So my threads are working as expected, and I just wanted to add some extra sauce to my homework.
I made a while loop that checks uses the isShutdown which returns false unless shutdown(); has been called.
So i call shutdown at the end of my method, but it won't ever exit the while loop.
public void runParrallel() throws InterruptedException {
System.out.println("Submitting Task ...");
ExecutorService executor = Executors.newFixedThreadPool(5);
List<Future<TagCounter>> counters = new ArrayList();
counters.add(executor.submit(new TagCounterCallable("https//www.fck.dk")));
counters.add(executor.submit(new TagCounterCallable("https://www.google.com")));
counters.add(executor.submit(new TagCounterCallable("https://politiken.dk")));
counters.add(executor.submit(new TagCounterCallable("https://cphbusiness.dk")));
System.out.println("Task is submitted");
while (!executor.isShutdown()) {
System.out.println("Task is not completed yet....");
Thread.sleep(1000);
}
for (Future<TagCounter> future : counters) {
try {
TagCounter tc = future.get();
System.out.println("Title: " + tc.getTitle());
System.out.println("Div's: " + tc.getDivCount());
System.out.println("Body's: " + tc.getBodyCount());
System.out.println("----------------------------------");
} catch (ExecutionException ex) {
System.out.println("Exception: " + ex);
}
}
executor.shutdown();
}
The while-loop is before you ever call shutdown(). The condition cannot possibly evaluate to false, thus you are stuck with an infinite loop. I'd suggest moving the while loop to the point after you call shutdown().
See also this question on how to shut down an ExecutorService.
Correct me if I'm wrong, but it looks like you want to wait until all tasks that were submitted to your ExecutorService have finished. If you know that they're going to finish in a timely manner, then you can use ExecutorService#shutdown in conjunction with ExecutorService#awaitTermination to block the executing thread until all tasks are complete.
This can be done with the following:
public void runParrallel() throws InterruptedException {
// Same code to submit tasks.
System.out.println("Task is submitted");
executor.shutdown();
executor.awaitTermination(1, TimeUnit.DAYS);
// At this point, the ExecutorService has been shut down successfully
// and all tasks have finished.
for (Future<TagCounter> future : counters) {
try {
TagCounter tc = future.get();
System.out.println("Title: " + tc.getTitle());
System.out.println("Div's: " + tc.getDivCount());
System.out.println("Body's: " + tc.getBodyCount());
System.out.println("----------------------------------");
} catch (ExecutionException ex) {
System.out.println("Exception: " + ex);
}
}
}
With this solution, the while loop can be removed.
Your while-loop is running infinitely because there is nothing that activates the executor.shutdown() inside the while-loop. The code wont progress to the end where you call executor.shutdown() because the while-loop's condition returns back to the start of the while-loop.
Put an if-statement inside the while-loop. The if-statement checks if the task is submitted, and if it is, the executor.shutdown() will be called.
Following is just an example:
while (!executor.isShutdown()) {
System.out.println("Task is not completed yet....");
Thread.sleep(1000);
if(TaskIsCompleted){
executor.shutdown();
}
}
Related
So I have a function which looks like this
ExecutorService executorService = Executors.newFixedThreadPool(2000);
Boolean getMore = true;
try{
While (getMore) {
JSONObject response = getPaginatedResponse();
int[] ar = response.get("something");
if (ar.length > 0) {
// loop through the array and invoke executorService.submit() for each
}
else { getMore = false; }
}
executorService.shutdown();
try {
System.out.println("waiting for tasks to complete, termination starting at : "+java.time.LocalDateTime.now());
executorService.awaitTermination(15, TimeUnit.MINUTES);
} catch (InterruptedException e) {
throw new Exception("loading was interrupted... thread pool timed out!");
}
} catch (Exception) {
System.out.println("Fatal error");
}
My issue is that the each of these threads invoke x number of threads, which in turn each call an API and processes its response, the implementation stops execution after all the "First-level" threads gets fired, but not necessarily all the second level ones, which is crucial for my program, how or where can I invoke the executerService.shutdown() to make sure that all the threads were called.
you can put executorService.shutdown(); inside finally block of exception
I need to execute two tasks in parallel and wait for them to complete. Also I need the result from the second task, for that I am using Future.
