Related
How could I go about detecting (returning true/false) whether an ArrayList contains more than one of the same element in Java?
Many thanks,
Terry
Edit
Forgot to mention that I am not looking to compare "Blocks" with each other but their integer values. Each "block" has an int and this is what makes them different.
I find the int of a particular Block by calling a method named "getNum" (e.g. table1[0][2].getNum();
Simplest: dump the whole collection into a Set (using the Set(Collection) constructor or Set.addAll), then see if the Set has the same size as the ArrayList.
List<Integer> list = ...;
Set<Integer> set = new HashSet<Integer>(list);
if(set.size() < list.size()){
/* There are duplicates */
}
Update: If I'm understanding your question correctly, you have a 2d array of Block, as in
Block table[][];
and you want to detect if any row of them has duplicates?
In that case, I could do the following, assuming that Block implements "equals" and "hashCode" correctly:
for (Block[] row : table) {
Set set = new HashSet<Block>();
for (Block cell : row) {
set.add(cell);
}
if (set.size() < 6) { //has duplicate
}
}
I'm not 100% sure of that for syntax, so it might be safer to write it as
for (int i = 0; i < 6; i++) {
Set set = new HashSet<Block>();
for (int j = 0; j < 6; j++)
set.add(table[i][j]);
...
Set.add returns a boolean false if the item being added is already in the set, so you could even short circuit and bale out on any add that returns false if all you want to know is whether there are any duplicates.
Improved code, using return value of Set#add instead of comparing the size of list and set.
public static <T> boolean hasDuplicate(Iterable<T> all) {
Set<T> set = new HashSet<T>();
// Set#add returns false if the set does not change, which
// indicates that a duplicate element has been added.
for (T each: all) if (!set.add(each)) return true;
return false;
}
With Java 8+ you can use Stream API:
boolean areAllDistinct(List<Block> blocksList) {
return blocksList.stream().map(Block::getNum).distinct().count() == blockList.size();
}
If you are looking to avoid having duplicates at all, then you should just cut out the middle process of detecting duplicates and use a Set.
Improved code to return the duplicate elements
Can find duplicates in a Collection
return the set of duplicates
Unique Elements can be obtained from the Set
public static <T> List getDuplicate(Collection<T> list) {
final List<T> duplicatedObjects = new ArrayList<T>();
Set<T> set = new HashSet<T>() {
#Override
public boolean add(T e) {
if (contains(e)) {
duplicatedObjects.add(e);
}
return super.add(e);
}
};
for (T t : list) {
set.add(t);
}
return duplicatedObjects;
}
public static <T> boolean hasDuplicate(Collection<T> list) {
if (getDuplicate(list).isEmpty())
return false;
return true;
}
I needed to do a similar operation for a Stream, but couldn't find a good example. Here's what I came up with.
public static <T> boolean areUnique(final Stream<T> stream) {
final Set<T> seen = new HashSet<>();
return stream.allMatch(seen::add);
}
This has the advantage of short-circuiting when duplicates are found early rather than having to process the whole stream and isn't much more complicated than just putting everything in a Set and checking the size. So this case would roughly be:
List<T> list = ...
boolean allDistinct = areUnique(list.stream());
If your elements are somehow Comparable (the fact that the order has any real meaning is indifferent -- it just needs to be consistent with your definition of equality), the fastest duplicate removal solution is going to sort the list ( 0(n log(n)) ) then to do a single pass and look for repeated elements (that is, equal elements that follow each other) (this is O(n)).
The overall complexity is going to be O(n log(n)), which is roughly the same as what you would get with a Set (n times long(n)), but with a much smaller constant. This is because the constant in sort/dedup results from the cost of comparing elements, whereas the cost from the set is most likely to result from a hash computation, plus one (possibly several) hash comparisons. If you are using a hash-based Set implementation, that is, because a Tree based is going to give you a O( n logĀ²(n) ), which is even worse.
