Reversing an integer in java (question about the method) - java

The problem statement is kind of basic - if the input is a 32 bit signed integer output reversed integer, else output 0.
Here is the code I came up with
public class Solution {
public int reverse(int A) {
if(A>=2143483647 || A<-2143483647)
return 0;
if(A>=0)
return Integer.parseInt((new StringBuilder(String.valueOf(A))).reverse().toString());
else
return -1*Integer.parseInt((new StringBuilder(String.valueOf(-1*A))).reverse().toString());
}
}
The solution is not accepted. The problem is in my code or the test cases?

Assuming the input is int32, here is a possible approach, including checking for overflow.
public class Solution {
public int reverse(int A) {
//if(A < Integer.MIN_VALUE || A > Integer.MAX_VALUE) return 0;
boolean neg = A < 0;
A = Math.abs(A);
long ret = 0;
while(A != 0){
ret = ret*10 + A%10;
A = A/10;
}
if(ret > Integer.MAX_VALUE) return 0;
return neg ? -(int)ret : (int)ret;
}
}
Be mindful to change int to long if the input is bigger.

The accepted answer is close but misses some edge cases. Here is an answer based on the accepted answer, but hopefully correctly handles all cases.
public static int reverse(int A) {
long aLong = Math.abs((long)A);
long ret = 0;
while (aLong != 0) {
ret = ret * 10 + aLong % 10;
aLong = aLong / 10;
}
if (A < 0) {
ret = -ret;
}
if ((ret < Integer.MIN_VALUE) || (ret > Integer.MAX_VALUE)) {
return 0;
} else {
return (int) ret;
}

you can try reversing into a long parameter first (this guarantees that it'll not overflow), then do the checking afterwards.
public int reverse(int A) {
long reversed;
if(A>=0)
reversed= reverseString(A);
else
reversed -1* reverseString(-A) ;
//we do the checking only after we have done the reverse.
if(reversed > Integer.Max_VALUE || reversed < Integer.MIN_VALUE)
return 0;
else
return (int) reversed; //we do a down cast here.
}
public long reverseString(int A){
StringBuilder sb = new StringBuilder(""+A).reverse();
String s = sb.reverse().toString();
return Long.parseLong(s);
}

This code will take care of positive and negative both numbers.After reversal if result is greater than Integer.MAX_VALUE then it will return zero.
public static int reverse(int x) {
boolean positive = true;
if(x < 0) {
positive = false;
x = x * -1;
}
long result = 0;
while(x > 0) {
result = (result * 10) + (x % 10);
x = x / 10;
}
if(result > Integer.MAX_VALUE) {
return 0;
}
return positive ? (int)result : (int)(result * -1);
}

Related

Bloom Filters: Getting higher error rates than expected

I created a bloom filter using murmur3, blake2b, and Kirsch-Mitzenmacher-optimization, as described in the second answer to this question: Which hash functions to use in a Bloom filter
However, when I was testing it, the bloom filter constantly had a much higher error rate than I was expecting.
Here is the code I used to generate the bloom filters:
public class BloomFilter {
private BitSet filter;
private int size;
private int hfNum;
private int prime;
private double fp = 232000; //One false positive every fp items
public BloomFilter(int count) {
size = (int)Math.ceil(Math.ceil(((double)-count) * Math.log(1/fp))/(Math.pow(Math.log(2),2)));
hfNum = (int)Math.ceil(((this.size / count) * Math.log(2)));
//size = (int)Math.ceil((hfNum * count) / Math.log(2.0));
filter = new BitSet(size);
System.out.println("Initialized filter with " + size + " positions and " + hfNum + " hash functions.");
}
public BloomFilter extraSecure(int count) {
return new BloomFilter(count, true);
}
private BloomFilter(int count, boolean x) {
size = (int)Math.ceil((((double)-count) * Math.log(1/fp))/(Math.pow(Math.log(2),2)));
hfNum = (int)Math.ceil(((this.size / count) * Math.log(2)));
prime = findPrime();
size = prime * hfNum;
filter = new BitSet(prime * hfNum);
System.out.println("Initialized filter with " + size + " positions and " + hfNum + " hash functions.");
}
public void add(String in) {
filter.set(getMurmur(in), true);
filter.set(getBlake(in), true);
if(this.hfNum > 2) {
for(int i = 3; i <= (hfNum); i++) {
filter.set(getHash(in, i));
}
}
}
public boolean check(String in) {
if(!filter.get(getMurmur(in)) || !filter.get(getBlake(in))) {
return false;
}
for(int i = 3; i <= hfNum; i++) {
if(!filter.get(getHash(in, i))) {
return false;
}
}
return true;
}
private int getMurmur(String in) {
int temp = murmur(in) % (size);
if(temp < 0) {
temp = temp * -1;
}
return temp;
}
private int getBlake(String in) {
int temp = new BigInteger(blake256(in), 16).intValue() % (size);
if(temp < 0) {
