Given a string which consists of lowercase or uppercase letters, find the length of the longest palindromes that can be built with those letters.
This is case sensitive, for example "Aa" is not considered a palindrome here.
Note:
Assume the length of given string will not exceed 1,010.
Example:
Input: "abccccdd"
Output: 7
Explanation:
One longest palindrome that can be built is "dccaccd", whose length is 7.
My code works for simple inputs such as "abccccdd" and "banana" but fails for "civilwartestingwhetherthatnaptionoranynartionsoconceivedandsodedicatedcanlongendureWeareqmetonagreatbattlefiemldoftzhatwarWehavecometodedicpateaportionofthatfieldasafinalrestingplaceforthosewhoheregavetheirlivesthatthatnationmightliveItisaltogetherfangandproperthatweshoulddothisButinalargersensewecannotdedicatewecannotconsecratewecannothallowthisgroundThebravelmenlivinganddeadwhostruggledherehaveconsecrateditfaraboveourpoorponwertoaddordetractTgheworldadswfilllittlenotlenorlongrememberwhatwesayherebutitcanneverforgetwhattheydidhereItisforusthelivingrathertobededicatedheretotheulnfinishedworkwhichtheywhofoughtherehavethusfarsonoblyadvancedItisratherforustobeherededicatedtothegreattdafskremainingbeforeusthatfromthesehonoreddeadwetakeincreaseddevotiontothatcauseforwhichtheygavethelastpfullmeasureofdevotionthatweherehighlyresolvethatthesedeadshallnothavediedinvainthatthisnationunsderGodshallhaveanewbirthoffreedomandthatgovernmentofthepeoplebythepeopleforthepeopleshallnotperishfromtheearth". I'm not sure how to debug it.
class Solution {
public int longestPalindrome(String s) {
Map<Character, Integer> map = new HashMap<>();
char[] carr = s.toCharArray();
Arrays.sort(carr);
int leftInd = 0;
int rightInd = 0;
for(int i=0; i<carr.length; i++){
if(map.containsKey(carr[i]))
continue;
else
map.put(carr[i], 1);
}
for(int i=0; i<carr.length-1; i++){
for(int j=i+1; j<carr.length; j++){
if(carr[i]==carr[j]){
if(map.get(carr[i])==null)
continue;
carr[j] = Character.MIN_VALUE;
int count = map.get(carr[i]);
map.put(carr[i], count + 1);
}
}
}
int ans = 0;
int[] oddValArr = new int[map.size()];
int oddInd = 0;
for (Map.Entry<Character, Integer> entry : map.entrySet()) {
Character key = entry.getKey();
Integer value = entry.getValue();
if(value % 2 == 0){
ans += value;
}
else{
oddValArr[oddInd] = value;
oddInd++;
}
}
int biggestOddNum = 0;
for(int i=0; i<oddValArr.length; i++){
if(oddValArr[i] > biggestOddNum)
biggestOddNum = oddValArr[i];
}
return ans + biggestOddNum;
}
}
Output
655
Expected
983
Your mistake here, is that you use only the biggest odd group out of your oddValArr. For example, if the input is "aaabbb", the biggest palindrome is "abbba", so group a had length 3, which is an odd number, and we used 3 - 1 = 2 letters of it.
Also, those nested for loops can be replaced with one for, using Map:
public int longestPalindrome(String s) {
Map<Character, Integer> map = new HashMap<>(); // letter groups
for(int i=0; i<s.length(); i++){
char c = s.charAt(i));
if(map.containsKey(c))
map.put(c, map.get(i) + 1);
else
map.put(c, 1);
}
boolean containsOddGroups = false;
int ans = 0;
for(int count : map.values()){
if(count % 2 == 0) // even group
ans += count;
else{ // odd group
containsOddGroups = true;
ans += count - 1;
}
}
if(!containOddGroups)
return ans;
else
return ans + 1; // we can place one letter in the center of palindrome
}
You are almost there but have over complicated it quite a bit. My solution by almost only deleting code from your solution:
public static int longestPalindrome(String s) {
Map<Character, Integer> map = new HashMap<>();
char[] carr = s.toCharArray();
for (int i = 0; i < carr.length; i++) {
if (map.containsKey(carr[i]))
map.put(carr[i], map.get(carr[i]) + 1);
else
map.put(carr[i], 1);
}
int ans = 0;
int odd = 0;
for (Integer value : map.values()) {
if (value % 2 == 0) {
ans += value;
} else {
ans += value - 1;
odd = 1;
}
}
return ans + odd;
}
Explanation:
the second loop has been removed, together with the sorting - it has been merged into the first loop. There was no need for sorting at all.