As I understand it, however, you do not need to remove duplicates, but merely test for their existence. So you should hand-code a merge or heap sort algorithm on your array, that simply exits returning true (i.e. "there is a dup") if your comparator returns 0, and otherwise completes the sort, and traverse the sorted array testing for repeats. In a merge or heap sort, indeed, when the sort is completed, you will have compared every duplicate pair unless both elements were already in their final positions (which is unlikely). Thus, a tweaked sort algorithm should yield a huge performance improvement (I would have to prove that, but I guess the tweaked algorithm should be in the O(log(n)) on uniformly random data)
If you want the set of duplicate values:
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
public class FindDuplicateInArrayList {
public static void main(String[] args) {
Set<String> uniqueSet = new HashSet<String>();
List<String> dupesList = new ArrayList<String>();
for (String a : args) {
if (uniqueSet.contains(a))
dupesList.add(a);
else
uniqueSet.add(a);
}
System.out.println(uniqueSet.size() + " distinct words: " + uniqueSet);
System.out.println(dupesList.size() + " dupesList words: " + dupesList);
}
}
And probably also think about trimming values or using lowercase ... depending on your case.
Simply put:
1) make sure all items are comparable
2) sort the array
2) iterate over the array and find duplicates
To know the Duplicates in a List use the following code:It will give you the set which contains duplicates.
public Set<?> findDuplicatesInList(List<?> beanList) {
System.out.println("findDuplicatesInList::"+beanList);
Set<Object> duplicateRowSet=null;
duplicateRowSet=new LinkedHashSet<Object>();
for(int i=0;i<beanList.size();i++){
Object superString=beanList.get(i);
System.out.println("findDuplicatesInList::superString::"+superString);
for(int j=0;j<beanList.size();j++){
if(i!=j){
Object subString=beanList.get(j);
System.out.println("findDuplicatesInList::subString::"+subString);
if(superString.equals(subString)){
duplicateRowSet.add(beanList.get(j));
}
}
}
}
System.out.println("findDuplicatesInList::duplicationSet::"+duplicateRowSet);
return duplicateRowSet;
}
best way to handle this issue is to use a HashSet :
ArrayList<String> listGroupCode = new ArrayList<>();
listGroupCode.add("A");
listGroupCode.add("A");
listGroupCode.add("B");
listGroupCode.add("C");
HashSet<String> set = new HashSet<>(listGroupCode);
ArrayList<String> result = new ArrayList<>(set);
Just print result arraylist and see the result without duplicates :)
This answer is wrriten in Kotlin, but can easily be translated to Java.
If your arraylist's size is within a fixed small range, then this is a great solution.
var duplicateDetected = false
if(arrList.size > 1){
for(i in 0 until arrList.size){
for(j in 0 until arrList.size){
if(i != j && arrList.get(i) == arrList.get(j)){
duplicateDetected = true
}
}
}
}
private boolean isDuplicate() {
for (int i = 0; i < arrayList.size(); i++) {
for (int j = i + 1; j < arrayList.size(); j++) {
if (arrayList.get(i).getName().trim().equalsIgnoreCase(arrayList.get(j).getName().trim())) {
return true;
}
}
}
return false;
}
String tempVal = null;
for (int i = 0; i < l.size(); i++) {
tempVal = l.get(i); //take the ith object out of list
while (l.contains(tempVal)) {
l.remove(tempVal); //remove all matching entries
}
l.add(tempVal); //at last add one entry
}
Note: this will have major performance hit though as items are removed from start of the list.
To address this, we have two options. 1) iterate in reverse order and remove elements. 2) Use LinkedList instead of ArrayList. Due to biased questions asked in interviews to remove duplicates from List without using any other collection, above example is the answer. In real world though, if I have to achieve this, I will put elements from List to Set, simple!
/**
* Method to detect presence of duplicates in a generic list.
* Depends on the equals method of the concrete type. make sure to override it as required.
