losing score (Computer does not want player to win).
score = LOSE;
}
// Else this is a win for the computer...
else {
// Set score to a win.
score = WIN;
}
}
// Otherwise there is no winner...
else {
// Set score to TIE (0).
score = TIE;
}
// Return score and remove depth level.
return score / (MAX_DEPTH - depth +1);
}
// If computer is making the move...
if (whoPlayed == 2) {
// Iterate through gameboard.
for (int x = 0; x < COLUMNS; x++) {
// Check and see if next move can be made.
if (canMove(x)) {
// Make move for computer to x.
setPiece(2, x);
// Set alpha equal to return from recursion step minus one depth level.
alpha = Math.max(alpha, alphaBetaPrune(depth - 1, alpha, beta, 1));
// Remove piece.
takeAwayPiece(x);
// Check returned alpha against beta and break from loop if beta is less than alpha.
if (beta <= alpha) {
break;
}
}
}
// We're here if alpha is larger and we didn't break from loop.
return alpha;
}
// Else if player is making move...
else {
// Iterate through gameboard.
for (int x = 0; x < COLUMNS; x++) {
// Check and see if next move can be made.
if (canMove(x)) {
// Make move for player to x.
setPiece(1, x);
// Set beta equal to return from recursion step minus one depth level for beta.
beta = Math.min(beta, alphaBetaPrune(depth - 1, alpha, beta, 2));
// Remove piece.
takeAwayPiece(x);
// Check returned alpha against beta and break from loop if beta is less than alpha.
if (beta <= alpha) {
break;
}
}
}
// We're here if alpha is larger than beta and we didn't break from loop.
return beta;
}
}
// Method setPiece takes two int values as parameters and places a piece on the game board.
public void setPiece(int whoPlayed, int xValue) {
// For loop to iterate through each row.
for (int i = 0; i < ROWS; i++) {
// If row is empty...
if (gameBoard[xValue][i] == 0) {
// Place piece on the board.
gameBoard[xValue][i] = whoPlayed;
break;
}
}
}
// Method takeAwayPiece takes two int values as parameters and removes a piece from the board.
public void takeAwayPiece(int xValue) {
// For loop to iterate through each row.
for (int i = ROWS - 1; i > 0; i--) {
// If row contains a piece..
if (gameBoard[xValue][i] != 0) {
// Remove piece.
gameBoard[xValue][i] = 0;
break;
}
}
}
// Method to determine if a move is valid
public boolean canMove(int xValue) {
// If the top spot in the given column is 0, return true.
return (gameBoard[xValue][ROWS-1] == 0);
}
// Method checkForWin takes a flag and checks to see if that player has won the game.
public boolean checkForWin(int whoPlayed) {
// Create counter to check for 4 in a row.
int win = 0;
// Iterate through gameboard and count pieces in a row.
for (int y = 0; y < ROWS; y++) {
for (int x = 0; x < COLUMNS; x++) {
// If piece is player who is checking, increment counter.
if (gameBoard[x][y] == whoPlayed) {
win++;
}
// Not in a row, set counter to 0.
else {
win = 0;
}
if (win == 4) {
break;
}
}
// If win counter is 4, winner.
if (win == 4) {
winningString = "Horizontal Win for Player " + whoPlayed;
return true;
}
// Else, reset win counter and check next column.
else {
win = 0;
}
}
// Iterate through gameboard and count pieces in a column.
for (int x = 0; x < COLUMNS; x++) {
for (int y = 0; y < ROWS; y++) {
// If piece is player who is checking, increment counter.
if (gameBoard[x][y] == whoPlayed) {
win++;
}
// Not in a row, set counter to 0.
else {
win = 0;
}
if (win == 4) {
break;
}
}
// If win counter is 4, player won.
if (win == 4) {
winningString = "Vertical Win for Player " + whoPlayed;
return true;
}
// Else, reset win counter and check next column.
else {
win = 0;
}
}
// Iterate through gameboard and count pieces in a diagonal row, left to right.
