Not Getting expected result in multi-threaded program - java

I'm not getting expected result for below program, I was expecting both producer and consumer method should execute in some sequence, but for some reason only producer method is getting executed.
I have two question here :
I'm not able to understand this behaviour.
Joining both thread together in last line of main method is working properly, I'm not able to understand difference between both.
public class ProducerConsumer {
List<Integer> data = new ArrayList<>();
synchronized void produce() throws InterruptedException {
for (int i = 0; i < 10; i++) {
System.out.println("Producing");
data.add(i);
}
wait();
}
synchronized void consume() throws InterruptedException {
System.out.println("Consuming");
data.clear();
notify();
}
public static void main(String[] args) throws InterruptedException {
ProducerConsumer pc = new ProducerConsumer();
Runnable r2 = ()-> {
try {
pc.produce();
} catch (InterruptedException e) {
e.printStackTrace();
}
};
Thread thread1 = new Thread(r2);
thread1.start();
thread1.join();
Runnable r1 = () -> {
try {
pc.consume();
} catch (InterruptedException e) {
e.printStackTrace();
}
};
Thread thread = new Thread(r1);
thread.start();
thread.join();
}
Output :
Producing
Producing
Producing
Producing
Producing
Producing
Producing
Producing
Producing
Producing

The produce() method ends with wait(). So it blocks until some thread notifies it.
The only thread that does that is the consumer thread. But the consumer thread is started by the main method only after the producer thread has ended. And it can't end until it's been notified. So you have a deadlock.
If you join() only after the two threads are started, then the consumer thread can start without having to wait for the producer thread to be finished. That still doesn't make the program correct since
you have no guarantee that the producer thread will execute first
calling wait() at then end is useless
calling wait() out of a loop checking for a condition is incorrect
if you want methods to execute in sequence, using threads is useless. You can do everything from the main thread.

1) A notify() call does not do anything at all. Unless some other thread is already waiting to be notified.
It's up to you to guarantee that any time one of your threads calls wait(), some other thread will notify() the same object some time after the wait() has begun.
Oracle's Guarded Blocks Tutorial does a pretty good job of explaining exactly how o.wait() and o.notify() work, and it explains how to establish that guarantee.
2) There is virtually no reason to do this:
Thread t = new Thread(r);
t.start();
t.join();
Your program will use less CPU, and it will use less memory, and it will accomplish exactly the same thing if you just call r.run() instead. The entire point of threads is to allow different things to happen concurrently, and there is no concurrency if one thread joins a new thread immediately after creating it. The new Thread object is wasted unless you do something like this with it:
Thread t = new Thread(r);
t.start();
doSomethingElseWhileThread_t_isRunning();
t.join();
3) wait() and notify() are a very low-level means of communicating between threads. Your code will be easier to read and understand if you use higher-level synchronization objects that are built on top of wait() and notify() instead of directly
calling them.
A java.util.concurrent.ArrayBlockingQueue instance would be especially well suited to a "producer/consumer" application.

Related

How to create user defined SettableFuture in java [duplicate]