*/
public static <T> boolean hasDuplicates(List<T> list){
int count = list.size();
T t1,t2;
for(int i=0;i<count;i++){
t1 = list.get(i);
for(int j=i+1;j<count;j++){
t2 = list.get(j);
if(t2.equals(t1)){
return true;
}
}
}
return false;
}
An example of a concrete class that has overridden equals() :
public class Reminder{
private long id;
private int hour;
private int minute;
public Reminder(long id, int hour, int minute){
this.id = id;
this.hour = hour;
this.minute = minute;
}
#Override
public boolean equals(Object other){
if(other == null) return false;
if(this.getClass() != other.getClass()) return false;
Reminder otherReminder = (Reminder) other;
if(this.hour != otherReminder.hour) return false;
if(this.minute != otherReminder.minute) return false;
return true;
}
}
ArrayList<String> withDuplicates = new ArrayList<>();
withDuplicates.add("1");
withDuplicates.add("2");
withDuplicates.add("1");
withDuplicates.add("3");
HashSet<String> set = new HashSet<>(withDuplicates);
ArrayList<String> withoutDupicates = new ArrayList<>(set);
ArrayList<String> duplicates = new ArrayList<String>();
Iterator<String> dupIter = withDuplicates.iterator();
while(dupIter.hasNext())
{
String dupWord = dupIter.next();
if(withDuplicates.contains(dupWord))
{
duplicates.add(dupWord);
}else{
withoutDupicates.add(dupWord);
}
}
System.out.println(duplicates);
System.out.println(withoutDupicates);
A simple solution for learners.
//Method to find the duplicates.
public static List<Integer> findDublicate(List<Integer> numList){
List<Integer> dupLst = new ArrayList<Integer>();
//Compare one number against all the other number except the self.
for(int i =0;i<numList.size();i++) {
for(int j=0 ; j<numList.size();j++) {
if(i!=j && numList.get(i)==numList.get(j)) {
boolean isNumExist = false;
//The below for loop is used for avoid the duplicate again in the result list
for(Integer aNum: dupLst) {
if(aNum==numList.get(i)) {
isNumExist = true;
break;
}
}
if(!isNumExist) {
dupLst.add(numList.get(i));
}
}
}
}
return dupLst;
}
This function loops through a dictionary (allWords) and uses the
getKey function to generate a key. wordListMap is a HashMap> so I need to loop through and put the key and and a List. If there is not a list I put one if there is I just need to append the next dictionary word. This is where I need help. I just can't figure out the syntax to simply append the next word to the list that is already there. Any Help would be appreciated.
public static void constructWordListMap() {
wordListMap = new HashMap<>();
for (String w : allWords) {
int key = getKey(w);
if (isValidWord(w) && !wordListMap.containsKey(key)) {
List list = new ArrayList();
list.add(w);
wordListMap.put(key, list);
} else if (isValidWord(w) && wordListMap.containsKey(key)) {
wordListMap.put(key, wordListMap.get(key).add(w));
}
}
}
map.get(key).add(value)
Simple as that.
So I've gathered that you want to, given HashMap<Integer, List<String>>, you'd like to:
create a List object
add String objects to said List
add that List object as a value to be paired with a previously generated key (type Integer)
To do so, you'd want to first generate the key
Integer myKey = getKey(w);
Then, you'd enter a loop and add to a List object
List<String> myList = new List<String>;
for(int i = 0; i < intendedListLength; i++) {
String myEntry = //wherever you get your string from
myList.add(myEntry);
}
Lastly, you'd add the List to the HashMap
myHash.put(myKey, myList);
Leave any questions in the comments.
else if (isValidWord(w) && wordListMap.containsKey(key)) {
wordListMap.put(key, wordListMap.get(key).add(w));
}
If you want to add a new value to your list, you need to retrieve that list first. In the code above, you are putting the return value of add into the table (which is a boolean), and that is not what you want.
Instead, you will want to do as Paul said:
else if (isValidWord(w) && wordListMap.containsKey(key)) {
wordListMap.get(key).add(w);
}
The reason this works is because you already added an ArrayList to the table earlier. Here, you are getting that ArrayList, and adding a new value to it.