then you iterate over the counts of how often a character appeared
if it is even you increase ans as before
if it is odd you can use count - 1 chars of it for the palindrome of even length
if you found at least one odd occurrence you can put that single odd char into the center of the palindrome and increase its length by one
Related
This code works fine but I'm looking for a way to optimize it. If you look at the long string, you can see 'l' appears five times consecutively. No other character appears this many times consecutively. So, the output is 5. Now, the problem is this method checks each and every character and even after the max is found, it continues to check the remaining characters. Is there a more efficient way?
public class Main {
public static void main(String[] args) {
System.out.println(longestStreak("KDDiiigllllldddfnnlleeezzeddd"));
}
private static int longestStreak(String str) {
int max = 0;
for (int i = 0; i < str.length(); i++) {
int count = 0;
for (int j = i; j < str.length(); j++) {
if (str.charAt(i) == str.charAt(j)) {
count++;
} else break;
}
if (count > max) max = count;
}
return max;
}
}
We could add variable for previous char count in single iteration. Also as an additional optimisation we stop iteration if i + max - currentLenght < str.length(). It means that max can not be changed:
private static int longestStreak(String str) {
int maxLenght = 0;
int currentLenght = 1;
char prev = str.charAt(0);
for (int index = 1; index < str.length() && isMaxCanBeChanged(str, maxLenght, currentLenght, index); index++) {
char currentChar = str.charAt(index);
if (currentChar == prev) {
currentLenght++;
} else {
maxLenght = Math.max(maxLenght, currentLenght);
currentLenght = 1;
}
prev = currentChar;
}
return Math.max(maxLenght, currentLenght);
}
private static boolean isMaxCanBeChanged(String str, int max, int currentLenght, int index) {
return index + max - currentLenght < str.length();
}
Here is a regex magic solution, which although a bit brute force perhaps gets some brownie points. We can iterate starting with the number of characters in the original input, decreasing by one at a time, trying to do a regex replacement of continuous characters of that length. If the replacement works, then we know we found the longest streak.
String input = "KDDiiigllllldddfnnlleeezzeddd";
for (int i=input.length(); i > 0; --i) {
String replace = input.replaceAll(".*?(.)(\\1{" + (i-1) + "}).*", "$1");
if (replace.length() != input.length()) {
System.out.println("longest streak is: " + replace);
}
}
This prints:
longest streak is: lllll
Yes there is. C++ code:
string str = "KDDiiigllllldddfnnlleeezzeddd";
int longest_streak = 1, current_streak = 1; char longest_letter = str[0];
for (int i = 1; i < str.size(); ++i) {
if (str[i] == str[i - 1])
current_streak++;
else current_streak = 1;
if (current_streak > longest_streak) {
longest_streak = current_streak;
longest_letter = str[i];
}
}
cout << "The longest streak is: " << longest_streak << " and the character is: " << longest_letter << "\n";
LE: If needed, I can provide the Java code for it, but I think you get the idea.
public class Main {
public static void main(String[] args) {
System.out.println(longestStreak("KDDiiigllllldddfnnlleeezzeddd"));
}
private static int longestStreak(String str) {
int longest_streak = 1, current_streak = 1; char longest_letter = str.charAt(0);
for (int i = 1; i < str.length(); ++i) {
if (str.charAt(i) == str.charAt(i - 1))
current_streak++;
else current_streak = 1;
if (current_streak > longest_streak) {
longest_streak = current_streak;
longest_letter = str.charAt(i);
}
}
return longest_streak;
}
}
The loop could be rewritten a bit smaller, but mainly the condition can be optimized:
i < str.length() - max
Using Stream and collector. It should give all highest repeated elements.
Code:
String lineString = "KDDiiiiiiigllllldddfnnlleeezzeddd";
String[] lineSplit = lineString.split("");
Map<String, Integer> collect = Arrays.stream(lineSplit)
.collect(Collectors.groupingBy(Function.identity(), Collectors.summingInt(e -> 1)));
int maxValueInMap = (Collections.max(collect.values()));
for (Entry<String, Integer> entry : collect.entrySet()) {
if (entry.getValue() == maxValueInMap) {
System.out.printf("Character: %s, Repetition: %d\n", entry.getKey(), entry.getValue());
}
}
Output:
Character: i, Repetition: 7
Character: l, Repetition: 7
P.S I am not sure how efficient this code it. I just learned Streams.
I am trying to find patterns that:
occur more than once
are more than 1 character long
are not substrings of any other known pattern
without knowing any of the patterns that might occur.
For example:
The string "the boy fell by the bell" would return 'ell', 'the b', 'y '.
The string "the boy fell by the bell, the boy fell by the bell" would return 'the boy fell by the bell'.