for (int x = 0; x < 3; x++) {
for (int y = 0; y < 2; y++) {
// If piece is player who is checking, check next piece diagonally.
if (gameBoard[x][y] == whoPlayed) {
// Then check next diagonal piece.
if (gameBoard[x+1][y+1] == whoPlayed) {
// Then check next diagonal piece.
if (gameBoard[x+2][y+2] == whoPlayed) {
// Then check last diagonal piece.
if (gameBoard[x+3][y+3] == whoPlayed) {
// Set winning message to player won and set gameover flag.
winningString = "Diagonal Win (LR) for Player " + whoPlayed;
// Exit function.
return true;
}
}
}
}
}
}
// Iterate through gameboard and count pieces in a diagonal row, right to left.
for (int x = 3; x < COLUMNS; x++) {
for (int y = 0; y < 2; y++) {
// If piece is player who is checking, check next piece diagonally.
if (gameBoard[x][y] == whoPlayed) {
// Then check next diagonal piece.
if (gameBoard[x-1][y+1] == whoPlayed) {
// Then check next diagonal piece.
if (gameBoard[x-2][y+2] == whoPlayed) {
// Then check last diagonal piece.
if (gameBoard[x-3][y+3] == whoPlayed) {
// Set winning message to player won and set gameover flag.
winningString = "Diagonal Win (RL) for Player " + whoPlayed;
// Exit function.
return true;
}
}
}
}
}
}
// Iterate through gameboard and if no 0 slots remain, game is a tie.
for (int x = 0; x < COLUMNS; x++) {
for (int y = 0; y < ROWS; y++) {
// If a 0 slot remains, return.
if (gameBoard[x][y] == 0) {
return false;
}
}
}
// If we're here, then there was no winners and no slots left.
winningString = "Tie Game";
return false;
}
#Override
public boolean touchDown(int x, int y, int pointer, int button) {
if (playersTurn) {
if (button == Input.Buttons.LEFT) {
if (canMove(x / TILESIZE)) {
setPiece(1, x / TILESIZE);
playersTurn = false;
return true;
}
}
}
return false;
}
#Override
public boolean touchUp(int i, int i1, int i2, int i3) {
return false;
}
#Override
public boolean touchDragged(int i, int i1, int i2) {
return false;
}
#Override
public boolean mouseMoved(int i, int i1) {
return false;
}
#Override
public boolean scrolled(int i) {
return false;
}
#Override
public boolean keyDown(int i) {
return false;
}
#Override
public boolean keyUp(int i) {
return false;
}
#Override
public boolean keyTyped(char c) {
return false;
}
}
Thanks!
So after the first fix, it was fairly easy to narrow down what the problem was for the other problem. In my takeAwayPiece method, it wasn't removing anything on the bottom row so when the A.I calculated it's next move, its testpieces it was placing at the bottom didn't work.
So in the takeAwayPiece method, i changed it to the following
// Method takeAwayPiece takes two int values as parameters and removes a piece from the board.
public void takeAwayPiece(int xValue) {
// For loop to iterate through each row.
for (int i = ROWS; i > 0; i--) {
System.out.println(i);
// If row contains a piece..
if (gameBoard[xValue][i-1] != 0) {
// Remove piece.
//System.out.println("Piece at column " + xValue + " " + i);
gameBoard[xValue][i-1] = 0;
break;
}
}
}
You might notice that the difference is that i starts = to ROWS instead of ROWS -1 and then i was checking against x-1 instead of x (Previously i just tried changing the condition from i > 0 to i = 0 but that had some crazy strange results).
I am making a tic tac toe game for n number of players on a nxn board, but the winning condition is aways 3 on a row. My so far solution to the problem is: when a move is made the program will check the following square for 3 on a row.
