Java 8 Optional - should I use it in this example [duplicate] - java

Having been using Java 8 now for 6+ months or so, I'm pretty happy with the new API changes. One area I'm still not confident in is when to use Optional. I seem to swing between wanting to use it everywhere something may be null, and nowhere at all.
There seem to be a lot of situations when I could use it, and I'm never sure if it adds benefits (readability / null safety) or just causes additional overhead.
So, I have a few examples, and I'd be interested in the community's thoughts on whether Optional is beneficial.
1 - As a public method return type when the method could return null:
public Optional<Foo> findFoo(String id);
2 - As a method parameter when the param may be null:
public Foo doSomething(String id, Optional<Bar> barOptional);
3 - As an optional member of a bean:
public class Book {
private List<Pages> pages;
private Optional<Index> index;
}
4 - In Collections:
In general I don't think:
List<Optional<Foo>>
adds anything - especially since one can use filter() to remove null values etc, but are there any good uses for Optional in collections?
Any cases I've missed?

The main design goal of Optional is to provide a means for a function returning a value to indicate the absence of a return value. See this discussion. This allows the caller to continue a chain of fluent method calls.
This most closely matches use case #1 in the OP's question. Although, absence of a value is a more precise formulation than null since something like IntStream.findFirst could never return null.
For use case #2, passing an optional argument to a method, this could be made to work, but it's rather clumsy. Suppose you have a method that takes a string followed by an optional second string. Accepting an Optional as the second arg would result in code like this:
foo("bar", Optional.of("baz"));
foo("bar", Optional.empty());
Even accepting null is nicer:
foo("bar", "baz");
foo("bar", null);
Probably the best is to have an overloaded method that accepts a single string argument and provides a default for the second:
foo("bar", "baz");
foo("bar");
This does have limitations, but it's much nicer than either of the above.
Use cases #3 and #4, having an Optional in a class field or in a data structure, is considered a misuse of the API. First, it goes against the main design goal of Optional as stated at the top. Second, it doesn't add any value.
There are three ways to deal with the absence of a value in an Optional: to provide a substitute value, to call a function to provide a substitute value, or to throw an exception. If you're storing into a field, you'd do this at initialization or assignment time. If you're adding values into a list, as the OP mentioned, you have the additional choice of simply not adding the value, thereby "flattening" out absent values.
I'm sure somebody could come up with some contrived cases where they really want to store an Optional in a field or a collection, but in general, it is best to avoid doing this.

I'm late to the game but for what it's worth, I want to add my 2 Cents. They go against the design goal of Optional, which is well summarized by Stuart Marks's answer, but I'm still convinced of their validity (obviously).
Use Optional Everywhere
In General
I wrote an entire blog post about using Optional but it basically comes down to this:
design your classes to avoid optionality wherever feasibly possible
in all remaining cases, the default should be to use Optional instead of null
possibly make exceptions for:
local variables
return values and arguments to private methods
performance critical code blocks (no guesses, use a profiler)
The first two exceptions can reduce the perceived overhead of wrapping and unwrapping references in Optional. They are chosen such that a null can never legally pass a boundary from one instance into another.
Note that this will almost never allow Optionals in collections which is almost as bad as nulls. Just don't do it. ;)
Regarding your questions
Yes.
If overloading is no option, yes.
If other approaches (subclassing, decorating, ...) are no option, yes.
Please no!
Advantages
Doing this reduces the presence of nulls in your code base, although it does not eradicate them. But that is not even the main point. There are other important advantages:
Clarifies Intent
Using Optional clearly expresses that the variable is, well, optional. Any reader of your code or consumer of your API will be beaten over the head with the fact that there might be nothing there and that a check is necessary before accessing the value.
Removes Uncertainty
Without Optional the meaning of a null occurrence is unclear. It could be a legal representation of a state (see Map.get) or an implementation error like a missing or failed initialization.
This changes dramatically with the persistent use of Optional. Here, already the occurrence of null signifies the presence of a bug. (Because if the value were allowed to be missing, an Optional would have been used.) This makes debugging a null pointer exception much easier as the question of the meaning of this null is already answered.
More Null Checks
Now that nothing can be null anymore, this can be enforced everywhere. Whether with annotations, assertions or plain checks, you never have to think about whether this argument or that return type can be null. It can't!
Disadvantages
Of course, there is no silver bullet...
Performance
Wrapping values (especially primitives) into an extra instance can degrade performance. In tight loops this might become noticeable or even worse.
Note that the compiler might be able to circumvent the extra reference for short lived lifetimes of Optionals. In Java 10 value types might further reduce or remove the penalty.
Serialization
Optional is not serializable but a workaround is not overly complicated.
Invariance
Due to the invariance of generic types in Java, certain operations become cumbersome when the actual value type is pushed into a generic type argument. An example is given here (see "Parametric polymorphism").

Personally, I prefer to use IntelliJ's Code Inspection Tool to use #NotNull and #Nullable checks as these are largely compile time (can have some runtime checks) This has lower overhead in terms of code readability and runtime performance. It is not as rigorous as using Optional, however this lack of rigour should be backed by decent unit tests.
public #Nullable Foo findFoo(#NotNull String id);
public #NotNull Foo doSomething(#NotNull String id, #Nullable Bar barOptional);
public class Book {
private List<Pages> pages;
private #Nullable Index index;
}
List<#Nullable Foo> list = ..
This works with Java 5 and no need to wrap and unwrap values. (or create wrapper objects)

I think the Guava Optional and their wiki page puts it quite well:
Besides the increase in readability that comes from giving null a name, the biggest advantage of Optional is its idiot-proof-ness. It forces you to actively think about the absent case if you want your program to compile at all, since you have to actively unwrap the Optional and address that case. Null makes it disturbingly easy to simply forget things, and though FindBugs helps, we don't think it addresses the issue nearly as well.
This is especially relevant when you're returning values that may or may not be "present." You (and others) are far more likely to forget that other.method(a, b) could return a null value than you're likely to forget that a could be null when you're implementing other.method. Returning Optional makes it impossible for callers to forget that case, since they have to unwrap the object themselves for their code to compile.
-- (Source: Guava Wiki - Using and Avoiding null - What's the point?)
Optional adds some overhead, but I think its clear advantage is to make it explicit
that an object might be absent and it enforces that programmers handle the situation. It prevents that someone forgets the beloved != null check.
Taking the example of 2, I think it is far more explicit code to write:
if(soundcard.isPresent()){
System.out.println(soundcard.get());
}
than
if(soundcard != null){
System.out.println(soundcard);
}
For me, the Optional better captures the fact that there is no soundcard present.
My 2¢ about your points:
public Optional<Foo> findFoo(String id); - I am not sure about this. Maybe I would return a Result<Foo> which might be empty or contain a Foo. It is a similar concept, but not really an Optional.
public Foo doSomething(String id, Optional<Bar> barOptional); - I would prefer #Nullable and a findbugs check, as in Peter Lawrey's answer - see also this discussion.
Your book example - I am not sure if I would use the Optional internally, that might depend on the complexity. For the "API" of a book, I would use an Optional<Index> getIndex() to explicitly indicate that the book might not have an index.
I would not use it in collections, rather not allowing null values in collections
In general, I would try to minimize passing around nulls. (Once burnt...)
I think it is worth to find the appropriate abstractions and indicate to the fellow programmers what a certain return value actually represents.

