Java lambda expressions and memory allocation - java

Let's say we have three methods like these. They all do the same, but how different they are in terms of memory allocation and efficiency? Method one will create instances of Function during each call, but will the second method do the same? Should one always use the third version or either version is safe and the JIT compiler will take care of the memory optimization?
class Test {
Map<String, Set<String>> mapOfSets = new HashMap<>();
static final Function<String, Set<String>> FUNCTION = s -> new HashSet<>();
void method1(String key, String value) {
Function<String, Set<String>> func = s -> new HashSet<>();
mapOfSets.computeIfAbsent(key, func).add(value);
}
void method2(String key, String value) {
mapOfSets.computeIfAbsent(key, s -> new HashSet<>()).add(value);
}
void method3(String key, String value) {
mapOfSets.computeIfAbsent(key, FUNCTION).add(value);
}
}

There are two ways to answer this:
The Java Language Specification section that describes the evaluation of a lambda expression is written to give compilers / implementations flexibility in whether or not a new object is created. Your question boils down to whether or not the lambda objects are reused ... in the three versions of the code. According to the JLS, the answer is implementation dependent. The only way to be sure is to dump out the native code produced by the JIT compiler1.
Given that the behavior and therefore the performance will depend on the Java implementation, it is debatable whether one should pick one form over the other:
On the one hand, the third form may be faster.
On the other hand, the second and (maybe) first forms are more readable.
Should one write applications to be a bit faster at the expense of readability? (Q1)
Should one do that, in the face of an expectation that the next version of the compiler may make the hand optimization redundant? (Q2)
This is a matter of opinion, but my opinion is that the answers to Q1 & Q2 is "No" under most circumstances. Leave it to the JIT compiler to deal with optimization unless
profiling tells you that the optimization is significant to the application's overall performance,
the application's overall performance really matters.
1 - See How to see JIT-compiled code in JVM?.

As comments have mentioned, this can change depending on what Java implementation you use.
For the hotspot jvm (the normal/default java implementation) you can expect all 3 options to be identical in terms of performance. You may think at first that 3 might be better since 1 and 2 might need to create a new Function object each time they are called. However, your assumption that a new object needs to be created each time for method1 (and 2) is false since a non-capturing lambda will be cached at the call site, so the same instance will be reused for each call just like with method3 and you would not see any difference.
this answer is and excellent overview of the topic goes into more detail
So you can use any of the three without worry in this case so use whichever is the most clear for your situation.