temp = temp * -1;
}
return temp;
}
private int getHash(String in, int i) {
int temp = ((getMurmur(in)) + (i * getBlake(in))) % size;
return temp;
}
private int findPrime() {
int temp;
int test = size;
while((test * hfNum) > size ) {
temp = test - 1;
while(!isPrime(temp)) {
temp--;
}
test = temp;
}
if((test * hfNum) < this.size) {
test++;
while(!isPrime(test)) {
test++;
}
}
return test;
}
private static boolean isPrime(int num) {
if (num < 2) return false;
if (num == 2) return true;
if (num % 2 == 0) return false;
for (int i = 3; i * i <= num; i += 2)
if (num % i == 0) return false;
return true;
}
#Override
public String toString() {
final StringBuilder buffer = new StringBuilder(size);
IntStream.range(0, size).mapToObj(i -> filter.get(i) ? '1' : '0').forEach(buffer::append);
return buffer.toString();
}
}
Here is the code I'm using to test it:
public static void main(String[] args) throws Exception {
int z = 0;
int times = 10;
while(z < times) {
z++;
System.out.print("\r");
System.out.print(z);
BloomFilter test = new BloomFilter(4000);
SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
for(int i = 0; i < 4000; i++) {
test.add(blake256(Integer.toString(random.nextInt())));
}
int temp = 0;
int count = 1;
while(!test.check(blake512(Integer.toString(temp)))) {
temp = random.nextInt();
count++;
}
if(z == (times)) {
Files.write(Paths.get("counts.txt"), (Integer.toString(count)).getBytes(), StandardOpenOption.APPEND);
}else {
Files.write(Paths.get("counts.txt"), (Integer.toString(count) + ",").getBytes(), StandardOpenOption.APPEND);
}
if(z == 1) {
Files.write(Paths.get("counts.txt"), (Integer.toString(count) + ",").getBytes());
}
}
}
I expect to get a value relatively close to the fp variable in the bloom filter class, but instead I frequently get half that. Anyone know what I'm doing wrong, or if this is normal?
EDIT: To show what I mean by high error rates, when I run the code on a filter initialized with count 4000 and fp 232000, this was the output in terms of how many numbers the filter had to run through before it found a false positive:
158852,354114,48563,76875,156033,82506,61294,2529,82008,32624
This was generated using the extraSecure() method for initialization, and repeated 10 times to generate these 10 numbers; all but one of them took less than 232000 generated values to find a false positive. The average of the 10 is about 105540, and that's common no matter how many times I repeat this test.
Looking at the values it found, the fact that it found a false positive after only generating 2529 numbers is a huge issue for me, considering I'm adding 4000 data points.
I'm afraid I don't know where the bug is, but you can simplify a lot. You don't actually need prime size, you don't need SecureRandom, BigInteger, and modulo. All you need is a good 64 bit hash (seeded if possible, for example murmur):
long bits = (long) (entryCount * bitsPerKey);
int arraySize = (int) ((bits + 63) / 64);
long[] data = new long[arraySize];
int k = getBestK(bitsPerKey);
void add(long key) {
long hash = hash64(key, seed);
int a = (int) (hash >>> 32);
int b = (int) hash;
for (int i = 0; i < k; i++) {
data[reduce(a, arraySize)] |= 1L << index;
a += b;
}
}
boolean mayContain(long key) {
long hash = hash64(key, seed);
int a = (int) (hash >>> 32);
int b = (int) hash;
for (int i = 0; i < k; i++) {
if ((data[reduce(a, arraySize)] & 1L << a) == 0) {
return false;
}
a += b;
}
return true;
}
static int reduce(int hash, int n) {
// http://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
return (int) (((hash & 0xffffffffL) * n) >>> 32);
}
static int getBestK(double bitsPerKey) {
return Math.max(1, (int) Math.round(bitsPerKey * Math.log(2)));
}
Turns out the issue was that the answer on the other page wasn't completely correct, and neither was the comment below it.
The comment said:
in the paper hash_i = hash1 + i x hash2 % p, where p is a prime, hash1 and hash2 is within range of [0, p-1], and the bitset consists k * p bits.
However, looking at the paper reveals that while all the hashes are mod p, each hash function is assigned a subset of the total bitset, which I understood to mean hash1 mod p would determine a value for indices 0 through p, hash2 mod p would determine a value for indices p through 2*p, and so on and so forth until the k value chosen for the bitset is reached.
I'm not 100% sure if adding this will fix my code, but it's worth a try. I'll update this if it works.
UPDATE: Didn't help. I'm looking into what else may be causing this problem.