My question is that DO I need executor.awaitTermination to join the tasks or Future.get() will take care of it. Also is there a better way to achieve this with Java 8?
public class Test {
public static void main(String[] args) {
test();
System.out.println("Exiting Main");
}
public static void test() {
System.out.println("In Test");
ExecutorService executor = Executors.newFixedThreadPool(2);
executor.submit(() -> {
for(int i = 0 ; i< 5 ; i++) {
System.out.print("["+i+"]");
try {
Thread.sleep(1000);
} catch (Exception e) {e.printStackTrace();}
}
});
Future<String> result = executor.submit(() -> {
StringBuilder builder = new StringBuilder();
for(int i = 0 ; i< 10 ; i++) {
System.out.print("("+i+")");
try {
Thread.sleep(1000);
} catch (Exception e) {e.printStackTrace();}
builder.append(i);
}
return builder.toString();
});
System.out.println("shutdown");
executor.shutdown();
// DO I need this code : START
System.out.println("awaitTermination");
try {
executor.awaitTermination(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
} catch (InterruptedException e) {
System.out.println("Error");
}
// DO I need this code : END
System.out.println("Getting result");
try {
System.out.println(result.get());
}
catch (InterruptedException e) {e.printStackTrace();}
catch (ExecutionException e) {e.printStackTrace();}
System.out.println("Exiting Test");
}
}
OUTPUT with awaitTermination:
In Test
[0]shutdown
(0)awaitTermination
[1](1)[2](2)[3](3)[4](4)(5)(6)(7)(8)(9)Getting result
0123456789
Exiting Test
Exiting Main
OUTPUT without awaitTermination:
In Test
[0]shutdown
Getting result
(0)[1](1)[2](2)[3](3)[4](4)(5)(6)(7)(8)(9)0123456789
Exiting Test
Exiting Main
From the get javadoc:
Waits if necessary for the computation to complete, and then retrieves its result.
get will wait for the second task only.
From the awaitTermination javadoc:
Blocks until all tasks have completed execution after a shutdown request, or the timeout occurs, or the current thread is interrupted, whichever happens first.
awaitTermination will wait for all tasks.
You should use CompletableFuture API
You can run a process async like follow:
CompletableFuture.supplyAsync( () -> { ... } );
It returns a future, and you can add a callback which will be called when process is finished and result is available.
For example:
CompletableFuture.runAsync( () -> {
// Here compute your string
return "something";
} ).thenAccept( result -> {
// Here do something with result (ie the computed string)
} );
Note that this statement uses internally the ForkJoinPool#commonPool() to execute the process async, but you can also call this statement with your own ExecutorService if you want. In both case, in order to be sure not exiting before tasks are completed, you need to call either get() (which is blocking) on each future of submitted tasks, or wait for the executor to shutdown.
I am trying to submit multiple tasks and obtain the results as and when it is available. However, after the end of the loop, I have to enforce that all the tasks complete within specified amount of time. If not, throw an error. Initially, all I had was executorService's invokeAll, shutdown and awaitTermination calls that were used to ensure that all tasks complete (inspite of errors or not). I migrated the code to use CompletionService to display the results. Where can I enforce the awaitTermination clause in the CompletionService calls?
CompletionService<String> completionService = new ExecutorCompletionService<String>(executor);
logger.info("Submitting all tasks");
for (Callable<String> task : tasks)
completionService.submit(task);
executor.shutdown();
logger.info("Tasks submitted. Now checking the status.");
while (!executor.isTerminated())
{
final Future<String> future = completionService.take();
String itemValue;
try
{
itemValue = future.get();
if (!itemValue.equals("Bulk"))
logger.info("Backup completed for " + itemValue);
}
catch (InterruptedException | ExecutionException e)
{
String message = e.getCause().getMessage();
String objName = "Bulk";
if (message.contains("(") && message.contains(")"))
objName = message.substring(message.indexOf("(") + 1, message.indexOf(")"));
logger.error("Failed retrieving the task status for " + objName, e);
}
}
executor.awaitTermination(24, TimeUnit.HOURS);
In other words, how can I utilize timeout for CompletionService?
EDIT:
The initial code I had was displayed below. The problem is that I am iterating through the future list and then printing them as completed. However, my requirement is to display the ones that were completed at a FCFS basis.
List<Future<String>> results = executor.invokeAll(tasks);
executor.shutdown();
executor.awaitTermination(24, TimeUnit.HOURS);
while (results.size() > 0)
{
for (Iterator<Future<String>> iterator = results.iterator(); iterator.hasNext();)
{
Future<String> item = iterator.next();
if (item.isDone())
{
String itemValue;
try
{
itemValue = item.get();
if (!itemValue.equals("Bulk"))
logger.info("Backup completed for " + itemValue);
}
catch (InterruptedException | ExecutionException e)
{
String message = e.getCause().getMessage();
String objName = "Bulk";
if (message.contains("(") && message.contains(")"))
objName = message.substring(message.indexOf("(") + 1, message.indexOf(")"));
logger.error("Failed retrieving the task status for " + objName, e);
}
finally
{
iterator.remove();
}
}
}
}
I'd suggest you wait for the executor to terminate on another thread
That way you can achieve serving results FCFS and also enforce the timeout.