Related

AtomicInteger & lambda expressions in single-threaded app

I need to modify a local variable inside a lambda expression in a JButton's ActionListener and since I'm not able to modify it directly, I came across the AtomicInteger type.
I implemented it and it works just fine but I'm not sure if this is a good practice or if it is the correct way to solve this situation.
My code is the following:
newAnchorageButton.addActionListener(e -> {
AtomicInteger anchored = new AtomicInteger();
anchored.set(0);
cbSets.forEach(cbSet ->
cbSet.forEach(cb -> {
if (cb.isSelected())
anchored.incrementAndGet();
})
);
// more code where I use the 'anchored' variable...
}
I'm not sure if this is the right way to solve this since I've read that AtomicInteger is used mostly for concurrency-related applications and this program is single-threaded, but at the same time I can't find another way to solve this.
I could simply use two nested for-loops to go over those arrays but I'm trying to reduce the method's cognitive complexity as much as I can according to the sonarlint vscode extension, and leaving those for-loops theoretically increases the method complexity and therefore its readability and maintainability.
Replacing the for-loops with lambda expressions reduces the cognitive complexity but maybe I shouldn't pay that much attention to it.
While it is safe enough in single-threaded code, it would be better to count them in a functional way, like this:
long anchored = cbSets.stream() // get a stream of the sets
.flatMap(List::stream) // flatten to list of cb's
.filter(JCheckBox::isSelected) // only selected ones
.count(); // count them
Instead of mutating an accumulator, we limit the flattened stream to only the ones we're interested in and ask for the count.
More generally, though, it is always possible to sum things up or generally aggregate the values without a mutable variable. Consider:
record Country(int population) { }
countries.stream()
.mapToInt(Country::population)
.reduce(0, Math::addExact)
Note: we never mutate any values; instead, we combine each successive value with the preceding one, producing a new value. One could use sum() but I prefer reduce(0, Math::addExact) to avoid the possibility of overflow.
and leaving those for-loops theoretically increases the method complexity and therefore its readability and maintainability.
This is obvious horsepuckey. x.forEach(foo -> bar) is not 'cognitively simpler' than for (var foo : x) bar; - you can map each AST node straight over from one to the other.
If a definition is being used to define complexity which concludes that one is significantly more complex than the other, then the only correct conclusion is that the definition is silly and should be fixed or abandoned.
To make it practical: Yes, introducing AtomicInteger, whilst performance wise it won't make one iota of difference, does make the code way more complicated. AtomicInteger's simple existence in the code suggests that concurrency is relevant here. It isn't, so you'd have to add a comment to explain why you're using it. Comments are evil. (They imply the code does not speak for itself, and they cannot be tested in any way). They are often the least evil, but evil they are nonetheless.
The general 'trick' for keeping lambda-based code cognitively easily followed is to embrace the pipeline:
You write some code that 'forms' a stream. This can be as simple as list.stream(), but sometimes you do some stream joining or flatmapping a collection of collections.
You have a pipeline of operations that operate on single elements in the stream and do not refer to the whole or to any neighbour.
At the end, you reduce (using collect, reduce, max - some terminator) such that the reducing method returns what you need.
The above model (and the other answer follows it precisely) tends to result in code that is as readable/complex as the 'old style' code, and rarely (but sometimes!) more readable, and significantly less complicated. Deviate from it and the result is virtually always considerably more complicated - a clear loser.
Not all for loops in java fit the above model. If it doesn't fit, then trying to force that particular square peg into the round hole will take a lot of effort and almost always results in code that is significantly worse: Either an order of magnitude slower or considerably more cognitively complicated.
It also means that it is virtually never 'worth' rewriting perfectly fine readable non-stream based code into stream based code; at best it becomes a percentage point more readable according to some personal tastes, with no significant universally agreed upon improvement.
Turn off that silly linter rule. The fact that it considers the above 'less' complex, and that it evidently determines that for (var foo : x) bar; is 'more complicated' than x.forEach(foo -> bar) is proof enough that it's hurting way more than it is helping.
I have the following to add to the two other answers:
Two general good practices in your code are in question:
Lambdas shouldn't be longer than 3-4 lines
Except in some precise cases, lambdas of stream operations should be stateless.
For #1, consider extracting the code of the lambda to a private method for example, when it's getting too long.
You will probably gain in readability, and you will also probably gain in better separating UI from business logic.
For #2, you are probably not concerned since you are working in a single thread at the moment, but streams can be parallelized, and they may not always execute exactly as you think it does.
For that reason, it's always better to keep the code stateless in stream pipeline operations. Otherwise you might be surprised.
More generally, streams are very good, very concise, but sometimes it's just better to do the same with good old loops.
Don't hesitate to come back to classic loops.
When Sonar tells you that the complexity is too high, in fact, you should try to factorize your code: split into smaller methods, improve the model of your objects, etc.

Do lambda expressions have any use other than saving lines of code?