I am using multi-threading in java for my program.
I have run thread successfully but when I am using Thread.wait(), it is throwing java.lang.IllegalMonitorStateException.
How can I make a thread wait until it will be notified?
You need to be in a synchronized block in order for Object.wait() to work.
Also, I recommend looking at the concurrency packages instead of the old school threading packages. They are safer and way easier to work with.
EDIT
I assumed you meant Object.wait() as your exception is what happens when you try to gain access without holding the objects lock.
wait is defined in Object, and not it Thread. The monitor on Thread is a little unpredictable.
Although all Java objects have monitors, it is generally better to have a dedicated lock:
private final Object lock = new Object();
You can get slightly easier to read diagnostics, at a small memory cost (about 2K per process) by using a named class:
private static final class Lock { }
private final Object lock = new Lock();
In order to wait or notify/notifyAll an object, you need to be holding the lock with the synchronized statement. Also, you will need a while loop to check for the wakeup condition (find a good text on threading to explain why).
synchronized (lock) {
while (!isWakeupNeeded()) {
lock.wait();
}
}
To notify:
synchronized (lock) {
makeWakeupNeeded();
lock.notifyAll();
}
It is well worth getting to understand both Java language and java.util.concurrent.locks locks (and java.util.concurrent.atomic) when getting into multithreading. But use java.util.concurrent data structures whenever you can.
I know this thread is almost 2 years old but still need to close this since I also came to this Q/A session with same issue...
Please read this definition of illegalMonitorException again and again...
IllegalMonitorException is thrown to indicate that a thread has attempted to wait on an object's monitor or to notify other threads waiting on an object's monitor without owning the specified monitor.
This line again and again says, IllegalMonitorException comes when one of the 2 situation occurs....
1> wait on an object's monitor without owning the specified monitor.
2> notify other threads waiting on an object's monitor without owning the specified monitor.
Some might have got their answers... who all doesn't, then please check 2 statements....
synchronized (object)
object.wait()
If both object are same... then no illegalMonitorException can come.
Now again read the IllegalMonitorException definition and you wont forget it again...
Based on your comments it sounds like you are doing something like this:
Thread thread = new Thread(new Runnable(){
public void run() { // do stuff }});
thread.start();
...
thread.wait();
There are three problems.
As others have said, obj.wait() can only be called if the current thread holds the primitive lock / mutex for obj. If the current thread does not hold the lock, you get the exception you are seeing.
The thread.wait() call does not do what you seem to be expecting it to do. Specifically, thread.wait() does not cause the nominated thread to wait. Rather it causes the current thread to wait until some other thread calls thread.notify() or thread.notifyAll().
There is actually no safe way to force a Thread instance to pause if it doesn't want to. (The nearest that Java has to this is the deprecated Thread.suspend() method, but that method is inherently unsafe, as is explained in the Javadoc.)
If you want the newly started Thread to pause, the best way to do it is to create a CountdownLatch instance and have the thread call await() on the latch to pause itself. The main thread would then call countDown() on the latch to let the paused thread continue.
Orthogonal to the previous points, using a Thread object as a lock / mutex may cause problems. For example, the javadoc for Thread::join says:
This implementation uses a loop of this.wait calls conditioned on this.isAlive. As a thread terminates the this.notifyAll method is invoked. It is recommended that applications not use wait, notify, or notifyAll on Thread instances.
Since you haven't posted code, we're kind of working in the dark. What are the details of the exception?
Are you calling Thread.wait() from within the thread, or outside it?
I ask this because according to the javadoc for IllegalMonitorStateException, it is:
Thrown to indicate that a thread has attempted to wait on an object's monitor or to notify other threads waiting on an object's monitor without owning the specified monitor.