(x-1,y+1) (x,y+1) (x+1,y+1)
(x-1,y) (x,y) (x+1,y)
(x-1,y-1) (x,y-1) (x+1,y-1)
It will check the top (x-1,y+1) (x,y+1) (x+1,y+1) bottom(x-1,y-1) (x,y-1) (x+1,y-1)
sides(x+1,y+1) (x+1,y) (x+1,y-1) , (x-1,y+1) (x-1,y) (x-1,y-1) , the diagonals and the ones going through the middle(x,y).
my code so far is:
public int checkWinning() {
for(int a = 1; a < size-1; a++){
for(int b = 1; b < size-1; b++){
if (board[a][b] == board[a+1][b] && board[a][b] == board[a-1][b]){
return board[a][b];
}else if(board[a][b] == board[a][b+1] && board[a][b] == board[a][b-1]){
return board[a][b];
}else if(board[a][b] == board[a+1][b-1] && board[a][b] == board[a-1][b+1]){
return board[a][b];
}else if(board[a][b] == board[a+1][b+1] && board[a][b] == board[a-1][b-1]){
return board[a][b];
}
}
}
for(int d = 1; d < size-1; d++){
if (board[0][d] == board[0][d-1] && board[0][d] == board[0][d+1]){
return board[0][d];
} else if (board[size-1][d] == board[size-1][d-1] && board[size-1][d] == board[size-1][d+1]){
return board[size-1][d];
}
}
for(int c = 1; c < size-1; c++){
if (board[c][0] == board[c-1][0] && board[c][0] == board[c+1][0]){
return board[c][0];
}else if(board[c][size-1] == board[c-1][size-1] && board[c][size-1] == board[c+1][size-1]){
return board[c][size-1];
}
}
return 0;
}
where the first section is where I check the ones through the middle and diagonals. the second section I check the top an bottom and the top and the thrid section checks the sides.
When it returns 0 is means that there are no winner yet.
#override
public void checkResult() {
int winner = this.board.checkWinning();
if (winner > 0) {
this.ui.showResult("Player "+winner+" wins!");
}
if (this.board.checkFull()) {
this.ui.showResult("This is a DRAW!");
}
}
Board[x][y] -> 2-dimensional array representing the board, The coordinates are counted from top-left (0,0) to bottom-right (size-1, size-1), board[x][y] == 0 signifies free at position (x,y), board[x][y] == i for i > 0 signifies that Player i made a move on (x,y), just so you know it.
my problem is that when i expands the board to a size larger than 3x3 the program somehow overwrites it self or a does not check every thing sides top and bottom every time, and I can't seem too se why.
EDIT:
played with the app for a few minutes... interesting results
java -jar tic-tac-toe.jar 5 20
It was a cats game!!
|1|1|5|5|1|3|5|3|1|5|2|5|1|1|2|
|2|3|2|3|1|5|3|5|3|2|3|1|5|2|2|
|5|4|5|4|1|5|5|4|2|1|4|5|4|2|2|
|3|2|1|5|5|5|2|4|5|3|4|1|2|4|2|
|3|4|1|2|5|4|1|1|4|5|1|3|3|4|1|
|1|5|4|4|3|2|5|1|3|5|1|3|5|3|4|
|2|5|1|4|3|3|3|5|3|1|1|4|3|4|4|
|1|4|5|1|1|5|4|5|2|4|1|1|5|4|3|
|1|3|2|1|4|2|4|3|3|4|5|2|4|3|3|
|5|1|1|3|3|4|4|4|2|2|1|4|3|2|5|
|2|2|3|1|5|5|4|1|3|5|3|2|3|3|2|
|2|4|2|4|4|1|3|1|1|3|1|2|1|2|2|
|2|5|5|1|4|3|4|5|5|4|5|3|3|5|2|
|4|5|2|1|5|3|2|1|3|2|2|2|2|4|4|
|4|1|1|4|5|4|5|4|2|2|3|3|2|2|3|
Played 100 games:
Number wins by Player1: 0
Number wins by Player2: 0
Number wins by Player3: 0
Number wins by Player4: 0
Number wins by Player5: 0
Number of ties: 100
didn't scroll through all 100 games to find the winning board, but I thought this was interesting:
java -jar tic-tac-toe.jar 2 10
Player2 won the game!
