I'm writing some code to simulate CAS(compare and swap).
Here I have a method cas to simulate CAS instruction, a method increase to plus field count 1. And I start 2 threads that every thread add field count 10000 times.
The problem is that the expected output is 20000, but the actual output is a little bit smaller than 20000. For example 19984, 19992, 19989...Every time is different.
I would very appreciate it if you can help me .
public class SimulateCAS {
private volatile int count;
private synchronized int cas(int expectation, int newValue) {
int curValue = count;
if (expectation == curValue) {
count = newValue;
}
return curValue;
}
void increase() {
int newValue;
do {
newValue = count + 1; // ①
} while (count != cas(count, newValue)); // ②
}
public static void main(String[] args) throws InterruptedException {
final SimulateCAS demo = new SimulateCAS();
Thread t1 = new Thread(() -> {
for (int i = 0; i < 10000; i++) {
demo.add10k();
}
});
Thread t2 = new Thread(() -> {
for (int i = 0; i < 10000; i++) {
demo.add10k();
}
});
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println(demo.count);
}
}
The problem is your increase method.
The value of count can be updated at any point between the lines with the comment ① and ②.
Your implementation of increase assumes that this can not happen, and that the count in line ① is the same count as in line ②.
A better implementation increase would be
void increase() {
int oldValue, newValue;
do {
oldValue = count; // get the current value
newValue = oldValue + 1; // calculate the new value based on the old
} while (oldValue != cas(oldValue, newValue)); // Do a compare and swap - if the oldValue is still the current value, change it to the newValue, otherwise not.
}
Here your full code with a real CAS, so no locks are needed.
Related
I want fibonacci series to be printed by threads and the 1st number of the series should be printed by 1st thread then 2nd number by 2nd thread then 3rd by 1st thread and 4th by 2nd and so on.
I tried this code by using arrays like printing the array elements using thread but I am not able to switch between the threads.
class Fibonacci{
void printFibonacci() {
int fibArray[] = new int[10];
int a = 0;
int b = 1;
fibArray[0] = a;
fibArray[1] = b;
int c;
for(int i=2;i<10;i++) {
c = a+b;
fibArray[i] = c;
a = b;
b = c;
}
for(int i=0;i<10;i++) {
if(Integer.parseInt(Thread.currentThread().getName())%2==0 && (i%2==0))
{
System.out.println("Thread " +Thread.currentThread().getName()+" "+fibArray[i]);
try{
wait();
}catch(Exception e) {}
}
else if(Integer.parseInt(Thread.currentThread().getName())%2!=0 && (i%2!=0))
{
System.out.println("Thread " +Thread.currentThread().getName()+" "+fibArray[i]);
}
}
}
}
public class FibonacciUsingThread {
public static void main(String[] args) throws Exception {
Fibonacci f = new Fibonacci();
Thread t1 = new Thread(()->
{
f.printFibonacci();
});
Thread t2 = new Thread(()->
{
f.printFibonacci();
});
t1.setName("0");
t2.setName("1");
t1.start();
t1.join();
t2.start();
}
}
The following line in your code is causing t1 to finish before t2 can start.
t1.join();
Apart from this, you need to synchronize on the method, printFibonacci.