Using double for-loops, it can be brute forced very inefficiently:
ArrayList<String> patternsList = new ArrayList<>();
int length = string.length();
for (int i = 0; i < length; i++) {
int limit = (length - i) / 2;
for (int j = limit; j >= 1; j--) {
int candidateEndIndex = i + j;
String candidate = string.substring(i, candidateEndIndex);
if(candidate.length() <= 1) {
continue;
}
if (string.substring(candidateEndIndex).contains(candidate)) {
boolean notASubpattern = true;
for (String pattern : patternsList) {
if (pattern.contains(candidate)) {
notASubpattern = false;
break;
}
}
if (notASubpattern) {
patternsList.add(candidate);
}
}
}
}
However, this is incredibly slow when searching large strings with tons of patterns.
You can build a suffix tree for your string in linear time:
https://en.wikipedia.org/wiki/Suffix_tree
The patterns you are looking for are the strings corresponding to internal nodes that have only leaf children.
You could use n-grams to find patterns in a string. It would take O(n) time to scan the string for n-grams. When you find a substring by using a n-gram, put it into a hash table with a count of how many times that substring was found in the string. When you're done searching for n-grams in the string, search the hash table for counts greater than 1 to find recurring patterns in the string.
For example, in the string "the boy fell by the bell, the boy fell by the bell" using a 6-gram will find the substring "the boy fell by the bell". A hash table entry with that substring will have a count of 2 because it occurred twice in the string. Varying the number of words in the n-gram will help you discover different patterns in the string.
Dictionary<string, int>dict = new Dictionary<string, int>();
int count = 0;
int ngramcount = 6;
string substring = "";
// Add entries to the hash table
while (count < str.length) {
// copy the words into the substring
int i = 0;
substring = "";
while (ngramcount > 0 && count < str.length) {
substring[i] = str[count];
if (str[i] == ' ')
ngramcount--;
i++;
count++;
}
ngramcount = 6;
substring.Trim(); // get rid of the last blank in the substring
// Update the dictionary (hash table) with the substring
if (dict.Contains(substring)) { // substring is already in hash table so increment the count
int hashCount = dict[substring];
hashCount++;
dict[substring] = hashCount;
}
else
dict[substring] = 1;
}
// Find the most commonly occurrring pattern in the string
// by searching the hash table for the greatest count.
int maxCount = 0;
string mostCommonPattern = "";
foreach (KeyValuePair<string, int> pair in dict) {
if (pair.Value > maxCount) {
maxCount = pair.Value;
mostCommonPattern = pair.Key;
}
}
I've written this just for fun. I hope I have understood the problem correctly, this is valid and fast enough; if not, please be easy on me :) I might optimize it a little more I guess, if someone finds it useful.
private static IEnumerable<string> getPatterns(string txt)
{
char[] arr = txt.ToArray();
BitArray ba = new BitArray(arr.Length);
for (int shingle = getMaxShingleSize(arr); shingle >= 2; shingle--)
{
char[] arr1 = new char[shingle];
int[] indexes = new int[shingle];
HashSet<int> hs = new HashSet<int>();
Dictionary<int, int[]> dic = new Dictionary<int, int[]>();
for (int i = 0, count = arr.Length - shingle; i <= count; i++)
{
for (int j = 0; j < shingle; j++)
{
int index = i + j;
arr1[j] = arr[index];
indexes[j] = index;
}
int h = getHashCode(arr1);
if (hs.Add(h))
{
int[] indexes1 = new int[indexes.Length];
Buffer.BlockCopy(indexes, 0, indexes1, 0, indexes.Length * sizeof(int));
dic.Add(h, indexes1);
}
else
{
bool exists = false;
foreach (int index in indexes)
if (ba.Get(index))
{
exists = true;
break;
}
if (!exists)
{
int[] indexes1 = dic[h];
if (indexes1 != null)
foreach (int index in indexes1)
if (ba.Get(index))
{
exists = true;
break;
}
}
if (!exists)
{
foreach (int index in indexes)
ba.Set(index, true);
int[] indexes1 = dic[h];
if (indexes1 != null)
foreach (int index in indexes1)
ba.Set(index, true);
dic[h] = null;
yield return new string(arr1);
}
}
}
}
}
private static int getMaxShingleSize(char[] arr)
{
for (int shingle = 2; shingle <= arr.Length / 2 + 1; shingle++)
{
char[] arr1 = new char[shingle];
HashSet<int> hs = new HashSet<int>();
bool noPattern = true;
for (int i = 0, count = arr.Length - shingle; i <= count; i++)
{
for (int j = 0; j < shingle; j++)
arr1[j] = arr[i + j];
int h = getHashCode(arr1);
if (!hs.Add(h))
{
noPattern = false;
break;
}
}
if (noPattern)
return shingle - 1;
}
return -1;
}
private static int getHashCode(char[] arr)
{
unchecked
{
int hash = (int)2166136261;
foreach (char c in arr)
hash = (hash * 16777619) ^ c.GetHashCode();
return hash;
}
}
Edit
My previous code has serious problems. This one is better:
private static IEnumerable<string> getPatterns(string txt)
{
Dictionary<int, int> dicIndexSize = new Dictionary<int, int>();
for (int shingle = 2, count0 = txt.Length / 2 + 1; shingle <= count0; shingle++)
{
Dictionary<string, int> dic = new Dictionary<string, int>();
bool patternExists = false;
for (int i = 0, count = txt.Length - shingle; i <= count; i++)
{
string sub = txt.Substring(i, shingle);
if (!dic.ContainsKey(sub))
dic.Add(sub, i);
else
{
patternExists = true;
int index0 = dic[sub];
if (index0 >= 0)
{
dicIndexSize[index0] = shingle;
dic[sub] = -1;
}
}
}
if (!patternExists)
break;
}
List<int> lst = dicIndexSize.Keys.ToList();
lst.Sort((a, b) => dicIndexSize[b].CompareTo(dicIndexSize[a]));
BitArray ba = new BitArray(txt.Length);
foreach (int i in lst)
{
bool ok = true;
int len = dicIndexSize[i];
for (int j = i, max = i + len; j < max; j++)
{
if (ok) ok = !ba.Get(j);
ba.Set(j, true);
}
if (ok)
yield return txt.Substring(i, len);
}
}
Text in this book took 3.4sec in my computer.