Faster GCD(n, m) in Java?

I'm working on something that's going to need to use the GCD algorithm quite a bit, and I'd like it to be as fast as possible. I've tried the normal method, binary method, and a memoisation method I thought would work better than it did. I copied the binary method from here, with minor tweaks.
I've been using a class called TestGCD for testing, here's the whole thing:
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class TestGCD
{
private static class Pair<A>
{
private final A a_one;
private final A a_two;
public Pair(A a_one, A a_two)
{
this.a_one = a_one;
this.a_two = a_two;
}
#Override
public boolean equals(Object object)
{
if (this == object)
return true;
if (object == null)
return false;
if (!(object instanceof Pair))
return false;
final Pair other = (Pair) object;
if (a_one == null)
if (other.a_one != null)
return false;
if (a_two == null)
if (other.a_two != null)
return false;
if (a_one.equals(other.a_one))
if (a_two.equals(other.a_two))
return true;
if (a_one.equals(other.a_two))
if (a_two.equals(other.a_one))
return true;
return false;
}
public A getFirst()
{
return a_one;
}
public A getSecond()
{
return a_two;
}
#Override
public int hashCode()
{
final int prime = 31;
int result = 1;
final int aOneHash = a_one == null ? 0 : a_one.hashCode();
final int aTwoHash = a_two == null ? 0 : a_two.hashCode();
int resultOneWay = prime * result + aOneHash;
resultOneWay += prime * result + aTwoHash;
int resultOtherWay = prime * result + aTwoHash;
resultOtherWay += prime * result + aOneHash;
result += resultOneWay + resultOtherWay;
return result;
}
#Override
public String toString()
{
return String.format("%s, %s", a_one, a_two);
}
}
private final static Map<Pair<Integer>, Integer> STORAGE = new HashMap<>();
private static void addNewPairs(List<Pair<Integer>> newPairs, int result)
{
for (final Pair<Integer> pair : newPairs)
STORAGE.put(pair, result);
}
private static int gcd(int x, int y)
{
if (x == 0)
return y;
if (y == 0)
return x;
int gcdX = Math.abs(x);
int gcdY = Math.abs(y);
if (gcdX == 1 || gcdY == 1)
return 1;
while (gcdX != gcdY)
if (gcdX > gcdY)
gcdX -= gcdY;
else
gcdY -= gcdX;
return gcdX;
}
private static int gcdBinary(int x, int y)
{
int shift;
/* GCD(0, y) == y; GCD(x, 0) == x, GCD(0, 0) == 0 */
if (x == 0)
return y;
if (y == 0)
return x;
int gcdX = Math.abs(x);
int gcdY = Math.abs(y);
if (gcdX == 1 || gcdY == 1)
return 1;
/* Let shift := lg K, where K is the greatest power of 2 dividing both x and y. */
for (shift = 0; ((gcdX | gcdY) & 1) == 0; ++shift)
{
gcdX >>= 1;
gcdY >>= 1;
}
while ((gcdX & 1) == 0)
gcdX >>= 1;
/* From here on, gcdX is always odd. */
do
{
/* Remove all factors of 2 in gcdY -- they are not common */
/* Note: gcdY is not zero, so while will terminate */
while ((gcdY & 1) == 0)
/* Loop X */
gcdY >>= 1;
/*
* Now gcdX and gcdY are both odd. Swap if necessary so gcdX <= gcdY,
* then set gcdY = gcdY - gcdX (which is even). For bignums, the
* swapping is just pointer movement, and the subtraction
* can be done in-place.
*/
if (gcdX > gcdY)
{
final int t = gcdY;
gcdY = gcdX;
gcdX = t;
} // Swap gcdX and gcdY.
gcdY = gcdY - gcdX; // Here gcdY >= gcdX.
}while (gcdY != 0);
/* Restore common factors of 2 */
return gcdX << shift;
}
private static int gcdMemoised(int x, int y)
{
if (x == 0)
return y;
if (y == 0)
return x;
int gcdX = Math.abs(x);
int gcdY = Math.abs(y);
if (gcdX == 1 || gcdY == 1)
return 1;
final List<Pair<Integer>> newPairs = new ArrayList<>();
while (gcdX != gcdY)
{
final Pair<Integer> pair = new Pair<>(gcdX, gcdY);
final Integer result = STORAGE.get(pair);
if (result != null)
{
addNewPairs(newPairs, result);
return result;
}
else
newPairs.add(pair);
if (gcdX > gcdY)
gcdX -= gcdY;
else
gcdY -= gcdX;
}
addNewPairs(newPairs, gcdX);
return gcdX;
}
So is there a way of making this algorithm faster or is the original version the fastest I'm going to get? No suggestions of using another language please, I'm looking for an algorithm improvement. Clearly my memoisation attempt was an utter failure, but maybe someone here can see a flaw/improve on it.
You can use Euclid's algorithm. It is very simple to implement and it is more efficient. Here is a code for it:
static int gcd(int a, int b) {
while (b != 0) {
int t = a;
a = b;
b = t % b;
}
return a;
}
The time complexity is O(log(A + B)), while the algorithms you are using are O(A + B). It scales better and is efficient for small a and b, too.
Here is what I came up with, on the same lines as #ILoveCoding
public static long gcd(long first, long second) {
long big = 0;
long small = 0;
if(first > second) {
big=first;
small=second;
}
else {
big=second;
small=first;
}
long temp = big % small;
while( (temp) > 1 ) {
big = small;
small = temp;
temp = big % small;
}
if( temp == 0 ) {
return small ;
}
else if( temp == 1) {
return 1;
}
else {
return -1; // will never occur. hack for compilation error.
}
}
Edit: Test cases !
System.out.println( gcd(10L, 5L));
System.out.println( gcd(11L, 7L));
System.out.println( gcd(15L, 21L));
System.out.println( gcd(-2L, -5L));
System.out.println( gcd(-2L, 2L));
Euclidean Algorithm used by author of the question (subtraction-based version) and accepted answer (mod-based) both seems to be quite not as efficient as Binary GCD Algorithm, so here it's code in java (taken from wikipidea)
static long gcd(long u, long v) {
int shift;
if (u == 0) return v;
if (v == 0) return u;
for (shift = 0; ((u | v) & 1) == 0; ++shift) {
u >>= 1;
v >>= 1;
}
while ((u & 1) == 0) {
u >>= 1;
}
do {
while ((v & 1) == 0) {
v >>= 1;
}
if (u > v) {
long t = v;
v = u;
u = t;
}
v = v - u;
} while (v != 0);
return u << shift;
}
However, Binary algorithm is not the fastest gcd algorithm. More here.
Use Euclidean Algorithm for GCD
The algorithm is based on below facts.
If we subtract smaller number from larger (we reduce larger number),
GCD doesn’t change. So if we keep subtracting repeatedly the larger
of two, we end up with GCD.
Now instead of subtraction, if we divide smaller number, the
algorithm stops when we find remainder 0.
Code:
import java.util.*;
import java.lang.*;
class GFG
{
public static int gcd(int a, int b)
{
if (a == 0)
return b;
return gcd(b%a, a);
}
public static void main(String[] args)
{
int a = 10, b = 15, g;
g = gcd(a, b);
System.out.println("GCD(" + a + " , " + b+ ") = " + g);
}
}
Time Complexity: O(Log min(a, b))

Searching an array for certain number of integers greater than one integer

I have written this method to find the number of values that are greater than a specific value in an array and it works with arrrays that have positive integers but when I tried this test case it failed.
public static int numGreater(int[] a, int val) {
if (a == null || a.length == 0) {
throw new IllegalArgumentException();
}
int[] copy = Arrays.copyOf(a, a.length);
Arrays.sort(copy);
int answer = 0;
int nearest = copy[0];
for (int i = 0; i < copy.length; i++) {
if (Math.abs(nearest - val) > Math.abs(copy[i] - val)) {
nearest = copy[i];
answer = (copy.length - 1) - i;
}
}
return answer;
}
Here is the test case I ran with JUnit.
int z[] = {-5,-2,0,4,8,15,50};
#Test public void numGreaterTest1() {
Assert.assertEquals(7, Selector.numGreater(z, -99));
}
Any ideas on where I went wrong?
public static int numGreater(int[] a, int val) {
if (a == null || a.length == 0) {
throw new IllegalArgumentException();
}
int answer = 0;
for (int i = 0; i < a.length; i++) {
if (a[i]>val) {
answer++;
}
}
return answer;
}