You can do it as follows:
class Fibonacci {
synchronized void printFibonacci() throws InterruptedException {
int fibArray[] = new int[10];
int a = 0;
int b = 1;
fibArray[0] = a;
fibArray[1] = b;
int c;
for (int i = 2; i < 10; i++) {
c = a + b;
fibArray[i] = c;
a = b;
b = c;
}
for (int i = 0; i < 10; i++) {
String currentThreadName = Thread.currentThread().getName();
if (currentThreadName.equals("1")) {
if (i % 2 == 0) {
System.out.println("Thread " + Thread.currentThread().getName() + " " + fibArray[i]);
notify();
} else {
wait();
}
} else if (currentThreadName.equals("0")) {
if (i % 2 == 1) {
System.out.println("Thread " + Thread.currentThread().getName() + " " + fibArray[i]);
notify();
} else {
wait();
}
}
}
}
}
public class Main {
public static void main(String[] args) {
Fibonacci f = new Fibonacci();
Thread t1 = new Thread(() -> {
try {
f.printFibonacci();
} catch (InterruptedException e) {
e.printStackTrace();
}
});
Thread t2 = new Thread(() -> {
try {
f.printFibonacci();
} catch (InterruptedException e) {
e.printStackTrace();
}
});
t1.setName("0");
t2.setName("1");
t1.start();
t2.start();
}
}
Output:
Thread 1 0
Thread 0 1
Thread 1 1
Thread 0 2
Thread 1 3
Thread 0 5
Thread 1 8
Thread 0 13
Thread 1 21
Thread 0 34
Apart from all being said and already answered, I would just like to add one alternative approach to Fibonacci sequence implemetation, without arrays and in-advance dimensioning:
public class Fibonacci {
private int index = -1;
private int previous = 0;
private int last = 1;
synchronized public int getNext() {
index++;
if( index == 0 ) return previous;
if( index == 1 ) return last;
int next = last + previous;
if( next < 0 ) throw new ArithmeticException( "integer overflow" );
previous = last;
last = next;
return next;
}
}
Limited only by overflow of numeric data type, in this case integer.
As "#Live and Let Live" pointed out, correctness-wise the main issues with your code is the missing synchronized clause and calling join of the first thread before starting the second thread.
IMO you could clean the code a bit by first separating a bite the concerns, namely, the class Fibonacci would only responsible for calculation the Fibonacci of a given array:
class Fibonacci{
void getFibonacci(int[] fibArray) {
int a = 0;
int b = 1;
fibArray[0] = a;
fibArray[1] = b;
int c;
for(int i=2;i<fibArray.length;i++) {
c = a+b;
fibArray[i] = c;
a = b;
b = c;
}
}
}
In this way, you keep your Fibonacci class concise without any thread-related code. Moreover, the getFibonacci is now more abstract; you can calculate the fib of more than just 10 elements like you had before.
Then on the class FibonacciUsingThread:
public class FibonacciUsingThread {
public static void main(String[] args) throws Exception {
int [] array_fib = new int[10];
Fibonacci f = new Fibonacci();
f.getFibonacci(array_fib);
Thread t1 = new Thread(()->
{
for(int i = 0; i < array_fib.length; i+=2)
System.out.println("Thread 1:" + array_fib[i]);
});
Thread t2 = new Thread(()->
{
for(int i = 1; i < array_fib.length; i+=2)
System.out.println("Thread 2:" + array_fib[i]);
});
t1.start();
t2.start();
t1.join();
t2.join();
}
}
First, you calculate the Fibonaccis using the main thread, there is no point in having all the threads calculate the same thing. Afterward, you specified that Thread 1 and Thread 2 will print the even and odd positions, respectively.
Unless this is just an exercise to play around with threads and synchronization there is not much sense in using threads to do this kind of work. In your code, the part worth parallelizing is the calculation of the Fibonacci numbers themselves, not the printing part.
The code previously shown will not print the Fibonacci numbers in order, for that you need to ensure that the threads wait for one another after iterating through each element of the array. Hence, you need to adapt the code that will be executed by the threads, namely:
Thread t1 = new Thread(()->
{
synchronized (array_fib){
for(int i = 0; i < array_fib.length; i++)
if(i % 2 == 0) {
System.out.println("Thread 1:" + array_fib[i]);
try {
array_fib.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
else
array_fib.notify();
}
});
Thread t2 = new Thread(()->
{
synchronized (array_fib){
for(int i = 0; i < array_fib.length; i++)
if(i % 2 != 0) {
System.out.println("Thread 2:" + array_fib[i]);
try {
array_fib.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
else
array_fib.notify();
}
});
We can remove the code redundancy by extracting a method with the work that will be assigned to the Threads. For instance:
private static void printFib(String threadName, int[] array_fib, Predicate<Integer> predicate) {
for (int i = 0; i < array_fib.length; i++)