|1|1|2|1|2|2| |2|1|2|
|2|2|2|2|2|2|2|2|2|2|
|2|1|2|2|2|1|1|1|1|1|
|1|1|1|1|2|1|2|1|1|1|
|2|2| |1|2|1|1|1|1|2|
|2|2|2|1|1|1| |1|2|2|
|2|2|1|2|2|2|2|2|1|1|
| | |2|2|2|2| |1|1|1|
|1|1|2|2|2|1|1|1|1| |
| | |1|1|1|1|1|2|1| |
Played 100 games:
Number wins by Player1: 0
Number wins by Player2: 1
Number of ties: 99
This does answer your question... but I took it a bit far... decided to implement the solution.
Instead of counting matches... I just check from teh point the last player plays, if all marks in a row column and diagnal match the players, he wins.
package com.clinkworks.example;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class TicTacToe {
private static final String TIE = "TIE";
private static final Map<String, Integer> gamesToWinsMap = new HashMap<String, Integer>();
/**
* accepts input in the following format:
*
* playerCount rowCount columnCount (sets the game with the n players, n columns, and n rows)
* - java -jar tic-tac-toe.jar 2 3 3
* PlayerCount squareSize (defaults to a game with rows and cols the same as squareSize and the player count given)
* - java -jar tic-tac-toe.jar 2 3
* PlayerCount (defaults to a 3 by 3 game)
* - java -jar tic-tac-toe.jar 2
* no input (defaults to a 3 by 3 game with 2 players)
* - java -jar tic-tac-toe.jar
* #param args
*/
public static void main(String[] args) {
int playerCount = 2;
int rows = 3;
int cols = 3;
if(args.length == 3){
playerCount = Integer.valueOf(args[0]);
rows = Integer.valueOf(args[1]);
cols = Integer.valueOf(args[2]);
}
if(args.length == 2){
playerCount = Integer.valueOf(args[0]);
rows = Integer.valueOf(args[1]);
cols = rows;
}
if(args.length == 1){
playerCount = Integer.valueOf(args[0]);
}
for(int i = 1; i <= playerCount; i++){
gamesToWinsMap.put("Player" + i, 0);
}
//lets play 100 games and see the wins and ties
playGames(100, playerCount, rows, cols);
for(int i = 1; i <= playerCount; i++){
System.out.println("Number wins by Player" + i + ": " + gamesToWinsMap.get("Player" + i));
}
System.out.println("Number of ties: " + gamesToWinsMap.get(TIE));
}
public static void playGames(int gamesToPlay, int playerCount, int rows, int cols) {
//play a new game each iteration, in our example, count = 100;
for (int i = 0; i < gamesToPlay; i++) {
playGame(playerCount, rows, cols);
}
}
public static void playGame(int playerCount, int rows, int cols) {
//create a new game board. this initalizes our 2d array and lets the complexity of handling that
// array be deligated to the board object.
Board board = new Board(playerCount, rows, cols);
//we are going to generate a random list of moves. Heres where we are goign to store it
List<Move> moves = new ArrayList<Move>();
//we are creating moves for each space on the board.