Manually converting a string to an integer in Java

I'm having string consisting of a sequence of digits (e.g. "1234"). How to return the String as an int without using Java's library functions like Integer.parseInt?
public class StringToInteger {
public static void main(String [] args){
int i = myStringToInteger("123");
System.out.println("String decoded to number " + i);
}
public int myStringToInteger(String str){
/* ... */
}
}
And what is wrong with this?
int i = Integer.parseInt(str);
EDIT :
If you really need to do the conversion by hand, try this:
public static int myStringToInteger(String str) {
int answer = 0, factor = 1;
for (int i = str.length()-1; i >= 0; i--) {
answer += (str.charAt(i) - '0') * factor;
factor *= 10;
}
return answer;
}
The above will work fine for positive integers, if the number is negative you'll have to do a little checking first, but I'll leave that as an exercise for the reader.
If the standard libraries are disallowed, there are many approaches to solving this problem. One way to think about this is as a recursive function:
If n is less than 10, just convert it to the one-character string holding its digit. For example, 3 becomes "3".
If n is greater than 10, then use division and modulus to get the last digit of n and the number formed by excluding the last digit. Recursively get a string for the first digits, then append the appropriate character for the last digit. For example, if n is 137, you'd recursively compute "13" and tack on "7" to get "137".
You will need logic to special-case 0 and negative numbers, but otherwise this can be done fairly simply.
Since I suspect that this may be homework (and know for a fact that at some schools it is), I'll leave the actual conversion as an exercise to the reader. :-)
Hope this helps!
Use long instead of int in this case.
You need to check for overflows.
public static int StringtoNumber(String s) throws Exception{
if (s == null || s.length() == 0)
return 0;
while(s.charAt(0) == ' '){
s = s.substring(1);
}
boolean isNegative = s.charAt(0) == '-';
if (s.charAt(0) == '-' || (s.charAt(0) == '+')){
s = s.substring(1);
}
long result = 0l;
for (int i = 0; i < s.length(); i++){
int value = s.charAt(i) - '0';
if (value >= 0 && value <= 9){
if (!isNegative && 10 * result + value > Integer.MAX_VALUE ){
throw new Exception();
}else if (isNegative && -1 * 10 * result - value < Integer.MIN_VALUE){
throw new Exception();
}
result = 10 * result + value;
}else if (s.charAt(i) != ' '){
return (int)result;
}
}
return isNegative ? -1 * (int)result : (int)result;
}
Alternate approach to the answer already posted here. You can traverse the string from the front and build the number
public static void stringtoint(String s){
boolean isNegative=false;
int number =0;
if (s.charAt(0)=='-') {
isNegative=true;
}else{
number = number* 10 + s.charAt(0)-'0';
}
for (int i = 1; i < s.length(); i++) {
number = number*10 + s.charAt(i)-'0';
}
if(isNegative){
number = 0-number;
}
System.out.println(number);
}
Given the right hint, I think most people with a high school education can solve this own their own. Every one knows 134 = 100x1 + 10x3 + 1x4
The key part most people miss, is that if you do something like this in Java
System.out.println('0'*1);//48
it will pick the decimal representation of character 0 in ascii chart and multiply it by 1.
In ascii table character 0 has a decimal representation of 48. So the above line will print 48. So if you do something like '1'-'0' That is same as 49-48. Since in ascii chart, characters 0-9 are continuous, so you can take any char from 0 to 9 and subtract 0 to get its integer value. Once you have the integer value for a character, then converting the whole string to int is straight forward.
Here is another one solution to the problem
String a = "-12512";
char[] chars = a.toCharArray();
boolean isNegative = (chars[0] == '-');
if (isNegative) {
chars[0] = '0';
}
int multiplier = 1;
int total = 0;
for (int i = chars.length - 1; i >= 0; i--) {
total = total + ((chars[i] - '0') * multiplier);
multiplier = multiplier * 10;
}
if (isNegative) {
total = total * -1;
}
Use this:
static int parseInt(String str) {
char[] ch = str.trim().toCharArray();
int len = ch.length;
int value = 0;
for (int i=0, j=(len-1); i<len; i++,j--) {
int c = ch[i];
if (c < 48 || c > 57) {
throw new NumberFormatException("Not a number: "+str);
}
int n = c - 48;
n *= Math.pow(10, j);
value += n;
}
return value;
}
And by the way, you can handle the special case of negative integers, otherwise it will throw exception NumberFormatException.
You can do like this: from the string, create an array of characters for each element, keep the index saved, and multiply its ASCII value by the power of the actual reverse index. Sum the partial factors and you get it.
There is only a small cast to use Math.pow (since it returns a double), but you can avoid it by creating your own power function.
public static int StringToInt(String str){
int res = 0;
char [] chars = str.toCharArray();
System.out.println(str.length());
for (int i = str.length()-1, j=0; i>=0; i--, j++){
int temp = chars[j]-48;
int power = (int) Math.pow(10, i);
res += temp*power;
System.out.println(res);
}
return res;
}
Using Java 8 you can do the following:
public static int convert(String strNum)