Do lambda expressions have any use other than saving lines of code?
Are there any special features provided by lambdas which solved problems which weren't easy to solve? The typical usage I've seen is that instead of writing this:
Comparator<Developer> byName = new Comparator<Developer>() {
#Override
public int compare(Developer o1, Developer o2) {
return o1.getName().compareTo(o2.getName());
}
};
We can use a lambda expression to shorten the code:
Comparator<Developer> byName =
(Developer o1, Developer o2) -> o1.getName().compareTo(o2.getName());
Lambda expressions do not change the set of problems you can solve with Java in general, but definitely make solving certain problems easier, just for the same reason we’re not programming in assembly language anymore. Removing redundant tasks from the programmer’s work makes life easier and allows to do things you wouldn’t even touch otherwise, just for the amount of code you would have to produce (manually).
But lambda expressions are not just saving lines of code. Lambda expressions allow you to define functions, something for which you could use anonymous inner classes as a workaround before, that’s why you can replace anonymous inner classes in these cases, but not in general.
Most notably, lambda expressions are defined independently to the functional interface they will be converted to, so there are no inherited members they could access, further, they can not access the instance of the type implementing the functional interface. Within a lambda expression, this and super have the same meaning as in the surrounding context, see also this answer. Also, you can not create new local variables shadowing local variables of the surrounding context. For the intended task of defining a function, this removes a lot of error sources, but it also implies that for other use cases, there might be anonymous inner classes which can not be converted to a lambda expression, even if implementing a functional interface.
Further, the construct new Type() { … } guarantees to produce a new distinct instance (as new always does). Anonymous inner class instances always keep a reference to their outer instance if created in a non-static context¹. In contrast, lambda expressions only capture a reference to this when needed, i.e. if they access this or a non-static member. And they produce instances of an intentionally unspecified identity, which allows the implementation to decide at runtime whether to reuse existing instances (see also “Does a lambda expression create an object on the heap every time it's executed?”).
These differences apply to your example. Your anonymous inner class construct will always produce a new instance, also it may capture a reference to the outer instance, whereas your (Developer o1, Developer o2) -> o1.getName().compareTo(o2.getName()) is a non-capturing lambda expression that will evaluate to a singleton in typical implementations. Further, it doesn’t produce a .class file on your hard drive.
Given the differences regarding both, semantic and performance, lambda expressions may change the way programmers will solve certain problems in the future, of course, also due to the new APIs embracing ideas of functional programming utilizing the new language features. See also Java 8 lambda expression and first-class values.
¹ From JDK 1.1 to JDK 17. Starting with JDK 18, inner classes may not retain a reference to the outer instance if it is not used. For compatibility reasons, this requires the inner class not be serializable. This only applies if you (re)compile the inner class under JDK 18 or newer with target JDK 18 or newer. See also JDK-8271717
Programming languages are not for machines to execute.
They are for programmers to think in.
Languages are a conversation with a compiler to turn our thoughts into something a machine can execute. One of the chief complaints about Java from people who come to it from other languages (or leave it for other languages) used to be that it forces a certain mental model on the programmer (i.e. everything is a class).
I'm not going to weigh in on whether that's good or bad: everything is trade-offs. But Java 8 lambdas allow programmers to think in terms of functions, which is something you previously could not do in Java.
It's the same thing as a procedural programmer learning to think in terms of classes when they come to Java: you see them gradually move from classes that are glorified structs and have 'helper' classes with a bunch of static methods and move on to something that more closely resembles a rational OO design (mea culpa).
If you just think of them as a shorter way to express anonymous inner classes then you are probably not going to find them very impressive in the same way that the procedural programmer above probably didn't think classes were any great improvement.
Saving lines of code can be viewed as a new feature, if it enables you to write a substantial chunk of logic in a shorter and clearer manner, which takes less time for others to read and understand.
Without lambda expressions (and/or method references) Stream pipelines would have been much less readable.
Think, for example, how the following Stream pipeline would have looked like if you replaced each lambda expression with an anonymous class instance.
List<String> names =
people.stream()
.filter(p -> p.getAge() > 21)
.map(p -> p.getName())
.sorted((n1,n2) -> n1.compareToIgnoreCase(n2))
.collect(Collectors.toList());
It would be:
List<String> names =
people.stream()
.filter(new Predicate<Person>() {
#Override
public boolean test(Person p) {
return p.getAge() > 21;
}
})
.map(new Function<Person,String>() {
#Override
public String apply(Person p) {
return p.getName();
}
})
.sorted(new Comparator<String>() {
#Override
public int compare(String n1, String n2) {
return n1.compareToIgnoreCase(n2);
}
})
.collect(Collectors.toList());
This is much harder to write than the version with lambda expressions, and it's much more error prone. It's also harder to understand.