for (int row = 0; row < rows; row++) {
for (int col = 0; col < cols; col++) {
moves.add(new Move(row, col));
}
}
//randomize the move list
Collections.shuffle(moves);
//do each move
for (Move move : moves) {
board.play(move);
if(gameOver(board)){
break;
}
}
}
public static boolean gameOver(Board board){
if (board.whoWon() != null) {
System.out.println(board.whoWon() + " won the game!");
System.out.println(board);
Integer winCount = gamesToWinsMap.get(board.whoWon());
winCount = winCount == null ? 1 : winCount + 1;
gamesToWinsMap.put(board.whoWon(), winCount);
return true;
} else if (board.movesLeft() == 0) {
System.out.println("It was a cats game!!");
System.out.println(board);
Integer tieCount = gamesToWinsMap.get(TIE);
tieCount = tieCount == null ? 1 : tieCount + 1;
gamesToWinsMap.put(TIE, tieCount);
return true;
}
return false;
}
public static class Move {
private int row;
private int column;
public Move(int row, int column) {
this.row = row;
this.column = column;
}
public int getRow() {
return row;
}
public int getColumn() {
return column;
}
}
public static class Board {
private final int rowSize;
private final int columnSize;
private final Integer[][] gameBoard;
private int playerCount;
private int currentPlayer;
private String winningPlayer;
public Board() {
gameBoard = new Integer[3][3];
currentPlayer = 1;
winningPlayer = null;
this.rowSize = 3;
this.columnSize = 3;
playerCount = 2;
}
public Board(int players) {
gameBoard = new Integer[3][3];
currentPlayer = 1;
winningPlayer = null;
this.rowSize = 3;
this.columnSize = 3;
playerCount = players;
}
public Board(int rowSize, int columnSize) {
gameBoard = new Integer[rowSize][columnSize];
currentPlayer = 1;
winningPlayer = null;
playerCount = 2;
this.rowSize = rowSize;
this.columnSize = columnSize;
}
public Board(int players, int rowSize, int columnSize) {
gameBoard = new Integer[rowSize][columnSize];
currentPlayer = 1;
winningPlayer = null;
playerCount = players;
this.rowSize = rowSize;
this.columnSize = columnSize;
}
/**
*
* #return the amount of empty spaces remaining on the game board, or if theres a winning player, zero.
*/
public int movesLeft() {
if(whoWon() != null){
return 0;
}
int moveCount = 0;
for (int x = 0; x < getRowSize(); x++) {
for (int y = 0; y < getColumnSize(); y++) {
moveCount += getMoveAt(x, y) == null ? 1 : 0;
}
}
return moveCount;
}
/**
* If someone won, this will return the winning player.
*
* #return the winning player
*/
public String whoWon() {
return winningPlayer;
}
/**
* This move allows the next player to choose where to place their mark.
*
* #param row
* #param column
* #return if the game is over, play will return true, otherwise false.
*/
public boolean play(Move move) {
if (!validMove(move)) {
// always fail early
throw new IllegalStateException("Player " + getCurrentPlayer() + " cannot play at " + move.getRow() + ", " + move.getColumn() + "\n" + toString());
}
doMove(move);
boolean playerWon = isWinningMove(move);
if (playerWon) {
winningPlayer = "Player" + getCurrentPlayer();
return true;
}
shiftPlayer();
boolean outOfMoves = movesLeft() <= 0;
return outOfMoves;
}
public int getRowSize() {
return rowSize;
}
public int getColumnSize() {
return columnSize;
}
public int getCurrentPlayer() {
return currentPlayer;
}
public Integer getMoveAt(int row, int column) {
return gameBoard[row][column];
}
private void doMove(Move move) {
gameBoard[move.getRow()][move.getColumn()] = getCurrentPlayer();
}
private void shiftPlayer() {
if(getCurrentPlayer() == getPlayerCount()){
currentPlayer = 1;
}else{
currentPlayer++;
}
}
private int getPlayerCount() {
return playerCount;
}
private boolean validMove(Move move) {
boolean noMoveAtIndex = false;
boolean indexesAreOk = move.getRow() >= 0 || move.getRow() < getRowSize();
indexesAreOk = indexesAreOk && move.getColumn() >= 0 || move.getColumn() < getColumnSize();
if (indexesAreOk) {
noMoveAtIndex = getMoveAt(move.getRow(), move.getColumn()) == null;
}
return indexesAreOk && noMoveAtIndex;
}
private boolean isWinningMove(Move move) {
// since we check to see if the player won on each move
// we are safe to simply check the last move
return winsDown(move) || winsAcross(move) || winsDiagnally(move);
}
private boolean winsDown(Move move) {
boolean matchesColumn = true;
for (int i = 0; i < getColumnSize(); i++) {
Integer moveOnCol = getMoveAt(move.getRow(), i);
if (moveOnCol == null || getCurrentPlayer() != moveOnCol) {
matchesColumn = false;
break;
}
}
return matchesColumn;
}
private boolean winsAcross(Move move) {
boolean matchesRow = true;
for (int i = 0; i < getRowSize(); i++) {
Integer moveOnRow = getMoveAt(i, move.getColumn());
if (moveOnRow == null || getCurrentPlayer() != moveOnRow) {
matchesRow = false;
break;
}
}
return matchesRow;
}
private boolean winsDiagnally(Move move) {
// diagnals we only care about x and y being teh same...