Suffix arrays are the right idea, but there's a non-trivial piece missing, namely, identifying what are known in the literature as "supermaximal repeats". Here's a GitHub repo with working code: https://github.com/eisenstatdavid/commonsub . Suffix array construction uses the SAIS library, vendored in as a submodule. The supermaximal repeats are found using a corrected version of the pseudocode from findsmaxr in Efficient repeat finding via suffix arrays
(Becher–Deymonnaz–Heiber).
static void FindRepeatedStrings(void) {
// findsmaxr from https://arxiv.org/pdf/1304.0528.pdf
printf("[");
bool needComma = false;
int up = -1;
for (int i = 1; i < Len; i++) {
if (LongCommPre[i - 1] < LongCommPre[i]) {
up = i;
continue;
}
if (LongCommPre[i - 1] == LongCommPre[i] || up < 0) continue;
for (int k = up - 1; k < i; k++) {
if (SufArr[k] == 0) continue;
unsigned char c = Buf[SufArr[k] - 1];
if (Set[c] == i) goto skip;
Set[c] = i;
}
if (needComma) {
printf("\n,");
}
printf("\"");
for (int j = 0; j < LongCommPre[up]; j++) {
unsigned char c = Buf[SufArr[up] + j];
if (iscntrl(c)) {
printf("\\u%.4x", c);
} else if (c == '\"' || c == '\\') {
printf("\\%c", c);
} else {
printf("%c", c);
}
}
printf("\"");
needComma = true;
skip:
up = -1;
}
printf("\n]\n");
}
Here's a sample output on the text of the first paragraph:
Davids-MBP:commonsub eisen$ ./repsub input
["\u000a"
," S"
," as "
," co"
," ide"
," in "
," li"
," n"
," p"
," the "
," us"
," ve"
," w"
,"\""
,"–"
,"("
,")"
,". "
,"0"
,"He"
,"Suffix array"
,"`"
,"a su"
,"at "
,"code"
,"com"
,"ct"
,"do"
,"e f"
,"ec"
,"ed "
,"ei"
,"ent"
,"ere's a "
,"find"
,"her"
,"https://"
,"ib"
,"ie"
,"ing "
,"ion "
,"is"
,"ith"
,"iv"
,"k"
,"mon"
,"na"
,"no"
,"nst"
,"ons"
,"or"
,"pdf"
,"ri"
,"s are "
,"se"
,"sing"
,"sub"
,"supermaximal repeats"
,"te"
,"ti"
,"tr"
,"ub "
,"uffix arrays"
,"via"
,"y, "
]
I would use Knuth–Morris–Pratt algorithm (linear time complexity O(n)) to find substrings. I would try to find the largest substring pattern, remove it from the input string and try to find the second largest and so on. I would do something like this:
string pattern = input.substring(0,lenght/2);
string toMatchString = input.substring(pattern.length, input.lenght - 1);
List<string> matches = new List<string>();
while(pattern.lenght > 0)
{
int index = KMP(pattern, toMatchString);
if(index > 0)
{
matches.Add(pattern);
// remove the matched pattern occurences from the input string
// I would do something like this:
// 0 to pattern.lenght gets removed
// check for all occurences of pattern in toMatchString and remove them
// get the remaing shrinked input, reassign values for pattern & toMatchString
// keep looking for the next largest substring
}
else
{
pattern = input.substring(0, pattern.lenght - 1);
toMatchString = input.substring(pattern.length, input.lenght - 1);
}
}
Where KMP implements Knuth–Morris–Pratt algorithm. You can find the Java implementations of it at Github or Princeton or write it yourself.