And this is a relatively short pipeline.
To make this readable without lambda expressions and method references, you would have had to define variables that hold the various functional interface instances being used here, which would have split the logic of the pipeline, making it harder to understand.
Internal iteration
When iterating Java Collections, most developers tend to get an element and then process it. This is, take that item out and then use it, or reinsert it, etc. With pre-8 versions of Java, you can implement an inner class and do something like:
numbers.forEach(new Consumer<Integer>() {
public void accept(Integer value) {
System.out.println(value);
}
});
Now with Java 8 you can do better and less verbose with:
numbers.forEach((Integer value) -> System.out.println(value));
or better
numbers.forEach(System.out::println);
Behaviors as arguments
Guess the following case:
public int sumAllEven(List<Integer> numbers) {
int total = 0;
for (int number : numbers) {
if (number % 2 == 0) {
total += number;
}
}
return total;
}
With Java 8 Predicate interface you can do better like so:
public int sumAll(List<Integer> numbers, Predicate<Integer> p) {
int total = 0;
for (int number : numbers) {
if (p.test(number)) {
total += number;
}
}
return total;
}
Calling it like:
sumAll(numbers, n -> n % 2 == 0);
Source: DZone - Why We Need Lambda Expressions in Java
There are many benefits of using lambdas instead of inner class following as below:
Make the code more compactly and expressive without introducing more language syntax semantics. you already gave an example in your question.
By using lambdas you are happy to programming with functional-style operations on streams of elements, such as map-reduce transformations on collections. see java.util.function & java.util.stream packages documentation.
There is no physical classes file generated for lambdas by compiler. Thus, it makes your delivered applications smaller. How Memory assigns to lambda?
The compiler will optimize lambda creation if the lambda doesn't access variables out of its scope, which means the lambda instance only create once by the JVM. for more details you can see #Holger's answer of the question Is method reference caching a good idea in Java 8?
.
Lambdas can implements multi marker interfaces besides the functional interface, but the anonymous inner classes can't implements more interfaces, for example:
// v--- create the lambda locally.
Consumer<Integer> action = (Consumer<Integer> & Serializable) it -> {/*TODO*/};
Lambdas are just syntactic sugar for anonymous classes.
Before lambdas, anonymous classes can be used to achieve the same thing. Every lambda expression can be converted to an anonymous class.
If you are using IntelliJ IDEA, it can do the conversion for you:
Put the cursor in the lambda
Press alt/option + enter
To answer your question, the matter of fact is lambdas don’t let you do anything that you couldn’t do prior to java-8, rather it enables you to write more concise code. The benefits of this, is that your code will be clearer and more flexible.
One thing I don't see mentioned yet is that a lambda lets you define functionality where it's used.
So if you have some simple selection function you don't need to put it in a separate place with a bunch of boilerplate, you just write a lambda that's concise and locally relevant.
Yes many advantages are there.
No need to define whole class we can pass implementation of function it self as reference.
Internally creation of class will create .class file while if you use lambda then class creation is avoided by compiler because in lambda you are passing function implementation instead of class.
Code re-usability is higher then before
And as you said code is shorter then normal implementation.
Function composition and higher order functions.
Lambda functions can be used as building blocks towards building "higher order functions" or performing "function composition". Lambda functions can be seen as reusable building blocks in this sense.
Example of Higher Order Function via lambda:
Function<IntUnaryOperator, IntUnaryOperator> twice = f -> f.andThen(f);
IntUnaryOperator plusThree = i -> i + 3;
var g = twice.apply(plusThree);
System.out.println(g.applyAsInt(7))
Example Function Composition
Predicate<String> startsWithA = (text) -> text.startsWith("A");
Predicate<String> endsWithX = (text) -> text.endsWith("x");
Predicate<String> startsWithAAndEndsWithX =
(text) -> startsWithA.test(text) && endsWithX.test(text);
String input = "A hardworking person must relax";
boolean result = startsWithAAndEndsWithX.test(input);
System.out.println(result);
One benefit not yet mentioned is my favorite: lambdas make deferred execution really easy to write.
Log4j2 uses this for example, where instead of passing a value to conditionally log (a value that may have been expensive to calculate), you can now pass a lambda to calculate that expensive value. The difference being that before, that value was being calculated every time whether it got used or not, whereas now with lambdas if your log level decides not to log that statement, then the lambda never gets called, and that expensive calculation never takes place -- a performance boost!
Could that be done without lambdas? Yes, by surrounding each log statement with if() checks, or using verbose anonymous class syntax, but at the cost of horrible code noise.
Similar examples abound. Lambdas are like having your cake and eating it too: all the efficiency of gnarly multi-line optimized code squeezed down into the visual elegance of one-liners.
Edit: As requested by commenter, an example:
Old way, where expensiveCalculation() always gets called regardless of whether this log statement will actually use it:
logger.trace("expensive value was {}", expensiveCalculation());
New lambda efficient way, where expensiveCalculation() call won't happen unless trace log level is enabled:
logger.trace("expensive value was {}", () -> expensiveCalculation());