To clarify this answer, this call to wait on a thread also throws IllegalMonitorStateException, despite being called from within a synchronized block:
private static final class Lock { }
private final Object lock = new Lock();
#Test
public void testRun() {
ThreadWorker worker = new ThreadWorker();
System.out.println ("Starting worker");
worker.start();
System.out.println ("Worker started - telling it to wait");
try {
synchronized (lock) {
worker.wait();
}
} catch (InterruptedException e1) {
String msg = "InterruptedException: [" + e1.getLocalizedMessage() + "]";
System.out.println (msg);
e1.printStackTrace();
System.out.flush();
}
System.out.println ("Worker done waiting, we're now waiting for it by joining");
try {
worker.join();
} catch (InterruptedException ex) { }
}
In order to deal with the IllegalMonitorStateException, you must verify that all invocations of the wait, notify and notifyAll methods are taking place only when the calling thread owns the appropriate monitor. The most simple solution is to enclose these calls inside synchronized blocks. The synchronization object that shall be invoked in the synchronized statement is the one whose monitor must be acquired.
Here is the simple example for to understand the concept of monitor
public class SimpleMonitorState {
public static void main(String args[]) throws InterruptedException {
SimpleMonitorState t = new SimpleMonitorState();
SimpleRunnable m = new SimpleRunnable(t);
Thread t1 = new Thread(m);
t1.start();
t.call();
}
public void call() throws InterruptedException {
synchronized (this) {
wait();
System.out.println("Single by Threads ");
}
}
}
class SimpleRunnable implements Runnable {
SimpleMonitorState t;
SimpleRunnable(SimpleMonitorState t) {
this.t = t;
}
#Override
public void run() {
try {
// Sleep
Thread.sleep(10000);
synchronized (this.t) {
this.t.notify();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
Thread.wait() call make sense inside a code that synchronizes on Thread.class object. I don't think it's what you meant.
You ask
How can I make a thread wait until it will be notified?
You can make only your current thread wait. Any other thread can be only gently asked to wait, if it agree.
If you want to wait for some condition, you need a lock object - Thread.class object is a very bad choice - it is a singleton AFAIK so synchronizing on it (except for Thread static methods) is dangerous.
Details for synchronization and waiting are already explained by Tom Hawtin.
java.lang.IllegalMonitorStateException means you are trying to wait on object on which you are not synchronized - it's illegal to do so.
Not sure if this will help somebody else out or not but this was the key part to fix my problem in user "Tom Hawtin - tacklin"'s answer above:
synchronized (lock) {
makeWakeupNeeded();
lock.notifyAll();
}
Just the fact that the "lock" is passed as an argument in synchronized() and it is also used in "lock".notifyAll();
Once I made it in those 2 places I got it working
I received a IllegalMonitorStateException while trying to wake up a thread in / from a different class / thread. In java 8 you can use the lock features of the new Concurrency API instead of synchronized functions.
I was already storing objects for asynchronous websocket transactions in a WeakHashMap. The solution in my case was to also store a lock object in a ConcurrentHashMap for synchronous replies. Note the condition.await (not .wait).
To handle the multi threading I used a Executors.newCachedThreadPool() to create a thread pool.
Those who are using Java 7.0 or below version can refer the code which I used here and it works.
public class WaitTest {
private final Lock lock = new ReentrantLock();
private final Condition condition = lock.newCondition();
public void waitHere(long waitTime) {
System.out.println("wait started...");
lock.lock();
try {
condition.await(waitTime, TimeUnit.SECONDS);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
lock.unlock();
System.out.println("wait ends here...");
}
public static void main(String[] args) {
//Your Code
new WaitTest().waitHere(10);
//Your Code
}
}
For calling wait()/notify() on object, it needs to be inside synchronized block. So first you have to take lock on object then would be possible to call these function.
synchronized(obj)
{
obj.wait()
}
For detailed explanation:
https://dzone.com/articles/multithreading-java-and-interviewspart-2
wait(), notify() and notifyAll() methods should only be called in syncronized contexts.
For example, in a syncronized block:
syncronized (obj) {
obj.wait();
}
Or, in a syncronized method:
syncronized static void myMethod() {
wait();
}