It can be easily achieved with something that will look like the following
CompletionService<String> completionService = new ExecutorCompletionService<String>(executor);
// place all the work in a function (an Anonymous Runnable in this case)
// completionService.submit(() ->{work});
// as soon as the work is submitted it is handled by another Thread
completionService.submit(() ->{
logger.info("Submitting all tasks");
for (Callable<String> task : tasks)
completionService.submit(task);
logger.info("Tasks submitted. Now checking the status.");
int counter = tasks.size();
for(int i = counter; counter >=1; counter--) // Replaced the while loop
{
final Future<String> future = completionService.take();
String itemValue;
try
{
itemValue = future.get();
if (!itemValue.equals("Bulk"))
logger.info("Backup completed for " + itemValue);
}
catch (InterruptedException | ExecutionException e)
{
String message = e.getCause().getMessage();
String objName = "Bulk";
if (message.contains("(") && message.contains(")"))
objName = message.substring(message.indexOf("(") + 1, message.indexOf(")"));
logger.error("Failed retrieving the task status for " + objName, e);
}
}
});
// After submitting the work to another Thread
// Wait in your Main Thread, and enforce termination if needed
shutdownAndAwaitTermination(executor);
You handle the executors termination && waiting using this (taken from ExecutorsService)
void shutdownAndAwaitTermination(ExecutorService pool) {
pool.shutdown(); // Disable new tasks from being submitted
try {
// Wait a while for existing tasks to terminate
if (!pool.awaitTermination(24, TimeUnit.HOURS)) {
pool.shutdownNow(); // Cancel currently executing tasks
// Wait a while for tasks to respond to being cancelled
if (!pool.awaitTermination(60, TimeUnit.SECONDS))
System.err.println("Pool did not terminate");
}
} catch (InterruptedException ie) {
// (Re-)Cancel if current thread also interrupted
pool.shutdownNow();
// Preserve interrupt status
Thread.currentThread().interrupt();
}
}
Ok then, you need to monitor completion. So, why are yon not using as per documentation? https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorCompletionService.html So, it submits n tasks to a new instance of ExecutorCompletionService and waits n to complete. No termination again, you could just reuse the same executor (usually thread pool, creating a new thread is more expensive rather than reusing from a pool). So, if I adapt code from the documentation to your scenario it would be something like:
CompletionService<Result> ecs
= new ExecutorCompletionService<String>(executor);
for (Callable<Result> task : tasks)
ecs.submit(task);
logger.info("Tasks submitted. Now checking the status.");
int n = tasks.size();
for (int i = 0; i < n; ++i) {
try {
String r = ecs.take().get();
logger.info("Backup completed for " + r);
}
catch(InterruptedException | ExecutionException e) {
...
}
}
Also, it is bad idea to parse exception message, better if you create your custom exception class and use instanceof.
If you need to have a timeout for the completion - use poll with time parameters instead of take.
I have an application that is running jobs that require two threads for every job. The two threads normally do some work and finish shortly after each other. Then after the second thread finishes I need to do some cleanup but since the threads are doing some network IO, it is possible for one thread to get blocked for a long time. In that case, I want the cleanup to take place a few seconds after the first thread finishes.
I implemented this behaviour with the following piece of code in a callback class:
private boolean first = true;
public synchronized void done() throws InterruptedException {
if (first) {
first = false;
wait(3000);
// cleanup here, as soon as possible
}
else {
notify();
}
}
Both threads invoke the done() method when they finish. The first one will then block in the wait() for at most 3 seconds but will be notified immediately when the seconds thread invokes the done() method.
I have tested this implementation and it seems to work well but I'm am curious if there's a better way of doing this. Even though this implementation doesn't look too complicated, I'm afraid that my program will deadlock or have some unsuspected synchronization issue.
I hope I understood your need. You want to wait for thread-a to complete and then wait either 3 seconds or for the end of thread-b.
It is better to use the newer Concurrent tools instead of the old wait/notify as there are so many edge cases to them.
// Two threads running so count down from 2.
CountDownLatch wait = new CountDownLatch(2);
class TestRun implements Runnable {
private final long waitTime;
public TestRun(long waitTime) {
this.waitTime = waitTime;
}
#Override
public void run() {
try {
// Wait a few seconds.