{
int result =strNum.chars().reduce(0, (a, b)->10*a +b-'0');
}
Convert srtNum to char
for each char (represented as 'b') -> 'b' -'0' will give the relative number
sum all in a (initial value is 0)
(each time we perform an opertaion on a char do -> a=a*10
Make use of the fact that Java uses char and int in the same way. Basically, do char - '0' to get the int value of the char.
public class StringToInteger {
public static void main(String[] args) {
int i = myStringToInteger("123");
System.out.println("String decoded to number " + i);
}
public static int myStringToInteger(String str) {
int sum = 0;
char[] array = str.toCharArray();
int j = 0;
for(int i = str.length() - 1 ; i >= 0 ; i--){
sum += Math.pow(10, j)*(array[i]-'0');
j++;
}
return sum;
}
}
public int myStringToInteger(String str) throws NumberFormatException
{
int decimalRadix = 10; //10 is the radix of the decimal system
if (str == null) {
throw new NumberFormatException("null");
}
int finalResult = 0;
boolean isNegative = false;
int index = 0, strLength = str.length();
if (strLength > 0) {
if (str.charAt(0) == '-') {
isNegative = true;
index++;
}
while (index < strLength) {
if((Character.digit(str.charAt(index), decimalRadix)) != -1){
finalResult *= decimalRadix;
finalResult += (str.charAt(index) - '0');
} else throw new NumberFormatException("for input string " + str);
index++;
}
} else {
throw new NumberFormatException("Empty numeric string");
}
if(isNegative){
if(index > 1)
return -finalResult;
else
throw new NumberFormatException("Only got -");
}
return finalResult;
}
Outcome:
1) For the input "34567" the final result would be: 34567
2) For the input "-4567" the final result would be: -4567
3) For the input "-" the final result would be: java.lang.NumberFormatException: Only got -
4) For the input "12ab45" the final result would be: java.lang.NumberFormatException: for input string 12ab45
public static int convertToInt(String input){
char[] ch=input.toCharArray();
int result=0;
for(char c : ch){
result=(result*10)+((int)c-(int)'0');
}
return result;
}
Maybe this way will be a little bit faster:
public static int convertStringToInt(String num) {
int result = 0;
for (char c: num.toCharArray()) {
c -= 48;
if (c <= 9) {
result = (result << 3) + (result << 1) + c;
} else return -1;
}
return result;
}
This is the Complete program with all conditions positive, negative without using library
import java.util.Scanner;
public class StringToInt {
public static void main(String args[]) {
String inputString;
Scanner s = new Scanner(System.in);
inputString = s.nextLine();
if (!inputString.matches("([+-]?([0-9]*[.])?[0-9]+)")) {
System.out.println("error!!!");
} else {
Double result2 = getNumber(inputString);
System.out.println("result = " + result2);
}
}
public static Double getNumber(String number) {
Double result = 0.0;
Double beforeDecimal = 0.0;
Double afterDecimal = 0.0;
Double afterDecimalCount = 0.0;
int signBit = 1;
boolean flag = false;
int count = number.length();
if (number.charAt(0) == '-') {
signBit = -1;
flag = true;
} else if (number.charAt(0) == '+') {
flag = true;
}
for (int i = 0; i < count; i++) {
if (flag && i == 0) {
continue;
}
if (afterDecimalCount == 0.0) {
if (number.charAt(i) - '.' == 0) {
afterDecimalCount++;
} else {
beforeDecimal = beforeDecimal * 10 + (number.charAt(i) - '0');
}
} else {
afterDecimal = afterDecimal * 10 + number.charAt(i) - ('0');
afterDecimalCount = afterDecimalCount * 10;
}
}
if (afterDecimalCount != 0.0) {
afterDecimal = afterDecimal / afterDecimalCount;
result = beforeDecimal + afterDecimal;
} else {
result = beforeDecimal;
}
return result * signBit;
}
}
Works for Positive and Negative String Using TDD
//Solution
public int convert(String string) {
int number = 0;
boolean isNegative = false;
int i = 0;
if (string.charAt(0) == '-') {
isNegative = true;
i++;
}
for (int j = i; j < string.length(); j++) {
int value = string.charAt(j) - '0';
number *= 10;
number += value;
}
if (isNegative) {
number = -number;
}
return number;
}
//Testcases
public class StringtoIntTest {
private StringtoInt stringtoInt;
#Before
public void setUp() throws Exception {
stringtoInt = new StringtoInt();
}
#Test
public void testStringtoInt() {
int excepted = stringtoInt.convert("123456");
assertEquals(123456,excepted);
}
#Test
public void testStringtoIntWithNegative() {
int excepted = stringtoInt.convert("-123456");
assertEquals(-123456,excepted);
}
}
//Take one positive or negative number
String str="-90997865";
//Conver String into Character Array
char arr[]=str.toCharArray();
int no=0,asci=0,res=0;
for(int i=0;i<arr.length;i++)
{
//If First Character == negative then skip iteration and i++
if(arr[i]=='-' && i==0)
{
i++;
}
asci=(int)arr[i]; //Find Ascii value of each Character
no=asci-48; //Now Substract the Ascii value of 0 i.e 48 from asci
res=res*10+no; //Conversion for final number
}
//If first Character is negative then result also negative
if(arr[0]=='-')
{
res=-res;
}
System.out.println(res);
public class ConvertInteger {
public static int convertToInt(String numString){
int answer = 0, factor = 1;
for (int i = numString.length()-1; i >= 0; i--) {
answer += (numString.charAt(i) - '0') *factor;
factor *=10;
}
return answer;
}
public static void main(String[] args) {
System.out.println(convertToInt("789"));
}
}