Is it inefficient to reference a hashmap in another class multiple times?

Class A
Class A {
public HashMap <Integer,Double> myHashMap;
public A(){
myHashMap = new HashMap()
}
}
class B
Class B {
private A anInstanceOfA;
public B(A a) {
this.anInstanceOfA = a;
}
aMethod(){
anInstanceOfA.myHashMap.get(1); <--getting hashmap value for key = 1
//proceed to use this value, but instead of storing it to a variable
// I use anInstanceOfA.myHashMap.get(1) each time I need that value.
}
In aMethod() I use anInstanceOfA.myHashMap.get(1) to get the value for key = 1. I do that multiple times in aMethod() and I'm wondering if there is any difference in efficiency between using anInstanceOfA.myHashMap.get(1) multiple times or just assigning it to a variable and using the assigned variable multiple times.
I.E
aMethod(){
theValue = anInstanceOfA.myHashMap.get(1);
//proceed to use theValue in my calculations. Is there a difference in efficiency?
}
In theory the JVM can optimise away the difference to be very small (compared to what the rest of the program is doing). However I prefer to make it a local variable as I believe it makes the code clearer (as I can give it a meaningful name)
I suggest you do what you believe is simpler and clearer, unless you have measured a performance difference.
The question seems to be that you want to know if it is more expensive to call get(l) multiple times instead of just once.
The answer to this is yes. The question is if it is enough to matter. The definitive answer is to ask the JVM by profiling. You can, however, guess by looking at the get method in your chosen implementation and consider if you want to do all that work every time.
Note, that there is another reason that you might want to put the value in a variable, namely that you can give it a telling name, making your program easier to maintain in the future.
This seems like a micro-optimization, that really doesn't make much difference in the scheme of things.
As #peter already suggested, 'optimizing' for style/readability is a better rationale for choosing the second option over the first one. Optimizing for speed only starts making sense if you really do a lot of calls, or if the call is very expensive -- both are probably not the case in your current example.
Put it in a local variable, for multiple reasons:
It will be much faster. Reading a local variable is definitely cheaper than a HashMap lookup, probably by a factor of 10-100x.
You can give the local variable a good, meaningful name
Your code will probably be shorter / simpler overall, particularly if you use the local variable many times.
You may get bugs during future maintenance if someone modifies one of the get calls but forgets to change the others. This is a problem whenever you are duplicating code. Using a local variable minimises this risk.
In concurrent situations, the value could theoretically change if the HashMap is modified by some other code. You normally want to get the value once and work with the same value. Although if you are running into problems of this nature you should probably be looking at other solutions first (locking, concurrent collections etc.)

Why does Scala implement for as a closure?