PS: I don't code in Java and it is quick try to my first bounty about to close soon. So please don't give me the stick if I missed something trivial or made a +/-1 error.
Need to write an Algo to find Anagram of given string at a given index in lexicographically sorted order. For example:
Consider a String: ABC then all anagrams are in sorted order: ABC ACB
BAC BCA CAB CBA. So, for index 5 value is: CAB. Also, consider the case of duplicates like for AADFS anagram would be DFASA at index 32
To do this I have written Algo but I think there should be something less complex than this.
import java.util.*;
public class Anagram {
static class Word {
Character c;
int count;
Word(Character c, int count) {
this.c = c;
this.count = count;
}
}
public static void main(String[] args) {
System.out.println(findAnagram("aadfs", 32));
}
private static String findAnagram(String word, int index) {
// starting with 0 that's y.
index--;
char[] array = word.toCharArray();
List<Character> chars = new ArrayList<>();
for (int i = 0; i < array.length; i++) {
chars.add(array[i]);
}
// Sort List
Collections.sort(chars);
// To maintain duplicates
List<Word> words = new ArrayList<>();
Character temp = chars.get(0);
int count = 1;
int total = chars.size();
for (int i = 1; i < chars.size(); i++) {
if (temp == chars.get(i)) {
count++;
} else {
words.add(new Word(temp, count));
count = 1;
temp = chars.get(i);
}
}
words.add(new Word(temp, count));
String anagram = "";
while (index > 0) {
Word selectedWord = null;
// find best index
int value = 0;
for (int i = 0; i < words.size(); i++) {
int com = combination(words, i, total);
if (index < value + com) {
index -= value;
if (words.get(i).count == 1) {
selectedWord = words.remove(i);
} else {
words.get(i).count--;
selectedWord = words.get(i);
}
break;
}
value += com;
}
anagram += selectedWord.c;
total--;
}
// put remaining in series
for (int i = 0; i < words.size(); i++) {
for (int j = 0; j < words.get(i).count; j++) {
anagram += words.get(i).c;
}
}
return anagram;
}
private static int combination(List<Word> words, int index, int total) {
int value = permutation(total - 1);
for (int i = 0; i < words.size(); i++) {
if (i == index) {
int v = words.get(i).count - 1;
if (v > 0) {
value /= permutation(v);
}
} else {
value /= permutation(words.get(i).count);
}
}
return value;
}
private static int permutation(int i) {
if (i == 1) {
return 1;
}
return i * permutation(i - 1);
}
}
Can someone help me with less complex logic.
I write the following code to solve your problem.
I assume that the given String is sorted.
The permutations(String prefix, char[] word, ArrayList permutations_list) function generates all possible permutations of the given string without duplicates and store them in a list named permutations_list. Thus, the word: permutations_list.get(index -1) is the desired output.
For example, assume that someone gives us the word "aab".
We have to solve this problem recursively:
Problem 1: permutations("","aab").
That means that we have to solve the problem:
Problem 2: permutations("a","ab").
String "ab" has only two letters, therefore the possible permutations are "ab" and "ba". Hence, we store in permutations_list the words "aab" and "aba".
Problem 2 has been solved. Now we go back to problem 1.
We swap the first "a" and the second "a" and we realize that these letters are the same. So we skip this case(we avoid duplicates).
Next, we swap the first "a" and "b". Now, the problem 1 has changed and we want to solve the new one:
Problem 3: permutations("","baa").
The next step is to solve the following problem:
Problem 4: permutations("b","aa").
String "aa" has only two same letters, therefore there is one possible permutation "aa". Hence, we store in permutations_list the word "baa"
Problem 4 has been solved. Finally, we go back to problem 3 and problem 3 has been solved. The final permutations_list contains "aab", "aba" and "baa".
Hence, findAnagram("aab", 2) returns the word "aba".
import java.util.ArrayList;
import java.util.Arrays;
public class AnagramProblem {
public static void main(String args[]) {
System.out.println(findAnagram("aadfs",32));
}
public static String findAnagram(String word, int index) {
ArrayList<String> permutations_list = new ArrayList<String>();
permutations("",word.toCharArray(), permutations_list);
return permutations_list.get(index - 1);
}
public static void permutations(String prefix, char[] word, ArrayList<String> permutations_list) {
boolean duplicate = false;
if (word.length==2 && word[0]!=word[1]) {
String permutation1 = prefix + String.valueOf(word[0]) + String.valueOf(word[1]);
permutations_list.add(permutation1);
String permutation2 = prefix + String.valueOf(word[1]) + String.valueOf(word[0]);
permutations_list.add(permutation2);
return;
}
else if (word.length==2 && word[0]==word[1]) {
String permutation = prefix + String.valueOf(word[0]) + String.valueOf(word[1]);
permutations_list.add(permutation);
return;
}
for (int i=0; i < word.length; i++) {
if (!duplicate) {
permutations(prefix + word[0], new String(word).substring(1,word.length).toCharArray(), permutations_list);
}
if (i < word.length - 1) {
char temp = word[0];
word[0] = word[i+1];
word[i+1] = temp;
}
if (i < word.length - 1 && word[0]==word[i+1]) duplicate = true;
else duplicate = false;
}
}
}
I think your problem will become a lot simpler if you considerate generating the anagrams in alphabetical order, so you don't have to sort them afterwards.