if (predicate.test(i)) {
System.out.println(threadName + " : " + array_fib[i]);
try {
array_fib.wait();
} catch (InterruptedException e) {
// do something about it
}
} else
array_fib.notify();
}
and the main code:
public static void main(String[] args) throws Exception{
int [] array_fib = new int[10];
Fibonacci f = new Fibonacci();
f.getFibonacci(array_fib);
Thread t1 = new Thread(()-> {
synchronized (array_fib){
printFib("Thread 1:", array_fib, i1 -> i1 % 2 == 0);
}
});
Thread t2 = new Thread(()-> {
synchronized (array_fib){
printFib("Thread 2:", array_fib, i1 -> i1 % 2 != 0);
}
});
t1.start();
t2.start();
t1.join();
t2.join();
}
As an alternative, you can use a fair Semaphore to alternate between threads, and an AtomicReference to keep the shared status. Here's an example:
import java.util.concurrent.Semaphore;
import java.util.concurrent.atomic.AtomicReference;
public class FibonacciConcurrent {
public static void main(String[] args) throws InterruptedException {
// needs to be fair to alternate between threads
Semaphore semaphore = new Semaphore(1, true);
// set previous to 1 so that 2nd fibonacci number is correctly calculated to be 0+1=1
Status initialStatus = new Status(1, 0, 1);
AtomicReference<Status> statusRef = new AtomicReference<>(initialStatus);
Fibonacci fibonacci = new Fibonacci(20, semaphore, statusRef);
Thread thread1 = new Thread(fibonacci);
Thread thread2 = new Thread(fibonacci);
thread1.start();
thread2.start();
thread1.join();
thread2.join();
}
private static final class Status {
private final long previous;
private final long current;
private final int currentIndex;
private Status(long previous, long current, int currentIndex) {
this.previous = previous;
this.current = current;
this.currentIndex = currentIndex;
}
}
private static final class Fibonacci implements Runnable {
private final int target;
private final Semaphore semaphore;
private final AtomicReference<Status> statusRef;
private Fibonacci(int target, Semaphore semaphore, AtomicReference<Status> statusRef) {
this.target = target;
this.semaphore = semaphore;
this.statusRef = statusRef;
}
#Override
public void run() {
try {
process();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
throw new RuntimeException("Interrupted", e);
}
}
private void process() throws InterruptedException {
while (!Thread.currentThread().isInterrupted()) {
try {
semaphore.acquire();
Status status = statusRef.get();
String threadName = Thread.currentThread().getName();
if (status.currentIndex > target) return;
System.out.println(
threadName + ": fibonacci number #" + status.currentIndex + " - " + status.current);
long next = status.previous + status.current;
Status newStatus = new Status(status.current, next, status.currentIndex + 1);
statusRef.set(newStatus);
} finally {
semaphore.release();
}
}
}
}
}
Will print:
Thread-0: fibonacci number #1 - 0
Thread-1: fibonacci number #2 - 1
Thread-0: fibonacci number #3 - 1
Thread-1: fibonacci number #4 - 2
Thread-0: fibonacci number #5 - 3
Note that this solution does not only print on the threads - it does the actual calculation on the threads as well - e.g. when it's Thread A's turn, it uses the previous status that was calculated by Thread B to calculate the next fibonacci number.
I have a Output class which just prints everything that it gets to print.
public class Output {
private static List<String> textList = new ArrayList<>();
private static Output output = null;
private Output() {
Runnable task = () -> {
int lastIndex = 0;
while (true) {
while (lastIndex < textList.size()) {
System.out.println(lastIndex + " - " + textList.size() + ": " + textList.get(lastIndex));
outputText(textList.get(lastIndex));
lastIndex ++;
}
}
};
new Thread(task).start();
}
private static void outputText(String text) {
synchronized (System.out) {
System.out.println(text);
}
}
public static void say(String text) {
if (output == null) {
output = new Output();
}
textList.add(text);
}
}
When I add something to print, everything works fine:
for (int i = 0; i < 10; i++) {
Output.say("" + i);
}
But when I add a Thread.sleep to the loop it stops on the first output:
for (int i = 0; i < 10; i++) {
Output.say("" + i);
Thread.sleep(100);
}
How can I prevent it? I mean, I'm stopping with sleep just the main thread and not the separate thread.
When you don’t synchronize threads correctly, there is no guaranty that threads see updates made by other threads. They may either completely miss updates or see only parts of them, creating an entirely inconsistent result. Sometimes they may even appear to do the right thing. Without proper synchronization (in the sense of any valid construct specified to be thread safe), this is entirely unpredictable.