My program takes in thousands of PL/SQL functions, procedures and views, saves them as objects and then adds them to an array list. My array list stores objects with the following format:
ArrayList<PLSQLItemStore> storedList = new ArrayList<>();
storedList.add(new PLSQLItemStore(String, String, String, Long ));
storedList.add(new PLSQLItemStore(Name, Type, FileName, DatelastModified));
What I wanted to do is remove duplicate objects from the array-list based on their Name. The older object would be removed based on its dateLastModified variable. The approach i took was to have an outer loop and an inner loop with each object comparing themselves to every other object and then changing the name to "remove" if it was considered to be older. The program then does one final pass backwards through the array-list removing any objects whose name is set as "remove". While this works fine it seems extremely inefficient. 1000 objects will mean 1,000,000 passes need to be made. I was wondering if someone could help me make it more efficient? Thanks.
Sample Input:
storedList.add(new PLSQLItemStore("a", "function", "players.sql", 1234));
storedList.add(new PLSQLItemStore("a", "function", "team.sql", 2345));
storedList.add(new PLSQLItemStore("b", "function", "toon.sql", 1111));
storedList.add(new PLSQLItemStore("c", "function", "toon.sql", 2222));
storedList.add(new PLSQLItemStore("c", "function", "toon.sql", 1243));
storedList.add(new PLSQLItemStore("d", "function", "toon.sql", 3333));
ArrayList Iterator:
for(int i = 0; i < storedList.size();i++)
{
for(int k = 0; k < storedList.size();k++)
{
if (storedList.get(i).getName().equalsIgnoreCase("remove"))
{
System.out.println("This was already removed");
break;
}
if (storedList.get(i).getName().equalsIgnoreCase(storedList.get(k).getName()) && // checks to see if it is valid to be removed
!storedList.get(k).getName().equalsIgnoreCase("remove") &&
i != k )
{
if(storedList.get(i).getLastModified() >= storedList.get(k).getLastModified())
{
storedList.get(k).setName("remove");
System.out.println("Set To Remove");
}
else
{
System.out.println("Not Older");
}
}
}
}
Final Pass to remove Objects:
System.out.println("size: " + storedList.size());
for (int i= storedList.size() - 1; i >= 0; i--)
{
if (storedList.get(i).getName().equalsIgnoreCase("remove"))
{
System.out.println("removed: " + storedList.get(i).getName());
storedList.remove(i);
}
}
System.out.println("size: " + storedList.size());
You need to make PLSQLItemStore implement hashCode and equals methods and then you can use Set to remove the duplicates.
public class PLSQLItemStore {
private String name;
#Override
public int hashCode() {
int hash = 7;
hash = 47 * hash + (this.name != null ? this.name.hashCode() : 0);
return hash;
}
#Override
public boolean equals(Object obj) {
if (obj == null) {
return false;
}
if (getClass() != obj.getClass()) {
return false;
}
final PLSQLItemStore other = (PLSQLItemStore) obj;
if ((this.name == null) ? (other.name != null) : !this.name.equals(other.name)) {
return false;
}
return true;
}
}
And then just do Set<PLSQLItemStore> withoutDups = new HashSet<>(storedList);
P.S. equals and hashCode are generated by NetBeans IDE.
Put them in a Guava ArrayListMultimap<String,PLSQLItemStore>.
Add each PLSQLItemStore using name as the key.
When you're done adding, loop through the multimap, sort each List with a Comparator<PLSQLItemStore> which sorts by dateLastModified, and pull out the last entry of each List - it will be the latest PLSQLItemStore.
Put these entries in another Map<String,PLSQLItemStore> (or List<PLSQLItemStore>, if you no longer care about the name) and throw away the ArrayListMultimap.