The following code (from Generating all permutations of a given string) generates all permutations of a String. The order of these permutations are given by the initial order of the input String. If you sort the String beforehand, the anagrams will thus be added in sorted order.
to prevent duplicates, you can simply maintain a Set of Strings you have already added. If this Set does not contain the anagram you're about to add, then you can safely add it to the list of anagrams.
Here is the code for the solution i described. I hope you find it to be simpler than your solution.
public class Anagrams {
private List<String> sortedAnagrams;
private Set<String> handledStrings;
public static void main(String args[]) {
Anagrams anagrams = new Anagrams();
List<String> list = anagrams.permutations(sort("AASDF"));
System.out.println(list.get(31));
}
public List<String> permutations(String str) {
handledStrings = new HashSet<String>();
sortedAnagrams = new ArrayList<String>();
permutation("", str);
return sortedAnagrams;
}
private void permutation(String prefix, String str) {
int n = str.length();
if (n == 0){
if(! handledStrings.contains(prefix)){
//System.out.println(prefix);
sortedAnagrams.add(prefix);
handledStrings.add(prefix);
}
}
else {
for (int i = 0; i < n; i++)
permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i + 1, n));
}
}
public static String sort(String str) {
char[] arr = str.toCharArray();
Arrays.sort(arr);
return new String(arr);
}
}
If you create a "next permutation" method which alters an array to its next lexicographical permutation, then your base logic could be to just invoke that method n-1 times in a loop.
There's a nice description with code that can be found here. Here's both the basic pseudocode and an example in Java adapted from that page.
/*
1. Find largest index i such that array[i − 1] < array[i].
(If no such i exists, then this is already the last permutation.)
2. Find largest index j such that j ≥ i and array[j] > array[i − 1].
3. Swap array[j] and array[i − 1].
4. Reverse the suffix starting at array[i].
*/
boolean nextPermutation(char[] array) {
int i = array.length - 1;
while (i > 0 && array[i - 1] >= array[i]) i--;
if (i <= 0) return false;
int j = array.length - 1;
while (array[j] <= array[i - 1]) j--;
char temp = array[i - 1];
array[i - 1] = array[j];
array[j] = temp;
j = array.length - 1;
while (i < j) {
temp = array[i];
array[i] = array[j];
array[j] = temp;
i++;
j--;
}
return true;
}
This was a question asked in a recent programming interview.
Given a random string S and another string T with unique elements, find the minimum consecutive sub-string of S such that it contains all the elements in T.
Say,
S='adobecodebanc'
T='abc'
Answer='banc'
I've come up with a solution,
public static String completeSubstring(String T, String S){
String minSub = T;
StringBuilder sb = new StringBuilder();
for (int i = 0; i <T.length()-1; i++) {
for (int j = i + 1; j <= T.length() ; j++) {
String sub = T.substring(i,j);
if(stringContains(sub, S)){
if(sub.length() < minSub.length()) minSub = sub;
}
}
}
return minSub;
}
private static boolean stringContains(String t, String s){
//if(t.length() <= s.length()) return false;
int[] arr = new int[256];
for (int i = 0; i <t.length() ; i++) {
char c = t.charAt(i);
arr[c -'a'] = 1;
}
boolean found = true;
for (int i = 0; i <s.length() ; i++) {
char c = s.charAt(i);
if(arr[c - 'a'] != 1){
found = false;
break;
}else continue;
}
return found;
}
This algorithm has a O(n3) complexity, which but naturally isn't great. Can someone suggest a better algorithm.
Here's the O(N) solution.