Sometimes, the chances of seeing a particular behavior are higher, like in your example. In most runs, the loop without sleep will complete before the other thread even starts its work, whereas inserting sleep raises the chance of lost updates after the second thread has seen values. Once the second thread has seen a value for textList.size(), it might reuse the value forever, evaluating lastIndex < textList.size() to false and executing the equivalent of while(true) { }.
It’s funny that the only place where you inserted a construct for thread safety, is the method outputText that is called by a single thread only (and printing to System.out is synchronized internally in most environments anyway).
Besides, it’s not clear why you are creating an object of type Output that has no relevance here, as all fields and methods are static.
Your code can be corrected and simplified to
public static void main(String[] args) throws InterruptedException {
List<String> textList = new ArrayList<>();
new Thread( () -> {
int index=0;
while(true) synchronized(textList) {
for(; index<textList.size(); index++)
System.out.println(textList.get(index));
}
}).start();
for (int i = 0; i < 10; i++) {
synchronized(textList) {
textList.add(""+i);
}
Thread.sleep(100);
}
}
though it still contains the issues of you original code of never terminating due to the infinite second thread and also burning the CPU with a polling loop. You should let the second thread wait for new items and add a termination condition:
public static void main(String[] args) throws InterruptedException {
List<String> textList = new ArrayList<>();
new Thread( () -> {
synchronized(textList) {
for(int index=0; ; index++) {
while(index>=textList.size()) try {
textList.wait();
} catch(InterruptedException ex) { return; }
final String item = textList.get(index);
if(item==null) break;
System.out.println(item);
}
}
}).start();
for (int i = 0; i < 10; i++) {
synchronized(textList) {
textList.add(""+i);
textList.notify();
}
Thread.sleep(100);
}
synchronized(textList) {
textList.add(null);
textList.notify();
}
}
This is still only an academic example that you shouldn’t use in real life code. There are classes for thread safe data exchange provided by the Java API removing the burden of implementing such things yourself.
public static void main(String[] args) throws InterruptedException {
ArrayBlockingQueue<String> queue = new ArrayBlockingQueue<>(10);
String endMarker = "END-OF-QUEUE"; // the queue does not allow null
new Thread( () -> {
for(;;) try {
String item = queue.take();
if(item == endMarker) break;// don't use == for ordinary strings
System.out.println(item);
} catch(InterruptedException ex) { return; }
}).start();
for (int i = 0; i < 10; i++) {
queue.put(""+i);
Thread.sleep(100);
}
queue.put(endMarker);
}
Suppose I have the following code, where one thread generates squares and writes them to a buffer while another thread prints them:
import java.util.*;
public class Something {
public static Buffer buffer = new Buffer();
public static class Buffer {
private int[] buffer;
private static final int size = 10;
//Indexes for putting and taking element form buffer
private int in, out;
//Number of elements in buffer
private int k;
public Buffer() {
buffer = new int[size];
in = 0;
out = 0;
k = 0;
}
public synchronized void put(int e) {
try {
while (k == buffer.length) {
wait();
}
} catch (InterruptedException ex) {
}
buffer[in] = e;
k++;
in = ++in % size;
notifyAll();
}
public synchronized int take() {
try {
while (k == 0) {
wait();
}
} catch (InterruptedException ex) {
}
int e = buffer[out];
buffer[out] = 0;
out = ++out % size;
k--;
notifyAll();
return e;
}
public synchronized boolean notEmpty() {
return k != 0;
}
}
public static class Generator implements Runnable {
int limit;
public Generator(int lim) {
limit= lim;
}
#Override
public void run() {
for (int i = 1; i < limit; i++) {
buffer.put(i * i);
}
}
}
public static class Printer implements Runnable {
private Thread[] generators;
public Printer(Thread[] gen) {
generators = gen;
}
public synchronized boolean nobody() {
for (Thread th : generators) {
if (th.isAlive()) {
return false;
}
}
return true;
}
#Override
public void run() {
int x = 0;
while (!nobody() || buffer.notEmpty()) {
x = buffer.take();
System.out.println(x);
}
}
}
public static void main(String[] args) throws InterruptedException {
Thread generator = new Thread(new Generator(69));
Thread printer = new Thread(new Printer(new Thread[]{generator}));
generator.start();
printer.start();
generator.join();
printer.join();
}
}
Generator should generate squares of numbers until it reaches some limit (limit = 69, in this case). Printer should print all values generated by Generator. Buffer works somewhat like ring buffer. Indexes for putting (in) and taking (out) element are cycling in bounds of buffer size. Buffer has methods for putting and taking elements from buffer. Generator thread cannot put elements in buffer if it is full (that is, there are no zero elements; zero element is 0, for precision sake...). Printer works this way: first it checks if there are any alive generator threads and then checks if buffer contains only zero elements. If neither of these conditions is true, printer thread terminates.