// only perfect squares can have diagnals
// so we check (0,0)(1,1)(2,2) .. etc
boolean matchesDiagnal = false;
if (isOnDiagnal(move.getRow(), move.getColumn())) {
matchesDiagnal = true;
for (int i = 0; i < getRowSize(); i++) {
Integer moveOnDiagnal = getMoveAt(i, i);
if (moveOnDiagnal == null || moveOnDiagnal != getCurrentPlayer()) {
matchesDiagnal = false;
break;
}
}
}
return matchesDiagnal;
}
private boolean isOnDiagnal(int x, int y) {
if (boardIsAMagicSquare()) {
return x == y;
} else {
return false;
}
}
private boolean boardIsAMagicSquare() {
return getRowSize() == getColumnSize();
}
public String toString() {
StringBuffer stringBuffer = new StringBuffer();
for(int y = 0; y < getColumnSize(); y++) {
for(int x = 0; x < getRowSize(); x++) {
Integer move = getMoveAt(x, y);
String moveToPrint = "";
if (move == null) {
moveToPrint = " ";
} else {
moveToPrint = move.toString();
}
stringBuffer.append("|").append(moveToPrint);
}
stringBuffer.append("|\n");
}
return stringBuffer.toString();
}
}
}
I have to revise my answer. If you want to have three in a row regardless of your board size, your loop code might be sufficient, but you are always checking whether the values of the fields are the same but never make a difference between empty and non-empty fields.
So “empty” can win too, which would effectively hide a possible win of a player. In other words, your code does not work correctly, even for a field size of three. You didn’t test it enough.
If I initialize the board as
int[][] board={
{ 1, 1, 1 },
{ 0, 0, 0 },
{ 0, 0, 0 },
};
your code returns 0 as the second row contains three zeros. I assumed that 0 represents the empty field but the actual value for “empty” doesn’t matter. You have to exclude empty fields from the three-in-a-row check.
You can simplify this a fair amount by breaking the logic up a bit.
First realize that you only need to check for a win around the piece you just placed.
Now we need a way to check whether that move is a winner.
First we need a simple function to check whether a cell matches a given value, returning true if its within bounds and matches.
private boolean cellMatches(int x, int y, int val) {
if (x<0||x>boardWidth)
return false;
if (y<0||y>boardHeight)
return false;
return board[x][y]==val;
}
Now a function that you give a starting position (x and y) and a delta (dx, dy) and it checks up to two cells in that direction returning a count of how many in a row matched value. The for loop may be overkill for two checks but it would easily allow you to expand up to longer lines being used.
private int countMatches(int x, int y, int dx, int dy, int val) {
int count = 0;
for (int step=1;step<=2;step++) {
if (cellMatches(x+dx*step, y+dy*step, val) {
count++;
} else {
return count;
}
}
return count;
}
Now we can use the previous method. When we place a new piece we can just count out in each matching pair of directions. The combined count is the total number in a row. (i.e. two in a row top + 1 bot = a total run length of 4). If any of those run lengths is three then it is a winning move.
private boolean makeMove(int x, int y, int val) {
board[x][y] = val;
int runlength=countMatches(x,y,0,1,val) + countMatches(x,y,0,-1,val);
if (runLength >= 2)
return true;
int runlength=countMatches(x,y,1,0,val) + countMatches(x,y,-1,0,val);
if (runLength >= 2)
return true;
int runlength=countMatches(x,y,1,1,val) + countMatches(x,y,-1,-1,val);
if (runLength >= 2)
return true;
int runlength=countMatches(x,y,1,-1,val) + countMatches(x,y,-1,1,val);
if (runLength >= 2)
return true;
return false;
}
Note that because we need to count the center piece that we placed we just need a run length of two or more.