Recent events on the blogosphere have indicated that a possible performance problem with Scala is its use of closures to implement for.
What are the reasons for this design decision, as opposed to a C or Java-style "primitive for" - that is one which will be turned into a simple loop?
(I'm making a distinction between Java's for and its "foreach" construct here, as the latter involves an implicit Iterator).
More detail, following up from Peter. This bit of Scala:
object ScratchFor {
def main(args : Array[String]) : Unit = {
for (val s <- args) {
println(s)
}
}
}
creates 3 classes: ScratchFor$$anonfun$main$1.class ScratchFor$.class ScratchFor.class
ScratchFor::main just forwards to the companion object, ScratchFor$.MODULE$::main which spins up an ScratchFor$$anonfun$main$1 (which is an implementation of AbstractFunction1).
It's in the apply() method of this anonymous inner impl of AbstractFunction1 that the actual code lives, which is effectively the loop body.
I don't see HotSpot being able to rewrite this into a simple loop. Happy to be proved wrong on this, though.
Traditional for loops are clumsy, verbose and error-prone. I think it is proof enough of this that "for-each" loops where added to Java, C# and C++, but if you want more details you may check item 46 of Effective Java.
Now, for-each loops are still much faster than Scala for-comprehension, but they are also much less powerful (and more clumsy) because they cannot return values. If you want to transform or filter a collection (or do both to a group of collections), you'll still have to handle all the mechanical details of constructing the result collection in addition to computing the values. Not to mention it inevitably uses some mutable state.
Finally, even though for-each loops are adequate enough for collections, they are not suited to other monadic classes (of which collections are a subset of).
So Scala has a general method which takes care of all of the above. Yes, it is slower, but the goal is to have the compiler effectively optimise it well enough so that this doesn't become a hindrance (and, of course, JIT could help here as well).
That has not been accomplished to this date, but -optimise has reduced a lot of ground between common for-each loops and for-comprehensions on the latest versions of Scala. If performance is essential, you can always use while or tail recursion.
Now, it would be possibly for Scala to have common for loops or for-each loops as special cases specifically targeted at performance issues (since for-comprehensions can do everything they do). However, that violates two principles that guide Scala's design:
Reduce complexity. Yes, contrary to what some say, that is a design goal, and special cases that serve no other purpose other than optimise performance -- even though a workable solution exists for performance cases -- would needlessly increase the complexity of the language.
Scalability. This is in the sense that the use can scale the language for any size of problem by writing libraries. The point here is that having the compiler optimise one particular class, such as Range, would make it impossible for the user to create a replacement class that would perform just as well.
The for comprehension in Scala is a powerful general-purpose looping and pattern-matching construct. Look at what it can do:
case class Person(first: String, last: String) {}
val people = List(Person("Isaac","Newton"), Person("Michael","Jordan"))
val lastfirst = for (Person(f,l) <- people) yield l+", "+f
for (n <- lastfirst) println(n)
The second case looks pretty straightforward--take each item in a collection and print it. But the first takes apart a list containing a custom data structure and transforms it into a different collection type!
The first for there highlights only a small portion of the capability of the construct; it is both extremely powerful and extremely general. In order to maintain this power, the for must be able to turn into something very general, which means closures. Then the question is: do you also introduce special cases that operate on known collections in simple ways with improved performance? The answer thus far has been mostly no, instead preferring solutions that optimize the general closure-taking methods that for turns into.
Whether this is useful for you in particular depends on whether you are using the general capabilities a lot (in which case you will be glad) or not (in which case you may wish progress was faster).
Still, try -optimize. It often usefully speeds up simple for-comprehensions these days.
The for-comprehension is much more than a simple loop.
If you need an imperative loop, use while. If you want to write performant code in Scala, you need to know this. Just like you have to know about language implementation when you want to write fast code in every other language.
So, since the for-comprehension is not a simple loop, I hope you understand that it's not compiled down to a simple loop.
I would assume using a closure is a general solution. A more optimal solution in some cases would be to "inline" the closure as a loop and eliminate the need to create an object. Perhaps the Scala designers feel the JIT should do this, rather having the compiler do this.
Let's say in Java this is the same as writing
public static void main(String... args) {
for_loop(args, new Function<String>() {
public void apply(String s) {
System.out.println(s);
}
});
}
interface Function<T> {
void apply(T s);
}
public static <T> void for_loop(T... ts, Function<T> tFunc) {
for(T t: ts) tFunc.apply(t);
}
This is fairly easy to inline (if you're a human). What is surprising is that Scala doesn't have an intrinsic to perform the optimisation to eliminate the need for a new object. Certainly the JIT could do it in theory, but in practise, it might be a while before it handles this specific case.
I'm surprised that no one has mentioned one of the pitfalls you can get into if for does not create a closure.
In Python for example:
ls = [None] * 3
for i in [0, 1, 2]:
ls[i] = lambda: i
print(ls[0]())
print(ls[1]())
print(ls[2]())
This prints 2 2 2, because i has a longer lifetime than the for loop. I run into this trap all the time in Python and R.
So even in the very simplest of cases, it is important for for in Scala to be implemented using an anonymous function, because it creates an environment to store variables.