From Oracle tutorial:
The purpose of Optional is not to replace every single null reference in your codebase but rather to help design better APIs in which—just by reading the signature of a method—users can tell whether to expect an optional value. In addition, Optional forces you to actively unwrap an Optional to deal with the absence of a value; as a result, you protect your code against unintended null pointer exceptions.

In java, just don't use them unless you are addicted to functional programming.
They have no place as method arguments (I promess someone one day will pass you a null optional, not just an optional that is empty).
They make sense for return values but they invite the client class to keep on stretching the behavior-building chain.
FP and chains have little place in an imperative language like java because it makes it very hard to debug, not just to read. When you step to the line, you can't know the state nor intent of the program; you have to step into to figure it out (into code that often isn't yours and many stack frames deep despite step filters) and you have to add lots of breakpoints down to make sure it can stop in the code/lambda you added, instead of simply walking the if/else/call trivial lines.
If you want functional programming, pick something else than java and hope you have the tools for debugging that.

1 - As a public method return type when the method could return null:
Here is a good article that shows usefulness of usecase #1. There this code
...
if (user != null) {
Address address = user.getAddress();
if (address != null) {
Country country = address.getCountry();
if (country != null) {
String isocode = country.getIsocode();
isocode = isocode.toUpperCase();
}
}
}
...
is transformed to this
String result = Optional.ofNullable(user)
.flatMap(User::getAddress)
.flatMap(Address::getCountry)
.map(Country::getIsocode)
.orElse("default");
by using Optional as a return value of respective getter methods.

Here is an interesting usage (I believe) for... Tests.
I intend to heavily test one of my projects and I therefore build assertions; only there are things I have to verify and others I don't.
I therefore build things to assert and use an assert to verify them, like this:
public final class NodeDescriptor<V>
{
private final Optional<String> label;
private final List<NodeDescriptor<V>> children;
private NodeDescriptor(final Builder<V> builder)
{
label = Optional.fromNullable(builder.label);
final ImmutableList.Builder<NodeDescriptor<V>> listBuilder
= ImmutableList.builder();
for (final Builder<V> element: builder.children)
listBuilder.add(element.build());
children = listBuilder.build();
}
public static <E> Builder<E> newBuilder()
{
return new Builder<E>();
}
public void verify(#Nonnull final Node<V> node)
{
final NodeAssert<V> nodeAssert = new NodeAssert<V>(node);
nodeAssert.hasLabel(label);
}
public static final class Builder<V>
{
private String label;
private final List<Builder<V>> children = Lists.newArrayList();
private Builder()
{
}
public Builder<V> withLabel(#Nonnull final String label)
{
this.label = Preconditions.checkNotNull(label);
return this;
}
public Builder<V> withChildNode(#Nonnull final Builder<V> child)
{
Preconditions.checkNotNull(child);
children.add(child);
return this;
}
public NodeDescriptor<V> build()
{
return new NodeDescriptor<V>(this);
}
}
}
In the NodeAssert class, I do this:
public final class NodeAssert<V>
extends AbstractAssert<NodeAssert<V>, Node<V>>
{
NodeAssert(final Node<V> actual)
{
super(Preconditions.checkNotNull(actual), NodeAssert.class);
}
private NodeAssert<V> hasLabel(final String label)
{
final String thisLabel = actual.getLabel();
assertThat(thisLabel).overridingErrorMessage(
"node's label is null! I didn't expect it to be"
).isNotNull();
assertThat(thisLabel).overridingErrorMessage(
"node's label is not what was expected!\n"
+ "Expected: '%s'\nActual : '%s'\n", label, thisLabel
).isEqualTo(label);
return this;
}
NodeAssert<V> hasLabel(#Nonnull final Optional<String> label)
{
return label.isPresent() ? hasLabel(label.get()) : this;
}
}
Which means the assert really only triggers if I want to check the label!

Optional class lets you avoid to use null and provide a better alternative:
This encourages the developer to make checks for presence in order to avoid uncaught NullPointerException's.
API becomes better documented because it's possible to see, where to expect the values which can be absent.
Optional provides convenient API for further work with the object:
isPresent(); get(); orElse(); orElseGet(); orElseThrow(); map(); filter(); flatmap().
In addition, many frameworks actively use this data type and return it from their API.

An Optional has similar semantics to an unmodifiable instance of the Iterator design pattern:
it might or might not refer to an object (as given by isPresent())
it can be dereferenced (using get()) if it does refer to an object
but it can not be advanced to the next position in the sequence (it has no next() method).
Therefore consider returning or passing an Optional in contexts where you might previously have considered using a Java Iterator.

Here are some of the methods that you can perform on an instance of Optional<T>:
map
flatMap
orElse
orElseThrow
ifPresentOrElse
get
Here are all the methods that you can perform on null:
(there are none)
This is really an apples to oranges comparison: Optional<T> is an actual instance of an object (unless it is null… but that would probably be a bug) while null is an aborted object. All you can do with null is check whether it is in fact null, or not. So if you like to use methods on objects, Optional<T> is for you; if you like to branch on special literals, null is for you.
null does not compose. You simply can’t compose a value which you can only branch on. But Optional<T> does compose.
You can, for instance, make arbitrary long chains of “apply this function if non-empty” by using map. Or you can effectively make an imperative block of code which consumes the optional if it is non-empty by using ifPresent. Or you can make an “if/else” by using ifPresentOrElse, which consumes the non-empty optional if it is non-empty or else executes some other code.
…And it is at this point that we run into the true limitations of the language in my opinion: for very imperative code you have to wrap them in lambdas and pass them to methods:
opt.ifPresentOrElse(
string -> { // if present...
// ...
}, () -> { // or else...
// ...
}
);
That might not be good enough for some people, style-wise.
It would be more seamless if Optional<T> was an algebraic data type that we could pattern match on (this is obviously pseudo-code:
match (opt) {
Present(str) => {
// ...
}
Empty =>{
// ...
}
}
But anyway, in summary: Optional<T> is a pretty robust empty-or-present object. null is just a sentinel value.
Subjectively disregarded reasons
There seems to be a few people who effectively argue that efficiency should determine whether one should use Optional<T> or branch on the null sentinel value. That seems a bit like making hard and fast rules on when to make objects rather than primitives in the general case. I think it’s a bit ridiculous to use that as the starting point for this discussion when you’re already working in a language where it’s idiomatic to make objects left-and-right, top to bottom, all the time (in my opinion).