Now, to the problem. I always get printed all squares from 1 to 68, which is expected output of this program. However, on very rare occasion after all numbers had been output I get a deadlock. How rarely? Well, maybe in 1 out of 100 executions of program. I had to keep hitting "F6" on NetBeans like crazy to get a deadlock. And yes, I know that I can test this simply putting all main code in for loop.
Conversely, if I comment out print line in Printers' run method, deadlock happens almost all the time. Here:
#Override
public void run() {
int x = 0;
while (!nobody() || buffer.notEmpty()) {
x = buffer.take();
//System.out.println(x);
}
}
I do not expect this behavior, because element still gets taken from buffer and generator should be awoken.
Why does this happen? And how do I fix it?
Sorry if question isn't clear enough, I'll try to clarify it as best I can if needed.
I think I fount the problem. Here is what I got: There is a very short moment in time, where the Generator thread is still alive (i.e. Thread.isAlive() will return true), but the Generator has left the for-loop within run(). If the Printer queries its while-condition within its run() at this point in time, it will try to take() something, that is not there (and never will be). Indeed, you can verify, that the Generator always finishes, meaning termination detection on the side of the Printer is faulty. For a hot fix, you can simply add a magic constant is Printers while condition:
#Override
public void run() {
int x = 0;
int count = 0;
while (++count < 69) {
x = buffer.take();
System.out.println(x);
}
}
For a clean termination detection, you could set some common flag-variable to false, signaling that the Generator has finished work and the Printer can stop working. But this has to be done in a synchronized manner, meaning the Printer is not allowed to query this condition, while the Generator is after its last push, but before it sets this common flag.
I'm writing a program in Java that deals with Semaphores for an assignment. I'm still new to the idea of Semaphores and concurrency.
The description of the problem is as follows:
A vector V[] of booleans. V[i] is "True"if Pi needs to use the critical section.
A vector of binary semaphores B[] to block processes from entering their critical section: B[i] will be the semaphore blocking process Pi.
A special scheduler process SCHED is used whenever a blocked process needs to be awakened to use the critical section.
SCHED is blocked by waiting on a special semaphore S
When a process Pi needs to enter the critical section, it sets V[i] to "True", signals the semaphore S and then waits on the semaphore B[i].
Whenever SCHED is unblocked, it selects the process Pi with the smallest index i for which V[i] is "True". Process Pi is then awakened by signaling B[i] and SCHED goes back to sleep by blocking on semaphore S.
When a process Pi leaves the critical section, it signals S.