Java = Return Object list/array vs. Result-Object (the same with method parameters)

This might seem to be a strange question: I am struggling to decide whether it is a good practice and "efficient" to work with "Typed Objects" on a very granular level.
public Object[] doSomething() {
Object[] resultList = new Object[] {new Foo(), new Bar()};
return resultList;
}
versus
public Result doSomething() {
Result result = new Result();
result.foo = new Foo();
result.bar = new Bar();
return result;
}
public class Result{
Foo foo;
Bar bar;
}
My question is concrete as follows:
In terms of CPU Cycles (as a relative figure), how much does the second approach consume more resources. (like 100% more)
The same question in regard to memory consumption
NB (these two are questions to understand it more, its not about premature optimization)
In terms of "good design practice". Do you think version 1 is an absolute No-Go or do you rather think it actually does not matter...Or would you propose never returning "object Arrays" (((in an object oriented programming language)))...
This is something, I am always wondering if I should create dedicated Objects for everything (for passing values) or I should rather use generic objects (and common method parameters...)
The question also applies to
public doSomething(Query query )
versus
public doSomething(Foo foo, Bar bar, Aaaa, a, Bbbbb)
thanks
Markus
3.) In terms of "good design pratice". Do you think version 1 is an absolute No-Go or do you rather think it actually does not matter...Or would you propose never returnung "object Arrays" (((in an object oriented programming langauge/regarding encapsulation ...)))...
Version 1 is absolutely a no-go. It's almost completely untyped. The caller has to know the actual types and where they are in the array, and cast appropriately. You lose any useful compile-time type checking, and the code itself is significantly less clear.
I would never return an Object[] unless the values it contained were constructed with new Object().
I don't believe that defining a Result class and returning that consumes any more resources at run time than constructing an Object[]. (Granted, there's a miniscule cost for storing and loading the class definition.) Do you have data that indicate otherwise?
Returning an untyped object array is poor practice for various reasons, among which are:
It's prone to error.
It's harder to maintain.
Casting back to the "real" type is not free, either.
Regarding your other query:
public doSomething(Query query)
versus
public doSomething(Foo foo, Bar bar)
This is less clear-cut. If packaging up a Foo and a Bar into a Query object makes sense in the problem domain, then I would definitely do it. If it's just a packaging up for the sake of minimizing the number of arguments (that is, there's no "query object" concept in your problem domain), then I would probably not do it. If it's a question of run-time performance, then the answer is (as always) to profile.
I'd have to do an experiment to really know, but I'd guess that the object array would not be significantly faster. It might even be slower. After all, in either case you have to create an object: either the array object or the Result object. With the Result object you have to read the class definition from disk the first time you use it, and the class definition has to float around in memory, so there'd be some extra cost there. But with the array object you have to do casts when you pull the data out, and the JVM has to do bounds checkings on the array (What happens if the caller tries to retrieve resultList[12]?), which also involves extra work. My guess is that if you do it only once or twice, the array would be faster (because of the class load time), but if you do it many times, the dedicated object would be faster (because of the cast and array access time). But I admit I'm just guessing.
In any case, even if the array does have a slight performance edge, the loss in readability and maintainability of the code almost surely isn't worth it.
The absolute worst thing that can happen is if values you're returning in the array are of the same class but have different semantic meanings. Like suppose you did this:
public Object[] getCustomerData(int customerid)
{
String customerName=... however you get it ...
BigDecimal currentDue=...
BigDecimal pastDue=...
return new Object[] {customerName, pastDue, currentDue};
}
... meanwhile, back at the ranch ...
Object[] customerData=getCustomerData(customerid);
BigDecimal pastDue=(BigDecimal)customerData[2];
if (pastDue>0)
sendNastyCollectionLetter();
Do you see the error? I retrieve entry #2 as pastDue when it's supposed to be #1. You could easily imagine this happenning if a programmer in a moment of thoughtlessness counted the fields starting from one instead of zero. Or in a long list if he miscounted and said #14 when it's really #15. As both have the same data type, this will compile and run just fine. But we'll be sending inappropriate collection letters to customers who are not over due. This would be very bad for customer relations.
Okay, maybe this is a bad example -- I just pulled it off the top of my head -- because we would be likely to catch that in testing. But what if the values we switched were rarely used, so that no one thought to include a test scenario for them. Or their effect was subtle, so that an error might slip through testing. For that matter, maybe you wouldn't catch this one in testing if you were rushing a change through, or if the tester slipped up, etc etc.

Categories

Resources