I do not think that Optional is a general substitute for methods that potentially return null values.
The basic idea is: The absence of a value does not mean that it potentially is available in the future. It's a difference between findById(-1) and findById(67).
The main information of Optionals for the caller is that he may not count on the value given but it may be available at some time. Maybe it will disappear again and comes back later one more time. It's like an on/off switch. You have the "option" to switch the light on or off. But you have no option if you do not have a light to switch on.
So I find it too messy to introduce Optionals everywhere where previously null was potentially returned. I will still use null, but only in restricted areas like the root of a tree, lazy initialization and explicit find-methods.

Seems Optional is only useful if the type T in Optional is a primitive type like int, long, char, etc. For "real" classes, it does not make sense to me as you can use a null value anyway.
I think it was taken from here (or from another similar language concept).
Nullable<T>
In C# this Nullable<T> was introduced long ago to wrap value types.

1 - As a public method return type when the method could return null:
This is the intended use case for Optional, as seen in the JDK API docs:
Optional is primarily intended for use as a method return type where
there is a clear need to represent "no result," and where using null
is likely to cause errors.
Optional represents one of two states:
it has a value (isPresent returns true)
it doesn't have a value (isEmpty returns true)
So if you have a method that returns either something or nothing, this is the ideal use case for Optional.
Here's an example:
Optional<Guitarist> findByLastName(String lastName);
This method takes a parameter used to search for an entity in the database. It's possible that no such entity exists, so using an Optional return type is a good idea since it forces whoever is calling the method to consider the empty scenario. This reduces chances of a NullPointerException.
2 - As a method parameter when the param may be null:
Although technically possible, this is not the intended use case of Optional.
Let's consider your proposed method signature:
public Foo doSomething(String id, Optional<Bar> barOptional);
The main problem is that we could call doSomething where barOptional has one of 3 states:
an Optional with a value e.g. doSomething("123", Optional.of(new Bar())
an empty Optional e.g. doSomething("123", Optional.empty())
null e.g. doSomething("123", null)
These 3 states would need to be handled in the method implementation appropriately.
A better solution is to implement an overloaded method.
public Foo doSomething(String id);
public Foo doSomething(String id, Bar bar);
This makes it very clear to the consumer of the API which method to call, and null does not need to be passed.
3 - As an optional member of a bean:
Given your example Book class:
public class Book {
private List<Pages> pages;
private Optional<Index> index;
}
The Optional class variable suffers from the same issue as the Optional method parameter discussed above. It can have one of 3 states: present, empty, or null.
Other possible issues include:
serialization: if you implement Serializable and try to serialize an object of this class, you will encounter a java.io.NotSerializableException since Optional was not designed for this use case
transforming to JSON: when serializing to JSON an Optional field may get mapped in an undesirable way e.g. {"empty":false,"present":true}.
Although if you use the popular Jackson library, it does provide a solution to this problem.
Despite these issues, Oracle themselves published this blog post at the time of the Java 8 Optional release in 2014. It contains code examples using Optional for class variables.
public class Computer {
private Optional<Soundcard> soundcard;
public Optional<Soundcard> getSoundcard() { ... }
...
}
In the following years though, developers have found better alternatives such as implementing a getter method to create the Optional object.
public class Book {
private List<Pages> pages;
private Index index;
public Optional<Index> getIndex() {
return Optional.ofNullable(index);
}
}
Here we use the ofNullable method to return an Optional with a value if index is non-null, or otherwise an empty Optional.
4 - In Collections:
I agree that creating a List of Optional (e.g. List<Optional<Foo>>) doesn't add anything.
Instead, just don't include the item in the List if it's not present.

Related

Why use Optional.isPresent() vs !=null [duplicate]