This is my code:
import java.util.concurrent.Semaphore;
public class Process extends Thread {
static boolean V[];
int i;
static Semaphore B[]; //blocking semaphore
static Semaphore S;
private static int id;
static int N;
static int insist = 0;
public static void process (int i, int n) {
id = i;
N = n;
V = new boolean[N];
}
private void delay () {
try {
sleep (random(500));
}
catch (InterruptedException p) {
}
}
private static int random(int n) {
return (int) Math.round(n * Math.random() - 0.5);
}
private void entryprotocol(int i) {
V[Process.id] = true;
int turn = N;
while (V[Process.id] == true && turn == N) {
System.out.println("P" + Process.id + " is requesting critical section");
signal(S);
}
critical(Process.id);
wait(B[Process.id]);
V[Process.id] = false;
}
private void wait(Semaphore S) {
if (Process.id > 0) {
Process.id--;
} else {
//add Process.id to id.queue and block
wait(B[Process.id]);
}
}
private void signal(Semaphore S) {
if (B[Process.id] != null) {
Sched(Process.id);
} else {
Process.id++; //remove process from queue
critical(Process.id); //wakes up current process
}
}
private void critical(int i) {
System.out.println("P" + Process.id + " is in the critical section");
delay();
exitprotocol(i);
}
private void exitprotocol(int i) {
System.out.println("P" + Process.id + " is leaving the critical section");
V[id] = false;
signal(S);
}
public void Sched(int i) {
if (B[Process.id] == null) {
signal(B[Process.id]);
}
wait(S);
}
public void run() {
for (int i = 0; i < 5; i++) {
Sched(i);
entryprotocol(Process.id);
try {
wait(Process.id);
}
catch (InterruptedException p) {
}
signal(S);
}
}
public static void main (String[] args) {
int N = 5;
Process p[] = new Process[N];
for (int i = 0; i < N; i++) {
p[i] = new Process();
p[i].start();
}
}
}
I believe my logic here is correct but I'm getting a lot of errors (such as Exception in thread "Thread-1" java.lang.NullPointerException). Can any shed some light on what I'm doing wrong & provide me with some help. It's greatly appreciated!
Your NPE is probably due to the fact that you never initialize your Semaphore array - but its hard to say without a proper stack trace.
Two pieces of advice:
1) You might want to give your class variables more meaningful names than :
B
N
S
V.
Imagine walking away from this project and revisiting it in 4 months and had to read through that.
2) Figure out your class model on on a white board before writing any code. You have methods that take semaphores with the same name as some of your static fields. What are the relationships of the objects in your program? If you don't know, odds are your program doesn't know either.
I need a byte generator that would generate values from Byte.MIN_VALUE to Byte.MAX_VALUE. When it reaches MAX_VALUE, it should start over again from MIN_VALUE.
I have written the code using AtomicInteger (see below); however, the code does not seem to behave properly if accessed concurrently and if made artificially slow with Thread.sleep() (if no sleeping, it runs fine; however, I suspect it is just too fast for concurrency problems to show up).
The code (with some added debug code):
public class ByteGenerator {
private static final int INITIAL_VALUE = Byte.MIN_VALUE-1;
private AtomicInteger counter = new AtomicInteger(INITIAL_VALUE);
private AtomicInteger resetCounter = new AtomicInteger(0);
private boolean isSlow = false;
private long startTime;
public byte nextValue() {
int next = counter.incrementAndGet();
//if (isSlow) slowDown(5);
if (next > Byte.MAX_VALUE) {
synchronized(counter) {
int i = counter.get();
//if value is still larger than max byte value, we reset it
if (i > Byte.MAX_VALUE) {
counter.set(INITIAL_VALUE);
resetCounter.incrementAndGet();
if (isSlow) slowDownAndLog(10, "resetting");
} else {
if (isSlow) slowDownAndLog(1, "missed");
}
next = counter.incrementAndGet();
}
}
return (byte) next;
}
private void slowDown(long millis) {
try {
Thread.sleep(millis);
} catch (InterruptedException e) {
}
}
private void slowDownAndLog(long millis, String msg) {
slowDown(millis);
System.out.println(resetCounter + " "
+ (System.currentTimeMillis()-startTime) + " "
+ Thread.currentThread().getName() + ": " + msg);
}
public void setSlow(boolean isSlow) {
this.isSlow = isSlow;
}
public void setStartTime(long startTime) {
this.startTime = startTime;
}
}
And, the test:
public class ByteGeneratorTest {
#Test
public void testGenerate() throws Exception {
ByteGenerator g = new ByteGenerator();
for (int n = 0; n < 10; n++) {
for (int i = Byte.MIN_VALUE; i <= Byte.MAX_VALUE; i++) {
assertEquals(i, g.nextValue());
}
}
}
#Test
public void testGenerateMultiThreaded() throws Exception {
final ByteGenerator g = new ByteGenerator();
g.setSlow(true);
final AtomicInteger[] counters = new AtomicInteger[Byte.MAX_VALUE-Byte.MIN_VALUE+1];
for (int i = 0; i < counters.length; i++) {
counters[i] = new AtomicInteger(0);
}
Thread[] threads = new Thread[100];
final CountDownLatch latch = new CountDownLatch(threads.length);
for (int i = 0; i < threads.length; i++) {
threads[i] = new Thread(new Runnable() {
public void run() {
try {
for (int i = Byte.MIN_VALUE; i <= Byte.MAX_VALUE; i++) {
byte value = g.nextValue();
counters[value-Byte.MIN_VALUE].incrementAndGet();
}
} finally {
latch.countDown();
}
}
}, "generator-client-" + i);
threads[i].setDaemon(true);
}
g.setStartTime(System.currentTimeMillis());
for (int i = 0; i < threads.length; i++) {
threads[i].start();
}
latch.await();
for (int i = 0; i < counters.length; i++) {
System.out.println("value #" + (i+Byte.MIN_VALUE) + ": " + counters[i].get());
}
//print out the number of hits for each value
for (int i = 0; i < counters.length; i++) {
assertEquals("value #" + (i+Byte.MIN_VALUE), threads.length, counters[i].get());
}
}
}
The result on my 2-core machine is that value #-128 gets 146 hits (all of them should get 100 hits equally as we have 100 threads).