Building off of Petr Mensik's answer, you should implement equals and hashCode. From there, you can put items into the map. If you come across a duplicate, you can decide then what to do:
Map<String, PLSQLItemStore> storeMap = new HashMap<String, PLSQLItemStore>();
for(PLSQLItemStore currentStore : storedList) {
// See if an item exists in the map with this name
PLSQLItemStore buffStore = storeMap.get(currentStore.getName();
// If this value was never in the map, put it in the map and move on
if(buffStore == null) {
storeMap.put(currentStore.getName(), currentStore);
continue;
}
// If we've gotten here, then something is in buffStore.
// If buffStore is newer, put it in the map. Otherwise, do nothing
// (this might be backwards -- I didn't quite follow your logic.
// Feel free to correct me
if(buffStore.getLastModified() > currentStore.getLastModified())
storeMap.put(currentStore.getName(), currentStore);
}
Your map is dup-free. Because Map is a Collection, you can iterate through it later in your code:
for(PLSQLItemStore currentStore : storeMap) {
// Do whatever you want with your items
}
I use apache-commons-beanutils DynaBean class in order to fetch rows from a database and to handle them outside of the mysql function.
is there a way to convert a DynaBean to a List without iterating through each row and manually creating the list ?
thanks!
so far I didn't get any answers so I wrote the function that iterates through the rows and creates an ArrayList of HashMap type (String, Object).
public ArrayList<HashMap<String,Object>> convertDynaBeanListToArrayList(List<DynaBean> theList) {
ArrayList<HashMap<String,Object>> result = new ArrayList<HashMap<String,Object>>();
DynaProperty[] dynaProperties = null;
for (Integer i=0;i<theList.size();i++) {
DynaBean row = theList.get(i);
HashMap<String,Object> resultRow=new HashMap<String,Object>();
// each raw got the same column names, no need to fetch this for every line
if (dynaProperties == null) {
dynaProperties = row.getDynaClass().getDynaProperties();
}
for (Integer j=0;j<dynaProperties.length;j++) {
String columnName=dynaProperties[j].getName();
resultRow.put(columnName, row.get(columnName));
}
result.add(resultRow);
}
return result;
}
How could I go about detecting (returning true/false) whether an ArrayList contains more than one of the same element in Java?
Many thanks,
Terry
Edit
Forgot to mention that I am not looking to compare "Blocks" with each other but their integer values. Each "block" has an int and this is what makes them different.
I find the int of a particular Block by calling a method named "getNum" (e.g. table1[0][2].getNum();
Simplest: dump the whole collection into a Set (using the Set(Collection) constructor or Set.addAll), then see if the Set has the same size as the ArrayList.
List<Integer> list = ...;
Set<Integer> set = new HashSet<Integer>(list);
if(set.size() < list.size()){
/* There are duplicates */
}
Update: If I'm understanding your question correctly, you have a 2d array of Block, as in
Block table[][];
and you want to detect if any row of them has duplicates?
In that case, I could do the following, assuming that Block implements "equals" and "hashCode" correctly:
for (Block[] row : table) {
Set set = new HashSet<Block>();
for (Block cell : row) {
set.add(cell);
}
if (set.size() < 6) { //has duplicate
}
}
I'm not 100% sure of that for syntax, so it might be safer to write it as
for (int i = 0; i < 6; i++) {
Set set = new HashSet<Block>();
for (int j = 0; j < 6; j++)
set.add(table[i][j]);
...
Set.add returns a boolean false if the item being added is already in the set, so you could even short circuit and bale out on any add that returns false if all you want to know is whether there are any duplicates.
Improved code, using return value of Set#add instead of comparing the size of list and set.
public static <T> boolean hasDuplicate(Iterable<T> all) {
Set<T> set = new HashSet<T>();
// Set#add returns false if the set does not change, which
// indicates that a duplicate element has been added.
for (T each: all) if (!set.add(each)) return true;
return false;
}
With Java 8+ you can use Stream API:
boolean areAllDistinct(List<Block> blocksList) {
return blocksList.stream().map(Block::getNum).distinct().count() == blockList.size();
}
If you are looking to avoid having duplicates at all, then you should just cut out the middle process of detecting duplicates and use a Set.