Thread.sleep(waitTime);
// Finished! Count me down.
wait.countDown();
System.out.println(new Date() + ": " + Thread.currentThread().getName() + " - Finished");
} catch (InterruptedException ex) {
System.out.println(Thread.currentThread().getName() + " - Interrupted");
}
}
}
public void test() throws InterruptedException {
// ThreadA
Thread threadA = new Thread(new TestRun(10000), "Thread A");
// ThreadB
Thread threadB = new Thread(new TestRun(30000), "Thread B");
// Fire them up.
threadA.start();
threadB.start();
// Wait for all to finish but threadA must finish.
threadA.join();
// Wait up to 3 seconds for B.
wait.await(3, TimeUnit.SECONDS);
System.out.println(new Date() + ": Done");
threadB.join();
}
happily prints:
Tue Sep 15 16:59:37 BST 2015: Thread A - Finished
Tue Sep 15 16:59:40 BST 2015: Done
Tue Sep 15 16:59:57 BST 2015: Thread B - Finished
Added
With the new clarity - that the end of any thread starts the timer - we can use a third thread for the cleanup. Each thread must call a method when it finishes to trigger the cleanup mechanism.
// Two threads running so count down from 2.
CountDownLatch wait = new CountDownLatch(2);
class TestRun implements Runnable {
private final long waitTime;
public TestRun(long waitTime) {
this.waitTime = waitTime;
}
#Override
public void run() {
try {
// Wait a few seconds.
Thread.sleep(waitTime);
// Finished! Count me down.
wait.countDown();
System.out.println(new Date() + ": " + Thread.currentThread().getName() + " - Finished");
// Record that I've finished.
finished();
} catch (InterruptedException ex) {
System.out.println(Thread.currentThread().getName() + " - Interrupted");
}
}
}
Runnable cleanup = new Runnable() {
#Override
public void run() {
try {
// Wait up to 3 seconds for both threads to clear.
wait.await(3, TimeUnit.SECONDS);
// Do your cleanup stuff here.
// ...
System.out.println(new Date() + ": " + Thread.currentThread().getName() + " - Finished");
} catch (InterruptedException ex) {
System.out.println(Thread.currentThread().getName() + " - Interrupted");
}
}
};
final AtomicBoolean cleanupStarted = new AtomicBoolean(false);
private void finished() {
// Make sure I only start the cleanup once.
if (cleanupStarted.compareAndSet(false, true)) {
new Thread(cleanup, "Cleanup").start();
}
}
public void test() throws InterruptedException {
// ThreadA
Thread threadA = new Thread(new TestRun(10000), "Thread A");
// ThreadB
Thread threadB = new Thread(new TestRun(30000), "Thread B");
// Fire them up.
threadA.start();
threadB.start();
System.out.println(new Date() + ": Done");
}
As done method is synchronized, so only one thread can execute at a time, with this second will wait to send notify until first finishes its whole job, which might cause performance bottleneck.
I would rather design it with short synchronized block which would primarily update the boolean first.
Good afternoon all,
I'm working with Java's semaphore and concurrency for a school project and had a few questions regarding how it works!
If there are no permits available, I need the thread to exit the "queue" - not just sleep until one is ready. Is this possible? As you can see in my try, catch, finally - there is no handle for this event:
try {
semaphore.acquire();
System.out.println(Thread.currentThread().getName() + " aquired for 3 seconds " + semaphore.toString());
Thread.sleep(3000);
}
catch (InterruptedException e) {
e.printStackTrace();
} finally {
semaphore.release();
System.out.println(Thread.currentThread().getName() + " released " + semaphore.toString());
}
Daniel brought up the tryAquire function - this looks great but the tutorials I have read state that semaphores require a try, catch, finally block to prevent a deadlock. My current code (implementing tryAquire) will release in the finally block even if that thread was never acquired. Do you have any suggestions?
public void seatCustomer(int numBurritos) {
try {
if(semaphore.tryAcquire()) {
System.out.println(Thread.currentThread().getName() + " aquired for 3 seconds " + semaphore.toString());
Thread.sleep(3000);
} else {
System.out.println(Thread.currentThread().getName() + " left due to full shop");
}
}
catch (InterruptedException e) {
e.printStackTrace();
} finally {
semaphore.release();
System.out.println(Thread.currentThread().getName() + " released " + semaphore.toString());
}
}
I suggest you read the JavaDocs for Semaphor. In particular, look at the tryAcquire method.
Acquires a permit from this semaphore, only if one is available at the time of invocation.
Acquires a permit, if one is available and returns immediately, with the value true, reducing the number of available permits by one.
If no permit is available then this method will return immediately with the value false.
What this means is you can try to acquire a permit if any are available. If none are available, this method returns false immediately instead of blocking.
You'll have to make your "finally" block a little smarter.
boolean hasPermit = false;
try {
hasPermit = semaphore.tryAcquire();
if (hasPermit) {
// do stuff.
}
} finally {
if (hasPermit) {
semaphore.release();
}
}