Fastest algorithm to check if a number is pandigital?

Pandigital number is a number that contains the digits 1..number length.
For example 123, 4312 and 967412385.
I have solved many Project Euler problems, but the Pandigital problems always exceed the one minute rule.
This is my pandigital function:
private boolean isPandigital(int n){
Set<Character> set= new TreeSet<Character>();
String string = n+"";
for (char c:string.toCharArray()){
if (c=='0') return false;
set.add(c);
}
return set.size()==string.length();
}
Create your own function and test it with this method
int pans=0;
for (int i=123456789;i<=123987654;i++){
if (isPandigital(i)){
pans++;
}
}
Using this loop, you should get 720 pandigital numbers. My average time was 500 millisecond.
I'm using Java, but the question is open to any language.
UPDATE
#andras answer has the best time so far, but #Sani Huttunen answer inspired me to add a new algorithm, which gets almost the same time as #andras.
C#, 17ms, if you really want a check.
class Program
{
static bool IsPandigital(int n)
{
int digits = 0; int count = 0; int tmp;
for (; n > 0; n /= 10, ++count)
{
if ((tmp = digits) == (digits |= 1 << (n - ((n / 10) * 10) - 1)))
return false;
}
return digits == (1 << count) - 1;
}
static void Main()
{
int pans = 0;
Stopwatch sw = new Stopwatch();
sw.Start();
for (int i = 123456789; i <= 123987654; i++)
{
if (IsPandigital(i))
{
pans++;
}
}
sw.Stop();
Console.WriteLine("{0}pcs, {1}ms", pans, sw.ElapsedMilliseconds);
Console.ReadKey();
}
}
For a check that is consistent with the Wikipedia definition in base 10:
const int min = 1023456789;
const int expected = 1023;
static bool IsPandigital(int n)
{
if (n >= min)
{
int digits = 0;
for (; n > 0; n /= 10)
{
digits |= 1 << (n - ((n / 10) * 10));
}
return digits == expected;
}
return false;
}
To enumerate numbers in the range you have given, generating permutations would suffice.
The following is not an answer to your question in the strict sense, since it does not implement a check. It uses a generic permutation implementation not optimized for this special case - it still generates the required 720 permutations in 13ms (line breaks might be messed up):
static partial class Permutation
{
/// <summary>
/// Generates permutations.
/// </summary>
/// <typeparam name="T">Type of items to permute.</typeparam>
/// <param name="items">Array of items. Will not be modified.</param>
/// <param name="comparer">Optional comparer to use.
/// If a <paramref name="comparer"/> is supplied,
/// permutations will be ordered according to the
/// <paramref name="comparer"/>
/// </param>
/// <returns>Permutations of input items.</returns>
public static IEnumerable<IEnumerable<T>> Permute<T>(T[] items, IComparer<T> comparer)
{
int length = items.Length;
IntPair[] transform = new IntPair[length];
if (comparer == null)
{
//No comparer. Start with an identity transform.
for (int i = 0; i < length; i++)
{
transform[i] = new IntPair(i, i);
};
}
else
{
//Figure out where we are in the sequence of all permutations
int[] initialorder = new int[length];
for (int i = 0; i < length; i++)
{
initialorder[i] = i;
}
Array.Sort(initialorder, delegate(int x, int y)
{
return comparer.Compare(items[x], items[y]);
});
for (int i = 0; i < length; i++)
{
transform[i] = new IntPair(initialorder[i], i);
}
//Handle duplicates
for (int i = 1; i < length; i++)
{
if (comparer.Compare(
items[transform[i - 1].Second],
items[transform[i].Second]) == 0)
{
transform[i].First = transform[i - 1].First;
}
}
}
yield return ApplyTransform(items, transform);
while (true)
{
//Ref: E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1997
//Find the largest partition from the back that is in decreasing (non-icreasing) order
int decreasingpart = length - 2;
for (;decreasingpart >= 0 &&
transform[decreasingpart].First >= transform[decreasingpart + 1].First;
--decreasingpart) ;
//The whole sequence is in decreasing order, finished
if (decreasingpart < 0) yield break;
//Find the smallest element in the decreasing partition that is
//greater than (or equal to) the item in front of the decreasing partition
int greater = length - 1;
for (;greater > decreasingpart &&
transform[decreasingpart].First >= transform[greater].First;
greater--) ;
//Swap the two
Swap(ref transform[decreasingpart], ref transform[greater]);
//Reverse the decreasing partition
Array.Reverse(transform, decreasingpart + 1, length - decreasingpart - 1);
yield return ApplyTransform(items, transform);
}
}
#region Overloads
public static IEnumerable<IEnumerable<T>> Permute<T>(T[] items)
{
return Permute(items, null);
}
public static IEnumerable<IEnumerable<T>> Permute<T>(IEnumerable<T> items, IComparer<T> comparer)
{
List<T> list = new List<T>(items);
return Permute(list.ToArray(), comparer);
}
public static IEnumerable<IEnumerable<T>> Permute<T>(IEnumerable<T> items)
{
return Permute(items, null);
}
#endregion Overloads
#region Utility
public static IEnumerable<T> ApplyTransform<T>(
T[] items,
IntPair[] transform)
{
for (int i = 0; i < transform.Length; i++)
{
yield return items[transform[i].Second];
}
}
public static void Swap<T>(ref T x, ref T y)
{
T tmp = x;
x = y;
y = tmp;
}
public struct IntPair
{
public IntPair(int first, int second)
{
this.First = first;
this.Second = second;
}
public int First;
public int Second;
}
#endregion
}
class Program
{
static void Main()
{
int pans = 0;
int[] digits = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
Stopwatch sw = new Stopwatch();
sw.Start();
foreach (var p in Permutation.Permute(digits))
{
pans++;
if (pans == 720) break;
}
sw.Stop();
Console.WriteLine("{0}pcs, {1}ms", pans, sw.ElapsedMilliseconds);
Console.ReadKey();
}
}
This is my solution:
static char[][] pandigits = new char[][]{
"1".toCharArray(),
"12".toCharArray(),
"123".toCharArray(),
"1234".toCharArray(),
"12345".toCharArray(),
"123456".toCharArray(),
"1234567".toCharArray(),
"12345678".toCharArray(),
"123456789".toCharArray(),
};
private static boolean isPandigital(int i)
{
char[] c = String.valueOf(i).toCharArray();
Arrays.sort(c);
return Arrays.equals(c, pandigits[c.length-1]);
}
Runs the loop in 0.3 seconds on my (rather slow) system.
Two things you can improve:
You don't need to use a set: you can use a boolean array with 10 elements