Having been using Java 8 now for 6+ months or so, I'm pretty happy with the new API changes. One area I'm still not confident in is when to use Optional. I seem to swing between wanting to use it everywhere something may be null, and nowhere at all.
There seem to be a lot of situations when I could use it, and I'm never sure if it adds benefits (readability / null safety) or just causes additional overhead.
So, I have a few examples, and I'd be interested in the community's thoughts on whether Optional is beneficial.
1 - As a public method return type when the method could return null:
public Optional<Foo> findFoo(String id);
2 - As a method parameter when the param may be null:
public Foo doSomething(String id, Optional<Bar> barOptional);
3 - As an optional member of a bean:
public class Book {
private List<Pages> pages;
private Optional<Index> index;
}
4 - In Collections:
In general I don't think:
List<Optional<Foo>>
adds anything - especially since one can use filter() to remove null values etc, but are there any good uses for Optional in collections?
Any cases I've missed?
The main design goal of Optional is to provide a means for a function returning a value to indicate the absence of a return value. See this discussion. This allows the caller to continue a chain of fluent method calls.
This most closely matches use case #1 in the OP's question. Although, absence of a value is a more precise formulation than null since something like IntStream.findFirst could never return null.
For use case #2, passing an optional argument to a method, this could be made to work, but it's rather clumsy. Suppose you have a method that takes a string followed by an optional second string. Accepting an Optional as the second arg would result in code like this:
foo("bar", Optional.of("baz"));
foo("bar", Optional.empty());
Even accepting null is nicer:
foo("bar", "baz");
foo("bar", null);
Probably the best is to have an overloaded method that accepts a single string argument and provides a default for the second:
foo("bar", "baz");
foo("bar");
This does have limitations, but it's much nicer than either of the above.
Use cases #3 and #4, having an Optional in a class field or in a data structure, is considered a misuse of the API. First, it goes against the main design goal of Optional as stated at the top. Second, it doesn't add any value.
There are three ways to deal with the absence of a value in an Optional: to provide a substitute value, to call a function to provide a substitute value, or to throw an exception. If you're storing into a field, you'd do this at initialization or assignment time. If you're adding values into a list, as the OP mentioned, you have the additional choice of simply not adding the value, thereby "flattening" out absent values.
I'm sure somebody could come up with some contrived cases where they really want to store an Optional in a field or a collection, but in general, it is best to avoid doing this.
I'm late to the game but for what it's worth, I want to add my 2 Cents. They go against the design goal of Optional, which is well summarized by Stuart Marks's answer, but I'm still convinced of their validity (obviously).
Use Optional Everywhere
In General
I wrote an entire blog post about using Optional but it basically comes down to this:
design your classes to avoid optionality wherever feasibly possible
in all remaining cases, the default should be to use Optional instead of null
possibly make exceptions for:
local variables
return values and arguments to private methods
performance critical code blocks (no guesses, use a profiler)
The first two exceptions can reduce the perceived overhead of wrapping and unwrapping references in Optional. They are chosen such that a null can never legally pass a boundary from one instance into another.
Note that this will almost never allow Optionals in collections which is almost as bad as nulls. Just don't do it. ;)
Regarding your questions
Yes.
If overloading is no option, yes.
If other approaches (subclassing, decorating, ...) are no option, yes.
Please no!
Advantages
Doing this reduces the presence of nulls in your code base, although it does not eradicate them. But that is not even the main point. There are other important advantages:
Clarifies Intent
Using Optional clearly expresses that the variable is, well, optional. Any reader of your code or consumer of your API will be beaten over the head with the fact that there might be nothing there and that a check is necessary before accessing the value.
Removes Uncertainty
Without Optional the meaning of a null occurrence is unclear. It could be a legal representation of a state (see Map.get) or an implementation error like a missing or failed initialization.
This changes dramatically with the persistent use of Optional. Here, already the occurrence of null signifies the presence of a bug. (Because if the value were allowed to be missing, an Optional would have been used.) This makes debugging a null pointer exception much easier as the question of the meaning of this null is already answered.
More Null Checks
Now that nothing can be null anymore, this can be enforced everywhere. Whether with annotations, assertions or plain checks, you never have to think about whether this argument or that return type can be null. It can't!
Disadvantages
Of course, there is no silver bullet...
Performance
Wrapping values (especially primitives) into an extra instance can degrade performance. In tight loops this might become noticeable or even worse.
Note that the compiler might be able to circumvent the extra reference for short lived lifetimes of Optionals. In Java 10 value types might further reduce or remove the penalty.
Serialization
Optional is not serializable but a workaround is not overly complicated.
Invariance
Due to the invariance of generic types in Java, certain operations become cumbersome when the actual value type is pushed into a generic type argument. An example is given here (see "Parametric polymorphism").
Personally, I prefer to use IntelliJ's Code Inspection Tool to use #NotNull and #Nullable checks as these are largely compile time (can have some runtime checks) This has lower overhead in terms of code readability and runtime performance. It is not as rigorous as using Optional, however this lack of rigour should be backed by decent unit tests.
public #Nullable Foo findFoo(#NotNull String id);
public #NotNull Foo doSomething(#NotNull String id, #Nullable Bar barOptional);
public class Book {
private List<Pages> pages;
private #Nullable Index index;
}
List<#Nullable Foo> list = ..
This works with Java 5 and no need to wrap and unwrap values. (or create wrapper objects)
I think the Guava Optional and their wiki page puts it quite well:
Besides the increase in readability that comes from giving null a name, the biggest advantage of Optional is its idiot-proof-ness. It forces you to actively think about the absent case if you want your program to compile at all, since you have to actively unwrap the Optional and address that case. Null makes it disturbingly easy to simply forget things, and though FindBugs helps, we don't think it addresses the issue nearly as well.
This is especially relevant when you're returning values that may or may not be "present." You (and others) are far more likely to forget that other.method(a, b) could return a null value than you're likely to forget that a could be null when you're implementing other.method. Returning Optional makes it impossible for callers to forget that case, since they have to unwrap the object themselves for their code to compile.
-- (Source: Guava Wiki - Using and Avoiding null - What's the point?)
Optional adds some overhead, but I think its clear advantage is to make it explicit
that an object might be absent and it enforces that programmers handle the situation. It prevents that someone forgets the beloved != null check.
Taking the example of 2, I think it is far more explicit code to write:
if(soundcard.isPresent()){
System.out.println(soundcard.get());
}
than
if(soundcard != null){
System.out.println(soundcard);
}
For me, the Optional better captures the fact that there is no soundcard present.
My 2¢ about your points:
public Optional<Foo> findFoo(String id); - I am not sure about this. Maybe I would return a Result<Foo> which might be empty or contain a Foo. It is a similar concept, but not really an Optional.
public Foo doSomething(String id, Optional<Bar> barOptional); - I would prefer #Nullable and a findbugs check, as in Peter Lawrey's answer - see also this discussion.
Your book example - I am not sure if I would use the Optional internally, that might depend on the complexity. For the "API" of a book, I would use an Optional<Index> getIndex() to explicitly indicate that the book might not have an index.
I would not use it in collections, rather not allowing null values in collections
In general, I would try to minimize passing around nulls. (Once burnt...)
I think it is worth to find the appropriate abstractions and indicate to the fellow programmers what a certain return value actually represents.
From Oracle tutorial:
The purpose of Optional is not to replace every single null reference in your codebase but rather to help design better APIs in which—just by reading the signature of a method—users can tell whether to expect an optional value. In addition, Optional forces you to actively unwrap an Optional to deal with the absence of a value; as a result, you protect your code against unintended null pointer exceptions.
In java, just don't use them unless you are addicted to functional programming.
They have no place as method arguments (I promess someone one day will pass you a null optional, not just an optional that is empty).
They make sense for return values but they invite the client class to keep on stretching the behavior-building chain.
FP and chains have little place in an imperative language like java because it makes it very hard to debug, not just to read. When you step to the line, you can't know the state nor intent of the program; you have to step into to figure it out (into code that often isn't yours and many stack frames deep despite step filters) and you have to add lots of breakpoints down to make sure it can stop in the code/lambda you added, instead of simply walking the if/else/call trivial lines.
If you want functional programming, pick something else than java and hope you have the tools for debugging that.
1 - As a public method return type when the method could return null:
Here is a good article that shows usefulness of usecase #1. There this code
...
if (user != null) {
Address address = user.getAddress();
if (address != null) {
Country country = address.getCountry();
if (country != null) {
String isocode = country.getIsocode();
isocode = isocode.toUpperCase();
}
}
}
...
is transformed to this
String result = Optional.ofNullable(user)
.flatMap(User::getAddress)
.flatMap(Address::getCountry)
.map(Country::getIsocode)
.orElse("default");
by using Optional as a return value of respective getter methods.
Here is an interesting usage (I believe) for... Tests.
I intend to heavily test one of my projects and I therefore build assertions; only there are things I have to verify and others I don't.
I therefore build things to assert and use an assert to verify them, like this:
public final class NodeDescriptor<V>
{
private final Optional<String> label;
private final List<NodeDescriptor<V>> children;
private NodeDescriptor(final Builder<V> builder)
{
label = Optional.fromNullable(builder.label);
final ImmutableList.Builder<NodeDescriptor<V>> listBuilder
= ImmutableList.builder();
for (final Builder<V> element: builder.children)
listBuilder.add(element.build());
children = listBuilder.build();
}
public static <E> Builder<E> newBuilder()
{
return new Builder<E>();
}
public void verify(#Nonnull final Node<V> node)
{
final NodeAssert<V> nodeAssert = new NodeAssert<V>(node);
nodeAssert.hasLabel(label);
}
public static final class Builder<V>
{
private String label;
private final List<Builder<V>> children = Lists.newArrayList();
private Builder()
{
}
public Builder<V> withLabel(#Nonnull final String label)
{
this.label = Preconditions.checkNotNull(label);
return this;
}
public Builder<V> withChildNode(#Nonnull final Builder<V> child)
{
Preconditions.checkNotNull(child);
children.add(child);
return this;
}
public NodeDescriptor<V> build()
{
return new NodeDescriptor<V>(this);
}
}
}
In the NodeAssert class, I do this:
public final class NodeAssert<V>
extends AbstractAssert<NodeAssert<V>, Node<V>>
{
NodeAssert(final Node<V> actual)
{
super(Preconditions.checkNotNull(actual), NodeAssert.class);
}
private NodeAssert<V> hasLabel(final String label)
{
final String thisLabel = actual.getLabel();
assertThat(thisLabel).overridingErrorMessage(
"node's label is null! I didn't expect it to be"
).isNotNull();
assertThat(thisLabel).overridingErrorMessage(
"node's label is not what was expected!\n"
+ "Expected: '%s'\nActual : '%s'\n", label, thisLabel
).isEqualTo(label);
return this;
}
NodeAssert<V> hasLabel(#Nonnull final Optional<String> label)
{
return label.isPresent() ? hasLabel(label.get()) : this;
}
}
Which means the assert really only triggers if I want to check the label!
Optional class lets you avoid to use null and provide a better alternative:
This encourages the developer to make checks for presence in order to avoid uncaught NullPointerException's.
API becomes better documented because it's possible to see, where to expect the values which can be absent.
Optional provides convenient API for further work with the object:
isPresent(); get(); orElse(); orElseGet(); orElseThrow(); map(); filter(); flatmap().
In addition, many frameworks actively use this data type and return it from their API.
An Optional has similar semantics to an unmodifiable instance of the Iterator design pattern:
it might or might not refer to an object (as given by isPresent())
it can be dereferenced (using get()) if it does refer to an object
but it can not be advanced to the next position in the sequence (it has no next() method).
Therefore consider returning or passing an Optional in contexts where you might previously have considered using a Java Iterator.
Here are some of the methods that you can perform on an instance of Optional<T>:
map
flatMap
orElse
orElseThrow
ifPresentOrElse
get
Here are all the methods that you can perform on null:
(there are none)
This is really an apples to oranges comparison: Optional<T> is an actual instance of an object (unless it is null… but that would probably be a bug) while null is an aborted object. All you can do with null is check whether it is in fact null, or not. So if you like to use methods on objects, Optional<T> is for you; if you like to branch on special literals, null is for you.
null does not compose. You simply can’t compose a value which you can only branch on. But Optional<T> does compose.
You can, for instance, make arbitrary long chains of “apply this function if non-empty” by using map. Or you can effectively make an imperative block of code which consumes the optional if it is non-empty by using ifPresent. Or you can make an “if/else” by using ifPresentOrElse, which consumes the non-empty optional if it is non-empty or else executes some other code.
…And it is at this point that we run into the true limitations of the language in my opinion: for very imperative code you have to wrap them in lambdas and pass them to methods:
opt.ifPresentOrElse(
string -> { // if present...
// ...
}, () -> { // or else...
// ...
}
);
That might not be good enough for some people, style-wise.
It would be more seamless if Optional<T> was an algebraic data type that we could pattern match on (this is obviously pseudo-code:
match (opt) {
Present(str) => {
// ...
}
Empty =>{
// ...
}
}
But anyway, in summary: Optional<T> is a pretty robust empty-or-present object. null is just a sentinel value.
Subjectively disregarded reasons
There seems to be a few people who effectively argue that efficiency should determine whether one should use Optional<T> or branch on the null sentinel value. That seems a bit like making hard and fast rules on when to make objects rather than primitives in the general case. I think it’s a bit ridiculous to use that as the starting point for this discussion when you’re already working in a language where it’s idiomatic to make objects left-and-right, top to bottom, all the time (in my opinion).
I do not think that Optional is a general substitute for methods that potentially return null values.
The basic idea is: The absence of a value does not mean that it potentially is available in the future. It's a difference between findById(-1) and findById(67).
The main information of Optionals for the caller is that he may not count on the value given but it may be available at some time. Maybe it will disappear again and comes back later one more time. It's like an on/off switch. You have the "option" to switch the light on or off. But you have no option if you do not have a light to switch on.
So I find it too messy to introduce Optionals everywhere where previously null was potentially returned. I will still use null, but only in restricted areas like the root of a tree, lazy initialization and explicit find-methods.
Seems Optional is only useful if the type T in Optional is a primitive type like int, long, char, etc. For "real" classes, it does not make sense to me as you can use a null value anyway.
I think it was taken from here (or from another similar language concept).
Nullable<T>
In C# this Nullable<T> was introduced long ago to wrap value types.
1 - As a public method return type when the method could return null:
This is the intended use case for Optional, as seen in the JDK API docs:
Optional is primarily intended for use as a method return type where
there is a clear need to represent "no result," and where using null
is likely to cause errors.
Optional represents one of two states:
it has a value (isPresent returns true)
it doesn't have a value (isEmpty returns true)
So if you have a method that returns either something or nothing, this is the ideal use case for Optional.
Here's an example:
Optional<Guitarist> findByLastName(String lastName);
This method takes a parameter used to search for an entity in the database. It's possible that no such entity exists, so using an Optional return type is a good idea since it forces whoever is calling the method to consider the empty scenario. This reduces chances of a NullPointerException.
2 - As a method parameter when the param may be null:
Although technically possible, this is not the intended use case of Optional.
Let's consider your proposed method signature:
public Foo doSomething(String id, Optional<Bar> barOptional);
The main problem is that we could call doSomething where barOptional has one of 3 states:
an Optional with a value e.g. doSomething("123", Optional.of(new Bar())
an empty Optional e.g. doSomething("123", Optional.empty())
null e.g. doSomething("123", null)
These 3 states would need to be handled in the method implementation appropriately.
A better solution is to implement an overloaded method.
public Foo doSomething(String id);
public Foo doSomething(String id, Bar bar);
This makes it very clear to the consumer of the API which method to call, and null does not need to be passed.
3 - As an optional member of a bean:
Given your example Book class:
public class Book {
private List<Pages> pages;
private Optional<Index> index;
}
The Optional class variable suffers from the same issue as the Optional method parameter discussed above. It can have one of 3 states: present, empty, or null.
Other possible issues include:
serialization: if you implement Serializable and try to serialize an object of this class, you will encounter a java.io.NotSerializableException since Optional was not designed for this use case
transforming to JSON: when serializing to JSON an Optional field may get mapped in an undesirable way e.g. {"empty":false,"present":true}.
Although if you use the popular Jackson library, it does provide a solution to this problem.
Despite these issues, Oracle themselves published this blog post at the time of the Java 8 Optional release in 2014. It contains code examples using Optional for class variables.
public class Computer {
private Optional<Soundcard> soundcard;
public Optional<Soundcard> getSoundcard() { ... }
...
}
In the following years though, developers have found better alternatives such as implementing a getter method to create the Optional object.
public class Book {
private List<Pages> pages;
private Index index;
public Optional<Index> getIndex() {
return Optional.ofNullable(index);
}
}
Here we use the ofNullable method to return an Optional with a value if index is non-null, or otherwise an empty Optional.
4 - In Collections:
I agree that creating a List of Optional (e.g. List<Optional<Foo>>) doesn't add anything.
Instead, just don't include the item in the List if it's not present.