So I've been writing a program for the game boggle. I create a little board for the user to use, but the problem is I don't know how to check if that word is on the board recursively. I want to be able to check if the word the entered is indeed on the board, and is valid. By valid I mean, the letters of the word must be adjacent to each other. For those who have played boggle you'll know what I mean. All I want to do is check if the word is on the board.
This is what I have so far ....
import java.io.*;
public class boggle {
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
private String s = "";
private int [][] lettersNum = new int [5][5];
private char [][] letters = new char [5][5];
private char [] word = new char [45]; // Size at 45, because the longest word in the dictionary is only 45 letters long
private char [] temp;
public void generateNum()
{
for (int row = 0; row < 5; row ++)
{
for (int col = 0; col < 5; col++)
{
lettersNum [row][col] = (int) (Math.random() * 26 + 65);
}
}
}
public void numToChar()
{
for (int row = 0; row < 5; row ++)
{
for (int col = 0; col < 5; col++)
{
letters [row][col] = (char)(lettersNum[row][col]);
}
}
}
public void display()
{
for (int row = 0; row < 5; row ++)
{
for (int col = 0; col < 5; col++)
{
System.out.print(letters[row][col]);
}
System.out.println("");
}
}
public void getInput() throws IOException
{
System.out.println("Please enter a word : ");
s=br.readLine();
s=s.toUpperCase();
word = s.toCharArray();
}
public int search(int row, int col)
{
if((row <0) || (row >= 5) || (col < 0) || (col >= 5))
{
return (0);
}
else
{
temp = word;
return (1+ search(row +1, col) +
search(row -1, col) +
search(row, col + 1) +
search(row, col-1) +
search(row +1, col +1)+
search(row +1, col -1)+
search(row -1, col +1)+
search(row -1, col -1));
}
}
}
The search was my searching algorithm to check if the word is on the board but I don't know if it is correct or if it will work. Furthermore, I don't know how to actually tell the user that the word is valid !
Thanks for all the help :)
SO I tried to use what you suggested below but I dont really understand the int [5][5] thing. So this is what I tried, but I keep getting out of bounds errors ! Here is the soruce ...
public void locate()
{
temp = word[0];
for (int row = 0; row <5; row++)
{
for (int col = 0; col <5; col++)
{
if(temp == letters[row][col])
{
search(row,col);
}
}
}
}
public int search(int row, int col)
{
if(letters[row][col-1]==word[count]) // Checks the letter to the left
{
count++;
letters[row][col-1] = '-'; // Just to make sure the program doesn't go back on itself
return search(row, col-1);
}
else if (letters[row][col+1] == word[count])// Checks the letter to the right
{
count++;
letters[row][col+1] = '-';// Just to make sure the program doesn't go back on itself
return search(row, col +1);
}
else if (letters[row+1][col]== word[count])// Checks the letter below
{
count++;
letters[row+1][col] = '-';// Just to make sure the program doesn't go back on itself
return search(row +1 , col);
}
else if (letters[row-1][col]== word[count])// Checks the letter above
{
count++;
letters[row-1][col] = '-';// Just to make sure the program doesn't go back on itself
return search(row -1 , col);
}
else if (letters[row-1][col-1]== word[count])// Checks the letter to the top left
{
count++;
letters[row-1][col-1] = '-';// Just to make sure the program doesn't go back on itself
return search(row -1 , col-1);
}
else if (letters[row-1][col+1]== word[count])// Checks the letter to the top right
{
count++;
letters[row-1][col+1] = '-';// Just to make sure the program doesn't go back on itself
return search(row -1 , col+1);
}
else if (letters[row+1][col-1]== word[count])// Checks the letter to the bottom left
{
count++;
letters[row+1][col-1] = '-';// Just to make sure the program doesn't go back on itself
return search(row +1 , col-1);
}
else if (letters[row+1][col+1]== word[count])// Checks the letter to the bottom right
{
count++;
letters[row+1][col+1] = '-';// Just to make sure the program doesn't go back on itself