Is it possible that 2 synchronized methods of an object are accessible by 2 threads at the same time?

This question was asked to me in an interview. Before I had told him this,
Once a thread enters any synchronized method on an instance, no other
thread can enter any other synchronized method on the same instance.
Consider the snippet:
Q1:
public class Q1 {
int n;
boolean valueSet = false;
synchronized int get() {
while (!valueSet)
try {
wait();
} catch (InterruptedException e) {
System.out.println("InterruptedException caught");
}
System.out.println("Got: " + n);
valueSet = false;
notify();
return n;
}
synchronized void put(int n) {
while (valueSet)
try {
wait();
} catch (InterruptedException e) {
System.out.println("InterruptedException caught");
}
this.n = n;
valueSet = true;
System.out.println("Put: " + n);
notify();
}
}
Producer1:
public class Producer1 implements Runnable {
Q1 q;
Producer1(Q1 q) {
this.q = q;
new Thread(this, "Producer").start();
}
#Override
public void run() {
int i = 0;
while (true) {
q.put(i++);
}
}
}
Consumer1
public class Consumer1 implements Runnable {
Q1 q;
Consumer1(Q1 q) {
this.q = q;
new Thread(this, "Consumer").start();
}
#Override
public void run() {
while (true) {
q.get();
}
}
}
PC1:
public class PC1 {
public static void main(String args[]) {
Q1 q = new Q1();
new Producer1(q);
new Consumer1(q);
System.out.println("Press Control-C to stop.");
}
}
So, he asked as soon as you have created this thread new Producer1(q), then according to you, the synchronized int get() method must have been locked by the same thread, i.e, by new Producer1(q) when it accessed synchronized int put(). I said yes.
But I checked in eclipse, get is callable by new Consumer1(q). The program works perfect.
Where am I going wrong?
O/P:
The call to wait() will release the monitor for the time waiting.
That's what is documented for Object.wait():
The current thread must own this object's monitor. The thread
releases ownership of this monitor and waits until another thread
notifies threads waiting on this object's monitor to wake up
either through a call to the notify method or the
notifyAll method. The thread then waits until it can
re-obtain ownership of the monitor and resumes execution.
Once a thread enters any synchronized method on an instance, no other
thread can enter any other synchronized method on the same instance.
What you forgot to add here is "except if the lock is released".
...and it is the case in your example, when calling wait.
The documentation specify :
The thread releases ownership of this monitor and waits until another
thread notifies threads waiting on this object's monitor to wake up
either through a call to the notify method or the notifyAll method.
Since the lock is released, you step in the other method (and the condition is true because the boolean was modified). Once in the other method, you release the lock again, then call notify and you wake up the old thread which terminates (re-modify boolean to pass the condition in other method, and notify). That way you step between both methods ad-infinitum.
wait() and notify() is acts as a signal between threads, to control the threads to do or to not do the stuff.
The program works perfect because here 2 threads (Producer, Consumer) which fight for the one lock (monitor). When Consumer aquires the lock (Q1 object) then Producer is waiting for the lock. When Consumer finishes his work it release the lock. Consumer releases the lock also when wait() method has been called, because wait() sets thread to Waiting state with lock release. It's time for Producer to aquire the lock and does his work. When Producer thread notify() calls then Consumer continue his work (when aquired the lock). The same is right for Producer.
Resume: Q1 object is a lock for all threads. If it aquired someone then others are blocked and the answer is - it not possible to get an access at the same time to the get(), put() methods more then 2 threads.
I think that the question is ambiguous. (E.g., what does "accessible" mean?)
IMO, a good interview question should not have a right answer and a wrong answer. A good interview question should be a conversation starter, that gives you an opportunity to show how much you know about the subject.
When I am asking the interview questions, I like a candidate who can see through the question, and get down to the underlying mechanism. E.g.,
What the JLS guarantees is that no two threads can be _synchronized_
on the same instance at the same time...
Then we could explore questions like, how could two threads enter the same synchronized method at the same time? (e.g., synchronized on different instances), how could two threads be in the same synchronized method for the same instance at the same time (one of them could be in a wait() call), ...
A thread can not access a synchronized block of code unless it has aquired a lock on the object that guards the block. In your case, the synchronized keyword uses the lock of the object in which it has been declared. So as long as a thread is executing get(), no other thread can execute the put().
If you apply this, when put() sets the value, it notifies consumer which accepts the value. The code should work even after you have removed the wait() and notify() calls from both get and put methods