The important thing to note re: complexity is that each unit of work involves incrementing either start or end, they don't decrease, and the algorithm stops before they both get to the end.
public static String findSubString(String s, String t)
{
//algorithm moves a sliding "current substring" through s
//in this map, we keep track of the number of occurrences of
//each target character there are in the current substring
Map<Character,int[]> counts = new HashMap<>();
for (char c : t.toCharArray())
{
counts.put(c,new int[1]);
}
//how many target characters are missing from the current substring
//current substring is initially empty, so all of them
int missing = counts.size();
//don't waste my time
if (missing<1)
{
return "";
}
//best substring found
int bestStart = -1, bestEnd = -1;
//current substring
int start=0, end=0;
while (end<s.length())
{
//expand the current substring at the end
int[] cnt = counts.get(s.charAt(end++));
if (cnt!=null)
{
if (cnt[0]==0)
{
--missing;
}
cnt[0]+=1;
}
//while the current substring is valid, remove characters
//at the start to see if a shorter substring that ends at the
//same place is also valid
while(start<end && missing<=0)
{
//current substring is valid
if (end-start < bestEnd-bestStart || bestEnd<0)
{
bestStart = start;
bestEnd = end;
}
cnt = counts.get(s.charAt(start++));
if (cnt != null)
{
cnt[0]-=1;
if (cnt[0]==0)
{
++missing;
}
}
}
//current substring is no longer valid. we'll add characters
//at the end until we get another valid one
//note that we don't need to add back any start character that
//we just removed, since we already tried the shortest valid string
//that starts at start-1
}
return(bestStart<=bestEnd ? s.substring(bestStart,bestEnd) : null);
}
I know that there already is an adequate O(N) complexity answer, but I tried to figure it out on my own without looking it up, just because it's a fun problem to solve and thought I would share. Here's the O(N) solution that I came up with:
public static String completeSubstring(String S, String T){
int min = S.length()+1, index1 = -1, index2 = -1;
ArrayList<ArrayList<Integer>> index = new ArrayList<ArrayList<Integer>>();
HashSet<Character> targetChars = new HashSet<Character>();
for(char c : T.toCharArray()) targetChars.add(c);
//reduce initial sequence to only target chars and keep track of index
//Note that the resultant string does not allow the same char to be consecutive
StringBuilder filterS = new StringBuilder();
for(int i = 0, s = 0 ; i < S.length() ; i++) {
char c = S.charAt(i);
if(targetChars.contains(c)) {
if(s > 0 && filterS.charAt(s-1) == c) {
index.get(s-1).add(i);
} else {
filterS.append(c);
index.add(new ArrayList<Integer>());
index.get(s).add(i);
s++;
}
}
}
//Not necessary to use regex, loops are fine, but for readability sake
String regex = "([abc])((?!\\1)[abc])((?!\\1)(?!\\2)[abc])";
Matcher m = Pattern.compile(regex).matcher(filterS.toString());
for(int i = 0, start = -1, p1, p2, tempMin, charSize = targetChars.size() ; m.find(i) ; i = start+1) {
start = m.start();
ArrayList<Integer> first = index.get(start);
p1 = first.get(first.size()-1);
p2 = index.get(start+charSize-1).get(0);
tempMin = p2-p1;
if(tempMin < min) {
min = tempMin;
index1 = p1;
index2 = p2;
}
}
return S.substring(index1, index2+1);
}
I'm pretty sure the complexity is O(N), please correct if I'm wrong
Alternative implementation of O(N) algorithm proposed by #MattTimmermans, which uses Map<Integer, Integer> to count occurrences and Set<Integer> to store chars from T that are present in current substring:
public static String completeSubstring(String s, String t) {
Map<Integer, Integer> occ
= t.chars().boxed().collect(Collectors.toMap(c -> c, c -> 0));
Set<Integer> found = new HashSet<>(); // characters from T found in current match
int start = 0; // current match
int bestStart = Integer.MIN_VALUE, bestEnd = -1;
for (int i = 0; i < s.length(); i++) {
int ci = s.charAt(i); // current char
if (!occ.containsKey(ci)) // not from T
continue;
occ.put(ci, occ.get(ci) + 1); // add occurrence
found.add(ci);
for (int j = start; j < i; j++) { // try to reduce current match
int cj = s.charAt(j);
Integer c = occ.get(cj);
if (c != null) {
if (c == 1) { // cannot reduce anymore
start = j;
break;
} else
occ.put(cj, c - 1); // remove occurrence
}
}
if (found.size() == occ.size() // all chars found
&& (i - start < bestEnd - bestStart)) {
bestStart = start;
bestEnd = i;
}
}
return bestStart < 0 ? null : s.substring(bestStart, bestEnd + 1);
}
I need to get the count of Unmatched character in two strings. for example
string 1 "hari", string 2 "malar"
Now i need to remove the duplicates from both string ['a' & 'r'] are common in both strings so remove that, now string 1 contain "hi" string 2 contain "mla".
Remaining count = 5
I tried this code, its working fine if duplicate / repeart is not available in same sting like here 'a' come twice in string 2 so my code is didn't work properly.
for (int i = 0; i < first.length; i++) {
for (int j = 0; j < second.length; j++) {
if(first[i] == second[j])
{
getstrings = new ArrayList<String>();
count=count+1;
Log.d("Matches", "string char that matched "+ first[i] +"==" + second[j]);
}
}
}
int tot=(first.length + second.length) - count;
here first & second refers to
char[] first = nameone.toCharArray();
char[] second = nametwo.toCharArray();
this code is working fine for String 1 "sri" string 2 "hari" here in a string character didn't repeat so this above code is working fine. Help me to solve this ?