Why does Java stack Optionals?

I'm generally very happy with the design of the Java language but today I came across a strange design choice.
I don't know any platform where you can suggest changes to the Java language for version 9 or 10 and therefore I'm writing this issue here.
With Optionals you have a much better control over the behaviour if a value is null.
Today I mapped a value in a stream to an Optional.
I was really surprised, that findFirst then gives me a Optional<Optional<T>> instead of just Optional<T>.
Where is the point in having Optional<Optional<T>>?
For Java 9 and Streams this is solved with .flatMap(Optional::stream) but this is only a work around and boilerplate code.
Wouldn't it be much better if Optionals generally wouldn't stack and always flats down?
Optional<Optional<T>> => Optional<T>
Optional.of(Optional.of("")) => Optional.of("")
Further explanation:
Working with Optionals you don't care if the sub optional was null or if the actual object was null. It always would come down to Optional.empty().
String s = null;
Optional<String> opt = null;
Optional.of(s) => Optional.empty()
Optional.of(opt) => Optional.empty()
Also if you are working with optionals you are only interested in the object. So if you try to get the object you always have to double get and check the optional.
if(optionalOfOptional.isPresent()) {
optional = optionalOfOptional.get();
if(optional.isPresent()) {
objectOfInterest = optional.get();
}
}
I even see this being a source for errors since you would always need to check both optionals if you condition on your object being present.
if(optionalOfOptional.isPresent() && optionalOfOptional.get().isPresent()) {
...
}
Only checking the first optional could easily lead to mistakes.
In addition, why would it make sense to have a Optional that is null in the first place? Isn't optional there to get rid of working with null?
On the method level this could be solved for sure.
For example Optional.of could look something like:
public static <T> Optional<T> of(T value) {
return value instanceof Optional ? value : new Optional<>(value);
}
On the type level this is probably not that easy.
It simply doesn't make sense to forbid Optional<Optional<T>>.
Let's say you've got a List<Optional<T>>. The following lists are different:
List<Optional<T>> listA = Arrays.asList(Optional.empty());
List<Optional<T>> listB = Arrays.asList();
They're obviously different: the first is non-empty, the second is empty.
Correspondingly, the result of invoking findFirst() on their streams is different:
System.out.println(listA.stream().findFirst().isPresent()); // true
System.out.println(listB.stream().findFirst().isPresent()); // false
Now, I know about the meaning of the data in those lists that Java can't possibly know. Let's say that the lists contain the results of invoking a list of Callable<Optional<T>>s. In that case, there might be an important difference to my application between:
I invoked N>0 callables, and all of them returned Optional.empty()
I invoked zero callables.
So I really don't want the language or API to assume that there's no difference between the two, and converting the Optional<Optional<T>> to an Optional<T>.
And since a List<E>.stream().findFirst() always returns an Optional<E>, there's no way to prevent an Optional<Optional<T>> without preventing me creating a List<Optional<T>> (or Collection, Set, HashMap<K, Optional<T>> etc). So, you'd basically have to completely disallow nested generics, which would be a major loss of functionality.
I'm quite contented with the existence of Optional<Optional<T>>, as it is entirely consistent with the rest of the language. If you don't like them, just avoid creating them; but don't think that's right for everybody else.
I talk about this elsewhere that an Optional<T> should never be null. It violates what Optional<T> promises: getting rid of NullPointerExceptions.
Therefore, I think it is a deficient design in the Optional API to allow Optional<Optional<T>>. The methods to get instances of Optional should behave better when given an Optional. But that being said, they can't. They could be accomplished if Optional.of was overloaded except for one slight issue.
Since you can have a generic type T that is of type Optional, you can't have two Optional.of methods (one for Optional and one for T). Occasionally it would prevent some code from compiling if someone had the bright idea to have an Optional<Optional<T>>. Take the below code, it will fail to compile.
package otherCode;
public class Abc<T> {
public static void main(String[] args) {
Abc<B> test1 = new Abc<>();
test1.foo(new A());
test1.foo(new B());
Abc<Base> test2 = new Abc<>();
test2.foo(new A());
test2.foo(new B());
Abc<A> test3 = new Abc<>();
// these two don't compile
test3.foo(new A());
test3.foo(new B());
}
public void foo(A item) {
System.out.println("Foo");
}
public void foo(T item) {
System.out.println("bar");
}
public static class Base {
}
public static class A extends Base {
}
public static class B extends Base {
}
}
Without forcing a language and syntax change on the entire language (forbidding a Optional<Optional<T>>) the automatic conversion is not an easy task.
Java 8 in general I found took developers a while to grasp. When it first came out, I'd see Map<String, Optional<T>> when Map<String, T> would have sufficed or I did see Optional<Optional<T>>. I even saw Map<Optional<T>, Optional<Set<Optional<T>>>> instead of simply Map<T, Set<T>>. As time progressed and people grappled with the language, I feel we learned to better manage these typing and get more sensible typing.
I think it is unfortunate Java doesn't do the conversion automatically but for the poor soul who may need an Optional<Optional<T>> one day, I'm willing to use map, flatMap, orElse, and ofNullable every once in awhile to keep my typing sane. Using those methods may help with your particular quandaries.
Edit:
I see, either missed it or an edit, that OP saw that Stream<Optional<T>>.first returns an Optional<Optional<T>>. What OP intends to do affects a compromise. They could .map the stream to strip the interior Optional or they could .filter & .map the stream to strip out empty Optionals. One sad, extra line of code.