Deadlock caused by blocking methods

Say we create a thread which runs a synchronized method. This method tries to take() from an empty blocking queue. Now let a separate thread then try to put() and element onto the blocking queue while synchronized on the same object.
This causes a deadlock:
The first thread will not release the lock until an element is added to the queue.
The second thread cannot add an element until the lock is free for it to acquire.
If the two actions need to be atomic and run on separate threads, how can this be achieved without causing a deadlock?
I understand that take() and put() are thread-safe. My question is for when they are used as part of larger actions that must be atomic.
Example:
import java.util.concurrent.*;
public class DeadlockTest {
String input = "Nothing added yet!";
LinkedBlockingQueue<String> buffer = new LinkedBlockingQueue<>();
public synchronized String getFromBuffer() {
System.out.println("Trying to get input from buffer.");
try {
input = buffer.take();
} catch (InterruptedException ex) {}
System.out.println("Got:" + input + "\n");
return input;
}
public static void main(String[] args) throws InterruptedException {
DeadlockTest dl = new DeadlockTest();
new Thread(() -> {
dl.getFromBuffer();
}).start();
// Give new thread time to run.
Thread.sleep(500);
synchronized (dl) {
String message = "Hello, world!";
System.out.println("Adding: " + message);
dl.buffer.put(message);
System.out.println("Added!\n");
System.out.println("Message: " + dl.input);
}
}
}
Say we create a thread which runs a synchronized method. This method tries to take() from an empty blocking queue.
Sounds like bad design. It's usually a mistake to call any blocking methods from within a synchronized method or a synchronized statement.
If the two actions need to be atomic and run on separate threads, how can this be achieved without causing a deadlock?
Well, there's two possibilities:
In one case, the two threads are acting on different data. In that case, they should be using different locks, and they won't interfere with one another at all.
In the other case, the two threads are acting on the same data. In that case, they should lock the same lock, and one thread will have to wait for the other.
Maybe you misunderstand how a blocking queue works. If one thread is waiting to take() something from a blocking queue, that should never prevent another thread from calling put(). That would be the exact opposite of what you want.
What you want (and what you'll get from any of the blocking queue implementations in the Java standard library) is that the put() operation in the second thread will wake up the thread that's waiting to take() something from the queue.

when thread calls wait it releases the lock versus race condition

According to the basic definition of synchronized method from source - link
"When one thread is executing a synchronized method for an object, all other threads that invoke synchronized methods for the same object block (suspend execution) until the first thread is done with the object."
and I read about the wait() that it releases a lock before it sleeps. There is a confusion here if wait releases the lock then other thread can get-into the synchronized method and does it make sense because it may lead to race condition?
Here is my sample code that is allowing one and two thread into the synchronized block.
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
/**
*
* #author Ashish Pancholi
*/
public class Test {
public Test() {
Sharing sharing = new Sharing();
Worker worker_ = new Worker(sharing);
Thread thread_ = new Thread(worker_, "one");
Worker worker = new Worker(sharing);
Thread thread = new Thread(worker, "two");
thread_.start();
thread.start();
}
public static void main(String[] argu) {
Test test = new Test();
}
public class Worker implements Runnable {
private Sharing sharing;
public Worker(Sharing sharing) {
this.sharing = sharing;
}
#Override
public void run() {
sharing.check();
}
}
public class Sharing {
public void check() {
synchronized (this) {
System.out.println("Thread IN " + Thread.currentThread().getName());
try {
wait(5000);
} catch (InterruptedException ex) {
}
System.out.println("Thread OUT " + Thread.currentThread().getName());
}
}
}
}
Output-
Thread IN one
Thread IN two
Thread OUT one
Thread OUT two
Yes it makes sense.
The API of the wait() method says:
Causes the current thread to wait until either another thread invokes
the notify() method or the notifyAll() method for this object, or a
specified amount of time has elapsed.
So if the wait method would NOT release the lock on the monitor object, no other thread could get it and thus no other thread could invoke notify or notifyAll on that monitor object.
The wait(5000) means that the current thread will wait up to 5000 milliseconds for a notification before continuing or continue after 5000 ms. If you want to hold the lock and pause 5000 ms then you must use Thread.sleep(5000).
It makes sense that there might be race conditions. Race conditions naturally happen when dealing with multiple threads. It is your job to prevent them by carefully managing your threads, and the wait method is an important tool that you can use to help with that.
Normally you wouldn't simply call wait with a fixed 5-second pause like that. In a real application you would probably be waiting for some specific condition to be true, so your wait looks more like this:
try {
while(!condition) {
wait();
}
doSomething();
} catch(InterruptedException e) {
doSomethingElseWhenWeAreAskedNotToWait();
}
Whether you have a race condition depends upon when condition becomes true, who else might be waiting for that condition, and what everyone does when it happens. The reason wait gives up the lock is to give condition a chance to become true while we wait.
You are using synchronized with two different locks, so there is no synchronization happening between the two threads.
Synchronize on the instance of Test rather than Sharing, and the behaviour will be quite different.