Instead of converting to a string, use division and the modulo operation (%) to extract the digits.
Using a bit vector to keep track of which digits have been found appears to be the fastest raw method. There are two ways to improve it:
Check if the number is divisible by 9. This is a necessary condition for being pandigital, so we can exclude 88% of numbers up front.
Use multiplication and shifts instead of divisions, in case your compiler doesn't do that for you.
This gives the following, which runs the test benchmark in about 3ms on my machine. It correctly identifies the 362880 9-digit pan-digital numbers between 100000000 and 999999999.
bool IsPandigital(int n)
{
if (n != 9 * (int)((0x1c71c71dL * n) >> 32))
return false;
int flags = 0;
while (n > 0) {
int q = (int)((0x1999999aL * n) >> 32);
flags |= 1 << (n - q * 10);
n = q;
}
return flags == 0x3fe;
}
My solution involves Sums and Products.
This is in C# and runs in about 180ms on my laptop:
static int[] sums = new int[] {1, 3, 6, 10, 15, 21, 28, 36, 45};
static int[] products = new int[] {1, 2, 6, 24, 120, 720, 5040, 40320, 362880};
static void Main(string[] args)
{
var pans = 0;
for (var i = 123456789; i <= 123987654; i++)
{
var num = i.ToString();
if (Sum(num) == sums[num.Length - 1] && Product(num) == products[num.Length - 1])
pans++;
}
Console.WriteLine(pans);
}
protected static int Sum(string num)
{
int sum = 0;
foreach (char c in num)
sum += (int) (c - '0');
return sum;
}
protected static int Product(string num)
{
int prod = 1;
foreach (char c in num)
prod *= (int)(c - '0');
return prod;
}
Why find when you can make them?
from itertools import *
def generate_pandigital(length):
return (''.join for each in list(permutations('123456789',length)))
def test():
for i in range(10):
print i
generate_pandigital(i)
if __name__=='__main__':
test()
J does this nicely:
isPandigital =: 3 : 0
*./ (' ' -.~ ": 1 + i. # s) e. s =. ": y
)
isPandigital"0 (123456789 + i. 1 + 123987654 - 123456789)
But slowly. I will revise. For now, clocking at 4.8 seconds.
EDIT:
If it's just between the two set numbers, 123456789 and 123987654, then this expression:
*./"1 (1+i.9) e."1 (9#10) #: (123456789 + i. 1 + 123987654 - 123456789)
Runs in 0.23 seconds. It's about as fast, brute-force style, as it gets in J.
TheMachineCharmer is right. At least for some the problems, it's better to iterate over all the pandigitals, checking each one to see if it fits the criteria of the problem. However, I think their code is not quite right.
I'm not sure which is better SO etiquette in this case: Posting a new answer or editing theirs. In any case, here is the modified Python code which I believe to be correct, although it doesn't generate 0-to-n pandigitals.
from itertools import *
def generate_pandigital(length):
'Generate all 1-to-length pandigitals'
return (''.join(each) for each in list(permutations('123456789'[:length])))
def test():
for i in range(10):
print 'Generating all %d-digit pandigitals' % i
for (n,p) in enumerate(generate_pandigital(i)):
print n,p
if __name__=='__main__':
test()
You could add:
if (set.add(c)==false) return false;
This would short circuit a lot of your computations, since it'll return false as soon as a duplicate was found, since add() returns false in this case.
bool IsPandigital (unsigned long n) {
if (n <= 987654321) {
hash_map<int, int> m;
unsigned long count = (unsigned long)(log((double)n)/log(10.0))+1;
while (n) {
++m[n%10];
n /= 10;
}
while (m[count]==1 && --count);
return !count;
}
return false;
}
bool IsPandigital2 (unsigned long d) {
// Avoid integer overflow below if this function is passed a very long number
if (d <= 987654321) {
unsigned long sum = 0;
unsigned long prod = 1;
unsigned long n = d;
unsigned long max = (log((double)n)/log(10.0))+1;
unsigned long max_sum = max*(max+1)/2;
unsigned long max_prod = 1;
while (n) {
sum += n % 10;
prod *= (n%10);
max_prod *= max;
--max;
n /= 10;
}
return (sum == max_sum) && (prod == max_prod);
}
I have a solution for generating Pandigital numbers using StringBuffers in Java. On my laptop, my code takes a total of 5ms to run. Of this only 1ms is required for generating the permutations using StringBuffers; the remaining 4ms are required for converting this StringBuffer to an int[].
#medopal: Can you check the time this code takes on your system?
public class GenPandigits
{
/**
* The prefix that must be appended to every number, like 123.
*/
int prefix;
/**
* Length in characters of the prefix.
*/
int plen;
/**
* The digit from which to start the permutations
*/
String beg;
/**
* The length of the required Pandigital numbers.
*/
int len;
/**
* #param prefix If there is no prefix then this must be null
* #param beg If there is no prefix then this must be "1"
* #param len Length of the required numbers (excluding the prefix)
*/
public GenPandigits(String prefix, String beg, int len)
{
if (prefix == null)
{
this.prefix = 0;
this.plen = 0;
}
else
{
this.prefix = Integer.parseInt(prefix);
this.plen = prefix.length();
}
this.beg = beg;
this.len = len;
}
public StringBuffer genPermsBet()
{
StringBuffer b = new StringBuffer(beg);
for(int k=2;k<=len;k++)
{
StringBuffer rs = new StringBuffer();
int l = b.length();
int s = l/(k-1);
String is = String.valueOf(k+plen);
for(int j=0;j<k;j++)
{
rs.append(b);
for(int i=0;i<s;i++)
{
rs.insert((l+s)*j+i*k+j, is);
}
}
b = rs;
}
return b;
}
public int[] getPandigits(String buffer)
{
int[] pd = new int[buffer.length()/len];
int c= prefix;
for(int i=0;i<len;i++)
c =c *10;
for(int i=0;i<pd.length;i++)
pd[i] = Integer.parseInt(buffer.substring(i*len, (i+1)*len))+c;
return pd;
}
public static void main(String[] args)
{
GenPandigits gp = new GenPandigits("123", "4", 6);
//GenPandigits gp = new GenPandigits(null, "1", 6);
long beg = System.currentTimeMillis();
StringBuffer pansstr = gp.genPermsBet();
long end = System.currentTimeMillis();
System.out.println("Time = " + (end - beg));
int pd[] = gp.getPandigits(pansstr.toString());
long end1 = System.currentTimeMillis();
System.out.println("Time = " + (end1 - end));
}
}
This code can also be used for generating all Pandigital numbers(excluding zero). Just change the object creation call to
GenPandigits gp = new GenPandigits(null, "1", 9);