return search(row +1 , col+1);
}
return 0;
}
private int count = 0; (was declared at the top of the class, in case you were wondering where I got the word[count] from
Your current search function doesn't actually do anything. I'm assuming this is homework so, no free lunch ;)
The simplest approach would be to have two recursive functions:
public boolean findStart(String word, int x, int y)
This will do a linear search of the board looking for the first character in word. If your current location doesn't match, you call yourself with the next set of coords. When it finds a match, it calls your second recursive function using word, the current location, and a new, empty 4x4 matrix:
public boolean findWord(String word, int x, int y, int[][] visited)
This function first checks to see if the current location matches the first letter in word. If it does, it marks the current location in visited and loops through all the adjoining squares except ones marked in visited by calling itself with word.substring(1) and those coords. If you run out of letters in word, you've found it and return true. Note that if you're returning false, you need to remove the current location from visited.
You can do this with one function, but by splitting out the logic I personally think it becomes easier to manage in your head. The one downside is that it does do an extra comparison for each first letter in a word. To use a single function you would need to keep track of what "mode" you were in either with a boolean or a depth counter.
Edit: Your longest word should only be 16. Boggle uses a 4x4 board and a word can't use the same location twice. Not that this really matters, but it might for the assignment. Also note that I just did this in my head and don't know that I got it 100% right - comments appreciated.
Edit in response to comments:
Here's what your iterative locate would look like using the method I outline above:
public boolean locate(String word)
{
for (int row = 0; row < 4; row++)
{
for (int col =0; col < 4; col++)
{
if (word.charAt(0) == letters[row][col])
{
boolean found = findWord(word, row, col, new boolean[4][4]);
if (found)
return true;
}
}
}
return false;
}
The same thing recursively looks like the following, which should help:
public boolean findStart(String word, int x, int y)
{
boolean found = false;
if (word.charAt(0) == letters[x][y])
{
found = findWord(word, x, y, new boolean[4][4]);
}
if (found)
return true;
else
{
y++;
if (y > 3)
{
y = 0;
x++;
}
if (x > 3)
return false;
}
return findStart(word, x, y);
}
So here's findWord() and a helper method getAdjoining() to show you how this all works. Note that I changed the visited array to boolean just because it made sense:
public boolean findWord(String word, int x, int y, boolean[][] visited)
{
if (letters[x][y] == word.charAt(0))
{
if (word.length() == 1) // this is the last character in the word
return true;
else
{
visited[x][y] = true;
List<Point> adjoining = getAdjoining(x,y,visited);
for (Point p : adjoining)
{
boolean found = findWord(word.substring(1), p.x, p.y, visited);
if (found)
return true;
}
visited[x][y] = false;
}
}
return false;
}
public List<Point> getAdjoining(int x, int y, boolean[][] visited)
{
List<Point> adjoining = new LinkedList<Point>();
for (int x2 = x-1; x2 <= x+1; x2++)
{
for (int y2 = y-1; y2 <= y+1; y2++)
{
if (x2 < 0 || x2 > 3 ||
y2 < 0 || y2 > 3 ||
(x2 == x && y2 == y) ||
visited[x2][y2])
{
continue;
}
adjoining.add(new Point(x2,y2));
}
}
return adjoining;
}
So now, after you get input from the user as a String (word), you would just call:
boolean isOnBoard = findStart(word,0,0);
I did this in my head originally, then just went down that path to try and show you how it works. If I were to actually implement this I would do some things differently (mainly eliminating the double comparison of the first letter in the word, probably by combining the two into one method though you can do it by rearranging the logic in the current methods), but the above code does function and should help you better understand recursive searching.