Improved code to return the duplicate elements
Can find duplicates in a Collection
return the set of duplicates
Unique Elements can be obtained from the Set
public static <T> List getDuplicate(Collection<T> list) {
final List<T> duplicatedObjects = new ArrayList<T>();
Set<T> set = new HashSet<T>() {
#Override
public boolean add(T e) {
if (contains(e)) {
duplicatedObjects.add(e);
}
return super.add(e);
}
};
for (T t : list) {
set.add(t);
}
return duplicatedObjects;
}
public static <T> boolean hasDuplicate(Collection<T> list) {
if (getDuplicate(list).isEmpty())
return false;
return true;
}
I needed to do a similar operation for a Stream, but couldn't find a good example. Here's what I came up with.
public static <T> boolean areUnique(final Stream<T> stream) {
final Set<T> seen = new HashSet<>();
return stream.allMatch(seen::add);
}
This has the advantage of short-circuiting when duplicates are found early rather than having to process the whole stream and isn't much more complicated than just putting everything in a Set and checking the size. So this case would roughly be:
List<T> list = ...
boolean allDistinct = areUnique(list.stream());
If your elements are somehow Comparable (the fact that the order has any real meaning is indifferent -- it just needs to be consistent with your definition of equality), the fastest duplicate removal solution is going to sort the list ( 0(n log(n)) ) then to do a single pass and look for repeated elements (that is, equal elements that follow each other) (this is O(n)).
The overall complexity is going to be O(n log(n)), which is roughly the same as what you would get with a Set (n times long(n)), but with a much smaller constant. This is because the constant in sort/dedup results from the cost of comparing elements, whereas the cost from the set is most likely to result from a hash computation, plus one (possibly several) hash comparisons. If you are using a hash-based Set implementation, that is, because a Tree based is going to give you a O( n logĀ²(n) ), which is even worse.
As I understand it, however, you do not need to remove duplicates, but merely test for their existence. So you should hand-code a merge or heap sort algorithm on your array, that simply exits returning true (i.e. "there is a dup") if your comparator returns 0, and otherwise completes the sort, and traverse the sorted array testing for repeats. In a merge or heap sort, indeed, when the sort is completed, you will have compared every duplicate pair unless both elements were already in their final positions (which is unlikely). Thus, a tweaked sort algorithm should yield a huge performance improvement (I would have to prove that, but I guess the tweaked algorithm should be in the O(log(n)) on uniformly random data)
If you want the set of duplicate values:
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
public class FindDuplicateInArrayList {
public static void main(String[] args) {
Set<String> uniqueSet = new HashSet<String>();
List<String> dupesList = new ArrayList<String>();
for (String a : args) {
if (uniqueSet.contains(a))
dupesList.add(a);
else
uniqueSet.add(a);
}
System.out.println(uniqueSet.size() + " distinct words: " + uniqueSet);
System.out.println(dupesList.size() + " dupesList words: " + dupesList);
}
}
And probably also think about trimming values or using lowercase ... depending on your case.
Simply put:
1) make sure all items are comparable
2) sort the array
2) iterate over the array and find duplicates
To know the Duplicates in a List use the following code:It will give you the set which contains duplicates.
public Set<?> findDuplicatesInList(List<?> beanList) {
System.out.println("findDuplicatesInList::"+beanList);
Set<Object> duplicateRowSet=null;
duplicateRowSet=new LinkedHashSet<Object>();
for(int i=0;i<beanList.size();i++){
Object superString=beanList.get(i);
System.out.println("findDuplicatesInList::superString::"+superString);
for(int j=0;j<beanList.size();j++){
if(i!=j){
Object subString=beanList.get(j);
System.out.println("findDuplicatesInList::subString::"+subString);
if(superString.equals(subString)){
duplicateRowSet.add(beanList.get(j));
}
}
}
}
System.out.println("findDuplicatesInList::duplicationSet::"+duplicateRowSet);
return duplicateRowSet;
}
best way to handle this issue is to use a HashSet :
ArrayList<String> listGroupCode = new ArrayList<>();
listGroupCode.add("A");
listGroupCode.add("A");
listGroupCode.add("B");
listGroupCode.add("C");
HashSet<String> set = new HashSet<>(listGroupCode);
ArrayList<String> result = new ArrayList<>(set);
Just print result arraylist and see the result without duplicates :)
This answer is wrriten in Kotlin, but can easily be translated to Java.