Valid usage of Optional type in Java 8

Is this a valid (intended) usage of Optional type in Java 8?
String process(String s) {
return Optional.ofNullable(s).orElseGet(this::getDefault);
}
I'll take another swing at this.
Is this a valid usage? Yes, in the narrow sense that it compiles and produces the results that you're expecting.
Is this intended usage? No. Now, sometimes things find usefulness beyond what they were originally for, and if this works out, great. But for Optional, we have found that usually things don't work out very well.
Brian Goetz and I discussed some of the issues with Optional in our JavaOne 2015 talk, API Design With Java 8 Lambdas and Streams:
link to video
link to slides
The primary use of Optional is as follows: (slide 36)
Optional is intended to provide a limited mechanism for library method return types where there is a clear need to represent "no result," and where using null for that is overwhelmingly likely to cause errors.
The ability to chain methods from an Optional is undoubtedly very cool, and in some cases it reduces the clutter from conditional logic. But quite often this doesn't work out. A typical code smell is, instead of the code using method chaining to handle an Optional returned from some method, it creates an Optional from something that's nullable, in order to chain methods and avoid conditionals. Here's an example of that in action (also from our presentation, slide 42):
// BAD
String process(String s) {
return Optional.ofNullable(s).orElseGet(this::getDefault);
}
// GOOD
String process(String s) {
return (s != null) ? s : getDefault();
}
The method that uses Optional is longer, and most people find it more obscure than the conventional code. Not only that, it creates extra garbage for no good reason.
Bottom line: just because you can do something doesn't mean that you should do it.
Since this is more or less an opinion-based question, I'll throw mine in. If you're trying to say
if (id == 1) {
Foo f = new Foo(id, "Bar", "US");
return "Bar".equals(f.getName()) && "US".equals(f.getCountryCode());
} else {
return false;
}
then just say that. Making things "functional" doesn't automatically make things clearer or better. By introducing a needless Optional, a couple lambdas, and some Optional methods that I had to look up, you've made the code more convoluted and difficult to understand. I don't think the designers of Java "intended" for people to use Optional to help make code more obscure.
EDIT: After reading some responses, I think it's worth adding some comments. This is not a functional programming idiom I'm familiar with, which would make it harder to understand. The idioms I am familiar with mostly involve Java streams, or (in other languages) functional idioms applied to multiple values in arrays or lists or other collections of multiple values. In those cases, once you get past the unfamiliarity, the functional syntax can be seen as an improvement because it allows some details to be hidden (loop indexes, iterators, running pointers, accumulator variables). So overall, it can simplify things. This example, by itself, doesn't do any such simplification.
However, some of the Optional features are useful in stream contexts. Suppose we had a parseInt() method that returns an Optional<Integer>, which is empty if the input string is invalid. (Java 8 really should have provided this.) This would make it easy to take an array of strings and produce an array of integers in which the strings that don't parse are simply eliminated from the result--use parseInt in a stream map(), and use a stream filter to filter out the empty Optionals. (I've seen multiple StackOverflow questions asking how to do this.) If you want to keep only the positive values, you could use an Optional.filter() to change the nonpositives to Optional.empty() before using the stream filter (although in this case, you could add another stream filter afterwards, but in a more complex case the Optional filter could be more useful). That's what I see as the main benefit of Optional from a functional standpoint. It allows you to work with a collection of values all at once, by giving you a way to represent "non-values" and write a function that will still work with them. So I guess the main use of Optional, besides a replacement for null, would be to represent empty spaces in a sequence of values while you're applying functions to the entire sequence as a whole.
Asking whether it's "valid" is rather opinion-based, but as to whether it's the intended use case: no, it's not.
Brian Goetz, Oracle's language architect for Java, has stated that the use case for Optional is for when you need a "no value" marker, and when using null for this is likely to cause errors. Specifically, if a reasonable user of your method is not likely to consider the possibility that its result is null, then you should use Optional. It was explicitly not intended to be a general "Maybe"-type object, as you're using it here.
In your case, the method that returns the Optional is private. That means it can only be used by the implementers of the class, and you can assume that they have good knowledge of the class' methods — including which of them may return null. Since there's no reasonable risk of confusion, Brian Goetz would (probably) say that he would not consider this a valid use case.
Its a little contrived, but 'valid' (as in 'syntactically') , but as #yshavit pointed to, it was intended for use in library development.
Previous answer was due to FP code being difficult to read. Below is commented(a little verbose, b/c that is the javadoc comments) but still. Much easier to read IMHO. (2nd is no-comments, and at least alignment to help readability)
private boolean isFooValid(final Integer id) {
return getFoo(id)
// filter if 'f' matches the predicate, return Optional w/f if true, empty Optional if false
.filter(f -> "Bar".equals(f.getName()) && "US".equals(f.getCountryCode()))
// If a value is present, apply the provided mapping function to it,
// If non-null, return an Optional describing the result.
.map(f -> true)
// Return the value if present, otherwise return other.
.orElse(false);
}
Or at least line it up so its more apparent what is going on and easier to read.
private boolean isFooValid(final Integer id) {
return getFoo(id)
.filter(f -> "Bar".equals(f.getName()) && "US".equals(f.getCountryCode()))
.map(f -> true)
.orElse(false);
}