Java thread join 3

The program creates thread t0 which spawns thread t1 and subsequently threads t2 and t3 are created.After the execution of thread t3and the application never returns to the other threads spawned earlier(t0,t1,t2) and they are left stuck.
Why are the threads t0, t1, and t2 suspended?
public class Cult extends Thread
{
private String[] names = {"t1", "t2", "t3"};
static int count = 0;
public void run()
{
for(int i = 0; i < 100; i++)
{
if(i == 5 && count < 3)
{
Thread t = new Cult(names[count++]);
t.start();
try{
Thread.currentThread().join();
}
catch(InterruptedException e)
{
e.printStackTrace();
}
}
System.out.print(Thread.currentThread().getName() + " ");
}
}
public static void main(String[] a`)
{
new Cult("t0").start();
}
}
The most important point you missed:
Thread.currentThread().join();
Method join in source code uses isAlive method.
public final synchronized void join(long millis)
...
if (millis == 0) {
while (isAlive()) {
wait(0);
}
...
}
It means that Thread.currentThread().join() will return only when Thread.currentThread() is dead.
But in your case it's impossible because of your running code in Thread.currentThread() has itself
this peace of code Thread.currentThread().join(). That's why after Thread 3 completion your program should hang and nothing happens thereafter.
Why are the threads t0, t1, and t2 suspended? The execution of thread t3 completes.
t3 completes because it is not trying to fork a 4th thread and therefore is not trying to join() with it's own thread. The following line will never return so t0, t1, and t2 all stop there and wait forever:
Thread.currentThread().join();
This is asking the current thread to wait for itself to finish which doesn't work. I suspect that you meant to say t.join(); which is waiting for the thread that was just forked to finish.
Here are some other thoughts about your code in no apparent order:
You should consider implements Runnable instead of extends Thread. See here: "implements Runnable" vs. "extends Thread"
You are using the shared static variable count in multiple threads without any protection of locking. The best solution is to use an AtomicInteger instead of a int. You probably don't have a problem here because each thread is modifying count and then forking another thread but if you tried to fork 2 threads, this would be a real problem because of data race conditions.
I'm not sure why you are only spawning another thread if(i == 5 && count < 3). i is only going to be 5 once in that loop. Is that really what you intended?
String[] names = {"t1", "t2", "t3"}; fields are recommended to be declared at the top of classes. Otherwise they get buried in the code and get lost.
In main you start a Cult thread and then the main thread finishes. This is unnecessary and you can just call cult.run(); in main instead and use the main thread.
Cult(String s) { super(s); } there is no point in having a constructor that calls the super constructor with the same arguments. This can be removed.
This is debatable but I tend to put main method at the top of the class and not bury it since it is the "entrance" method. Same thing with constructors. Those should be above the run() method.
catch(Exception e) {} is a really bad pattern. At the very least you should do a e.printStackTrace(); or log it somehow. Catching and just dropping exceptions hides a lot of problems. Also, catching Exception should be changed to catch(InterruptedException e). You want to restrict your catch blocks just the exceptions thrown by the block otherwise this may again hide problems in the future if you copy and paste that block somewhere.
More a good practice but never use constants like 3 that have to match another data item. In this case it would be better to use names.length which is 3. THis means that you don't need to change 2 places in the code if you want to increase the number of threads. You could also have the name be "t" + count and get rid of the names array altogether.

Categories

Resources