If your arraylist's size is within a fixed small range, then this is a great solution.
var duplicateDetected = false
if(arrList.size > 1){
for(i in 0 until arrList.size){
for(j in 0 until arrList.size){
if(i != j && arrList.get(i) == arrList.get(j)){
duplicateDetected = true
}
}
}
}
private boolean isDuplicate() {
for (int i = 0; i < arrayList.size(); i++) {
for (int j = i + 1; j < arrayList.size(); j++) {
if (arrayList.get(i).getName().trim().equalsIgnoreCase(arrayList.get(j).getName().trim())) {
return true;
}
}
}
return false;
}
String tempVal = null;
for (int i = 0; i < l.size(); i++) {
tempVal = l.get(i); //take the ith object out of list
while (l.contains(tempVal)) {
l.remove(tempVal); //remove all matching entries
}
l.add(tempVal); //at last add one entry
}
Note: this will have major performance hit though as items are removed from start of the list.
To address this, we have two options. 1) iterate in reverse order and remove elements. 2) Use LinkedList instead of ArrayList. Due to biased questions asked in interviews to remove duplicates from List without using any other collection, above example is the answer. In real world though, if I have to achieve this, I will put elements from List to Set, simple!
/**
* Method to detect presence of duplicates in a generic list.
* Depends on the equals method of the concrete type. make sure to override it as required.
*/
public static <T> boolean hasDuplicates(List<T> list){
int count = list.size();
T t1,t2;
for(int i=0;i<count;i++){
t1 = list.get(i);
for(int j=i+1;j<count;j++){
t2 = list.get(j);
if(t2.equals(t1)){
return true;
}
}
}
return false;
}
An example of a concrete class that has overridden equals() :
public class Reminder{
private long id;
private int hour;
private int minute;
public Reminder(long id, int hour, int minute){
this.id = id;
this.hour = hour;
this.minute = minute;
}
#Override
public boolean equals(Object other){
if(other == null) return false;
if(this.getClass() != other.getClass()) return false;
Reminder otherReminder = (Reminder) other;
if(this.hour != otherReminder.hour) return false;
if(this.minute != otherReminder.minute) return false;
return true;
}
}
ArrayList<String> withDuplicates = new ArrayList<>();
withDuplicates.add("1");
withDuplicates.add("2");
withDuplicates.add("1");
withDuplicates.add("3");
HashSet<String> set = new HashSet<>(withDuplicates);
ArrayList<String> withoutDupicates = new ArrayList<>(set);
ArrayList<String> duplicates = new ArrayList<String>();
Iterator<String> dupIter = withDuplicates.iterator();
while(dupIter.hasNext())
{
String dupWord = dupIter.next();
if(withDuplicates.contains(dupWord))
{
duplicates.add(dupWord);
}else{
withoutDupicates.add(dupWord);
}
}
System.out.println(duplicates);
System.out.println(withoutDupicates);
A simple solution for learners.
//Method to find the duplicates.
public static List<Integer> findDublicate(List<Integer> numList){
List<Integer> dupLst = new ArrayList<Integer>();
//Compare one number against all the other number except the self.
for(int i =0;i<numList.size();i++) {
for(int j=0 ; j<numList.size();j++) {
if(i!=j && numList.get(i)==numList.get(j)) {
boolean isNumExist = false;
//The below for loop is used for avoid the duplicate again in the result list
for(Integer aNum: dupLst) {
if(aNum==numList.get(i)) {
isNumExist = true;
break;
}
}
if(!isNumExist) {
dupLst.add(numList.get(i));
}
}
}
}
return dupLst;
}