What's the point of Guava's Optional class

I've recently read about this and seen people using this class, but in pretty much all cases, using null would've worked as well - if not more intuitively. Can someone provide a concrete example where Optional would achieve something that null couldn't or in a much cleaner way? The only thing I can think of is to use it with Maps that don't accept null keys, but even that could be done with a side "mapping" of null's value. Can anyone provide me with a more convincing argument?
Guava team member here.
Probably the single biggest disadvantage of null is that it's not obvious what it should mean in any given context: it doesn't have an illustrative name. It's not always obvious that null means "no value for this parameter" -- heck, as a return value, sometimes it means "error", or even "success" (!!), or simply "the correct answer is nothing". Optional is frequently the concept you actually mean when you make a variable nullable, but not always. When it isn't, we recommend that you write your own class, similar to Optional but with a different naming scheme, to make clear what you actually mean.
But I would say the biggest advantage of Optional isn't in readability: the advantage is its idiot-proof-ness. It forces you to actively think about the absent case if you want your program to compile at all, since you have to actively unwrap the Optional and address that case. Null makes it disturbingly easy to simply forget things, and though FindBugs helps, I don't think it addresses the issue nearly as well. This is especially relevant when you're returning values that may or may not be "present." You (and others) are far more likely to forget that other.method(a, b) could return a null value than you're likely to forget that a could be null when you're implementing other.method. Returning Optional makes it impossible for callers to forget that case, since they have to unwrap the object themselves.
For these reasons, we recommend that you use Optional as a return type for your methods, but not necessarily in your method arguments.
(This is totally cribbed, by the way, from the discussion here.)
It really looks like the Maybe Monad pattern from Haskell.
You should read the following, Wikipedia Monad (functional programming):
And read From Optional to Monad with Guava on Kerflyn's Blog, which discusses about the Optional of Guava used as a Monad:
Edit:
With Java8, there's a built-in Optional that has monadic operators like flatMap. This has been a controversial subject but finally has been implemented.
See http://www.nurkiewicz.com/2013/08/optional-in-java-8-cheat-sheet.html
public Optional<String> tryFindSimilar(String s) //...
Optional<Optional<String>> bad = opt.map(this::tryFindSimilar);
Optional<String> similar = opt.flatMap(this::tryFindSimilar);
The flatMap operator is essential to allow monadic operations, and permits to easily chain calls that all return Optional results.
Think about it, if you used the map operator 5 times you would end up with an Optional<Optional<Optional<Optional<Optional<String>>>>>, while using flatMap would give you Optional<String>
Since Java8 I would rather not use Guava's Optional which is less powerful.
One good reason to use it is that it makes your nulls very meaningful. Instead of returning a null that could mean many things (like error, or failure, or empty,etc) you can put a 'name' to your null. Look at this example:
lets define a basic POJO:
class PersonDetails {
String person;
String comments;
public PersonDetails(String person, String comments) {
this.person = person;
this.comments = comments;
}
public String getPerson() {
return person;
}
public String getComments() {
return comments;
}
}
Now lets make use of this simple POJO:
public Optional<PersonDetails> getPersonDetailstWithOptional () {
PersonDetails details = null; /*details of the person are empty but to the caller this is meaningless,
lets make the return value more meaningful*/
if (details == null) {
//return an absent here, caller can check for absent to signify details are not present
return Optional.absent();
} else {
//else return the details wrapped in a guava 'optional'
return Optional.of(details);
}
}
Now lets avoid using null and do our checks with Optional so its meaningful
public void checkUsingOptional () {
Optional<PersonDetails> details = getPersonDetailstWithOptional();
/*below condition checks if persons details are present (notice we dont check if person details are null,
we use something more meaningful. Guava optional forces this with the implementation)*/
if (details.isPresent()) {
PersonDetails details = details.get();
// proceed with further processing
logger.info(details);
} else {
// do nothing
logger.info("object was null");
}
assertFalse(details.isPresent());
}
thus in the end its a way to make nulls meaningful, & less ambiguity.
The most important advantage of Optional is that it adds more details to the contract between the implementer and caller of a function. For this reason is both useful for parameters and return type.
If you make the convention to always have Optional for possible null objects you add more clarifications to cases like:
Optional<Integer> maxPrime(Optional<Integer> from, Optional<Integer> to)
The contract here clearly specifies that there is a chance that a result is not returned but also shows that it will work with from and to as absent.
Optional<Integer> maxPrime(Optional<Integer> from, Integer to)
The contract specifies that the from is optional so an absent value might have a special meaning like start from 2. I can expect that a null value for the to parameter will throw an exception.
So the good part of using Optional is that the contract became both descriptive (similar with #NotNull annotation) but also formal since you must write code .get() to cope with Optional.

Is NULL arguments a bad practice?

Is it a bad practice to pass NULL argument to methods or in other words should we have method definitions which allow NULL argument as valid argument.
Suppose i want two method
1. to retrieve list of all of companies
2. to retrieve list of companies based upon filter.
We can either have two methods like as below
List<Company> getAllCompaniesList();
List<Company> getCompaniesList(Company companyFilter);
or we can have one single method
List<Company> getCompaniesList(Company companyFilter);
here in second case, if argument is NULL then method return list of all of companies.
Beside question of good practice practically i see one more issue with later approach which is explained below.
I am implementing Spring AOP, in which i want to have some checks on arguments like
1. Is argument NULL ?
2. is size of collection 0?
There are some scenarios where we can not have null argument at all like for method
void addBranches(int companyId, List<Branch>);
This check can be performed very well by using Spring AOP by defining method like following
#Before(argNames="args", value="execution(* *)")
void beforeCall(JoinPoint joinPoint ,Object[] args )
{
foreach(Object obj in args)
{
if(obj == NULL)
{
throw new Exception("Argument NULL");
}
}
}
But problem i am facing is since i have defined some of methods which should accept NULL argument for multiple functionality of one single method as mentioned above for method List getCompaniesList(Company companyFilter);
So i can not apply AOP uniformly for all of methods and neither some expression for methods name match will be useful here.
Please let me know if more information is required or problem is not descriptive enough.
Thanks for reading my problem and giving thought upon it.
It's fine, in cases when there are too many overloaded methods. So instead of having all combinations of parameters, you allow some of them to be null. But if you do so, document this explicitly with
#param foo foo description. Can be null
In your case I'd have the two methods, where the first one invokes the second with a null argument. It makes the API more usable.
There is no strict line where to stop overloading and where to start relying on nullable parameters. It's a matter of preference. But note that thus your method with the most params will allow some of them to be nullable, so document this as well.
Also note that a preferred way to cope with multiple constructor parameters is via a Builder. So instead of:
public Foo(String bar, String baz, int fooo, double barr, String asd);
where each of the arguments is optional, you can have:
Foo foo = new FooBuilder().setBar(bar).setFooo(fooo).build();
I use a very simple rule:
Never allow null as an argument or return value on a public method.
I make use of Optional and Preconditions or AOP to enforce that rule.
This decision already saved me tons of hours bugfixing after NPE's or strange behaviour.
It's common practice, but there are ways of making your code clearer - avoiding null checks in sometimes, or moving them elsewhere. Look up the null object pattern - it may well be exactly what you need: http://en.m.wikipedia.org/wiki/Null_Object_pattern?wasRedirected=true
The rule is: simple interface, complicated implementation.
Design decisions about your API should be made by considering how the client code is likely to use it. If you expect to see either
getAllCompaniesList(null);
or
if (companyFilter == null) {
getAllCompaniesList();
} else {
getAllCompaniesList(companyFilter);
}
then you're doing it wrong. If the likely use-case is that the client code will, at the time it is written, either have or not have a filter, you should supply two entry points; if that decision is likely not made until run-time, allow a null argument.
Another approach that may be workable may be to have a CompanyFilter interface with an companyIsIncluded(Company) method that accepts a Company and returns true or false to say whether any company should be included. Company could implement the interface so that companyIsIncluded method's behavior mirrored equals(), but one could easily have a singleton CompanyFilter.AllCompanies whose companyIsIncluded() method would always return true. Using that approach, there's no need to pass a null value--just pass a reference to the AllComapnies singleton.

Categories

Resources