Here is my solution,
public static void RemoveMatchedCharsInnStrings(String first,String second)
{
for(int i = 0 ;i < first.length() ; i ++)
{
char c = first.charAt(i);
if(second.indexOf(c)!= -1)
{
first = first.replaceAll(""+c, "");
second = second.replaceAll(""+c, "");
}
}
System.out.println(first);
System.out.println(second);
System.out.println(first.length() + second.length());
}
Hope it is what you need. if not i'll update my answer
I saw the other answers and thought: There must be a more declarative and composable way of doing this!
There is, but it's far longer...
public static void main(String[] args) {
String first = "hari";
String second = "malar";
Map<Character, Integer> differences = absoluteDifference(characterCountOf(first), characterCountOf(second));
System.out.println(sumOfCounts(differences));
}
public static Map<Character, Integer> characterCountOf(String text) {
Map<Character, Integer> result = new HashMap<Character, Integer>();
for (int i=0; i < text.length(); i++) {
Character c = text.charAt(i);
result.put(c, result.containsKey(c) ? result.get(c) + 1 : 1);
}
return result;
}
public static <K> Set<K> commonKeys(Map<K, ?> first, Map<K, ?> second) {
Set<K> result = new HashSet<K>(first.keySet());
result.addAll(second.keySet());
return result;
}
public static <K> Map<K, Integer> absoluteDifference(Map<K, Integer> first, Map<K, Integer> second) {
Map<K, Integer> result = new HashMap<K, Integer>();
for (K key: commonKeys(first, second)) {
Integer firstCount = first.containsKey(key) ? first.get(key) : 0;
Integer secondCount = second.containsKey(key) ? second.get(key) : 0;
Integer resultCount = Math.max(firstCount, secondCount) - Math.min(firstCount, secondCount);
if (resultCount > 0) result.put(key, resultCount);
}
return result;
}
public static Integer sumOfCounts(Map<?, Integer> map) {
Integer sum = 0;
for (Integer count: map.values()) {
sum += count;
}
return sum;
}
This is the solution I prefer - but it's lot longer. You've tagged the question with Android, so I didn't use any Java 8 features, which would reduce it a bit (but not as much as I would have hoped for).
However it produces meaningful intermediate results. But it's still so much longer :-(
Try out this code:
String first = "hari";
String second = malar;
String tempFirst = "";
String tempSecond = "";
int maxSize = ((first.length() > second.length()) ? (first.length()) : (second.length()));
for (int i = 0; i < maxSize; i++) {
if (i >= second.length()) {
tempFirst += first.charAt(i);
} else if (i >= first.length()) {
tempSecond += second.charAt(i);
} else if (first.charAt(i) != second.charAt(i)) {
tempFirst += first.charAt(i);
tempSecond += second.charAt(i);
}
}
first = tempFirst;
second = tempSecond;
you need to break; as soon as the match is found:
public static void main(String[] args) {
String nameone="hari";
String nametwo="malar";
char[] first = nameone.toCharArray();
char[] second = nametwo.toCharArray();
List<String>getstrings=null;
int count=0;
for (int i = 0; i < first.length; i++) {
for (int j = 0; j < second.length; j++) {
if(first[i] == second[j])
{
getstrings = new ArrayList<String>();
count++;
System.out.println("Matches"+ "string char that matched "+ first[i] +"==" + second[j]);
break;
}
}
}
//System.out.println(count);
int tot=(first.length-count )+ (second.length - count);
System.out.println("Remaining after match from both strings:"+tot);
}
prints:
Remaining after match from both strings:5
Two things you are missing here.
In the if condition, when the two characters matches, you need to increment count by 2, not one as you are eliminating from both strings.
You need to put a break in the in condition as you are always matching for the first occurrence of the character.
Made those two changes in your code as below, and now it prints the result as you expected.
for (int i = 0; i < first.length; i++) {
for (int j = 0; j < second.length; j++) {
if(first[i] == second[j])
{
count=count+2;
break;
}
}
}
int tot=(first.length + second.length) - count;
System.out.println("Result = "+tot);
You just need to loop over two strings if characters are matched increment the count and just remove those count from total len of two characters
s = 'hackerhappy'\
t = 'hackerrank'\
count = 0
for i in range(len(s)):
for j in range(len(t)):
if s[i] == t[j]:
count += 2
break
char_unmatched = (len(s)+len(t)) - count
char_unmatched contains the count of number of characters from both the strings that are not equal