This means that there is no prefix, and the permutations must start from "1" and continue till the length of the numbers is 9.
Following are the time measurements for different lengths.
#andras: Can you try and run your code to generate the nine digit Pandigital numbers? What time does it take?
This c# implementation is about 8% faster than #andras over the range 123456789 to 123987654 but it is really difficult to see on my test box as his runs in 14ms and this one runs in 13ms.
static bool IsPandigital(int n)
{
int count = 0;
int digits = 0;
int digit;
int bit;
do
{
digit = n % 10;
if (digit == 0)
{
return false;
}
bit = 1 << digit;
if (digits == (digits |= bit))
{
return false;
}
count++;
n /= 10;
} while (n > 0);
return (1<<count)-1 == digits>>1;
}
If we average the results of 100 runs we can get a decimal point.
public void Test()
{
int pans = 0;
var sw = new Stopwatch();
sw.Start();
for (int count = 0; count < 100; count++)
{
pans = 0;
for (int i = 123456789; i <= 123987654; i++)
{
if (IsPandigital(i))
{
pans++;
}
}
}
sw.Stop();
Console.WriteLine("{0}pcs, {1}ms", pans, sw.ElapsedMilliseconds / 100m);
}
#andras implementation averages 14.4ms and this implementation averages 13.2ms
EDIT:
It seems that mod (%) is expensive in c#. If we replace the use of the mod operator with a hand coded version then this implementation averages 11ms over 100 runs.
private static bool IsPandigital(int n)
{
int count = 0;
int digits = 0;
int digit;
int bit;
do
{
digit = n - ((n / 10) * 10);
if (digit == 0)
{
return false;
}
bit = 1 << digit;
if (digits == (digits |= bit))
{
return false;
}
count++;
n /= 10;
} while (n > 0);
return (1 << count) - 1 == digits >> 1;
}
EDIT: Integrated n/=10 into the digit calculation for a small speed improvement.
private static bool IsPandigital(int n)
{
int count = 0;
int digits = 0;
int digit;
int bit;
do
{
digit = n - ((n /= 10) * 10);
if (digit == 0)
{
return false;
}
bit = 1 << digit;
if (digits == (digits |= bit))
{
return false;
}
count++;
} while (n > 0);
return (1 << count) - 1 == digits >> 1;
}
#include <cstdio>
#include <ctime>
bool isPandigital(long num)
{
int arr [] = {1,2,3,4,5,6,7,8,9}, G, count = 9;
do
{
G = num%10;
if (arr[G-1])
--count;
arr[G-1] = 0;
} while (num/=10);
return (!count);
}
int main()
{
clock_t start(clock());
int pans=0;
for (int i = 123456789;i <= 123987654; ++i)
{
if (isPandigital(i))
++pans;
}
double end((double)(clock() - start));
printf("\n\tFound %d Pandigital numbers in %lf seconds\n\n", pans, end/CLOCKS_PER_SEC);
return 0;
}
Simple implementation. Brute-forced and computes in about 140 ms
In Java
You can always just generate them, and convert the Strings to Integers, which is faster for larger numbers
public static List<String> permutation(String str) {
List<String> permutations = new LinkedList<String>();
permutation("", str, permutations);
return permutations;
}
private static void permutation(String prefix, String str, List<String> permutations) {
int n = str.length();
if (n == 0) {
permutations.add(prefix);
} else {
for (int i = 0; i < n; i++) {
permutation(prefix + str.charAt(i),
str.substring(0, i) + str.substring(i + 1, n), permutations);
}
}
}
The below code works for testing a numbers pandigitality.
For your test mine ran in around ~50ms
1-9 PanDigital
public static boolean is1To9PanDigit(int i) {
if (i < 1e8) {
return false;
}
BitSet set = new BitSet();
while (i > 0) {
int mod = i % 10;
if (mod == 0 || set.get(mod)) {
return false;
}
set.set(mod);
i /= 10;
}
return true;
}
or more general, 1 to N,
public static boolean is1ToNPanDigit(int i, int n) {
BitSet set = new BitSet();
while (i > 0) {
int mod = i % 10;
if (mod == 0 || mod > n || set.get(mod)) {
return false;
}
set.set(mod);
i /= 10;
}
return set.cardinality() == n;
}
And just for fun, 0 to 9, zero requires extra logic due to a leading zero
public static boolean is0To9PanDigit(long i) {
if (i < 1e6) {
return false;
}
BitSet set = new BitSet();
if (i <= 123456789) { // count for leading zero
set.set(0);
}
while (i > 0) {
int mod = (int) (i % 10);
if (set.get(mod)) {
return false;
}
set.set(mod);
i /= 10;
}
return true;
}
Also for setting iteration bounds:
public static int maxPanDigit(int n) {
StringBuffer sb = new StringBuffer();
for(int i = n; i > 0; i--) {
sb.append(i);
}
return Integer.parseInt(sb.toString());
}
public static int minPanDigit(int n) {
StringBuffer sb = new StringBuffer();
for(int i = 1; i <= n; i++) {
sb.append(i);
}
return Integer.parseInt(sb.toString());
}
You could easily use this code to generate a generic MtoNPanDigital number checker
I decided to use something like this:
def is_pandigital(n, zero_full=True, base=10):
"""Returns True or False if the number n is pandigital.
This function returns True for formal pandigital numbers as well as
n-pandigital
"""
r, l = 0, 0
while n:
l, r, n = l + 1, r + n % base, n / base
t = xrange(zero_full ^ 1, l + (zero_full ^ 1))
return r == sum(t) and l == len(t)
Straight forward way
boolean isPandigital(int num,int length){
for(int i=1;i<=length;i++){
if(!(num+"").contains(i+""))
return false;
}
return true;
}
OR if you are sure that the number is of the right length already
static boolean isPandigital(int num){
for(int i=1;i<=(num+"").length();i++){
if(!(num+"").contains(i+""))
return false;
}
return true;
}
I refactored Andras' answer for Swift:
extension Int {
func isPandigital() -> Bool {
let requiredBitmask = 0b1111111111;
let minimumPandigitalNumber = 1023456789;
if self >= minimumPandigitalNumber {
var resultBitmask = 0b0;
var digits = self;
while digits != 0 {
let lastDigit = digits % 10;
let binaryCodedDigit = 1 << lastDigit;
resultBitmask |= binaryCodedDigit;
// remove last digit
digits /= 10;
}
return resultBitmask == requiredBitmask;
}
return false;
}
}
1023456789.isPandigital(); // true
great answers, my 2 cents
bool IsPandigital(long long number, int n){
int arr[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, amax = 0, amin;
while (number > 0){
int rem = number % 10;
arr[rem]--;
if (arr[rem] < 0)
return false;
number = number / 10;
}
for (int i = 0; i < n; i++){
if (i == 0)
amin = arr[i];
if (arr[i] > amax)
amax = arr[i];
if (arr[i] < amin)
amin = arr[i];
}
if (amax == 0 && amin == 0)
return true;
else
return false;
}

Categories

Resources