If anyone has any ideas, what's wrong with this code, I'm all ears/eyes.
UPDATE: for those who are in a hurry and do not want to scroll down, the correct (and shortest and most elegant) way to solve this in Java would be like this:
public byte nextValue() {
return (byte) counter.incrementAndGet();
}
Thanks, Heinz!
Initially, Java stored all fields as 4 or 8 byte values, even short and byte. Operations on the fields would simply do bit masking to shrink the bytes. Thus we could very easily do this:
public byte nextValue() {
return (byte) counter.incrementAndGet();
}
Fun little puzzle, thanks Neeme :-)
You make the decision to incrementAndGet() based on a old value of counter.get(). The value of the counter can reach MAX_VALUE again before you do the incrementAndGet() operation on the counter.
if (next > Byte.MAX_VALUE) {
synchronized(counter) {
int i = counter.get(); //here You make sure the the counter is not over the MAX_VALUE
if (i > Byte.MAX_VALUE) {
counter.set(INITIAL_VALUE);
resetCounter.incrementAndGet();
if (isSlow) slowDownAndLog(10, "resetting");
} else {
if (isSlow) slowDownAndLog(1, "missed"); //the counter can reach MAX_VALUE again if you wait here long enough
}
next = counter.incrementAndGet(); //here you increment on return the counter that can reach >MAX_VALUE in the meantime
}
}
To make it work one has to make sure the no decisions are made on stale info. Either reset the counter or return the old value.
public byte nextValue() {
int next = counter.incrementAndGet();
if (next > Byte.MAX_VALUE) {
synchronized(counter) {
next = counter.incrementAndGet();
//if value is still larger than max byte value, we reset it
if (next > Byte.MAX_VALUE) {
counter.set(INITIAL_VALUE + 1);
next = INITIAL_VALUE + 1;
resetCounter.incrementAndGet();
if (isSlow) slowDownAndLog(10, "resetting");
} else {
if (isSlow) slowDownAndLog(1, "missed");
}
}
}
return (byte) next;
}
Your synchronized block contains only the if body. It should wrap whole method including if statement itself. Or just make your method nextValue synchronized. BTW in this case you do not need Atomic variables at all.
I hope this will work for you. Try to use Atomic variables only if your really need highest performance code, i.e. synchronized statement bothers you. IMHO in most cases it does not.
If I understand you correctly, you care that the results of nextValue are in the range of Byte.MIN_VALUE and Byte.MAX_VALUE and you don't care about the value stored in the counter.
Then you can map integers on bytes such that you required enumeration behavior is exposed:
private static final int VALUE_RANGE = Byte.MAX_VALUE - Byte.MIN_VALUE + 1;
private final AtomicInteger counter = new AtomicInteger(0);
public byte nextValue() {
return (byte) (counter.incrementAndGet() % VALUE_RANGE + Byte.MIN_VALUE - 1);
}
Beware, this is untested code. But the idea should work.
I coded up the following version of nextValue using compareAndSet which is designed to be used in a non-synchronized block. It passed your unit tests:
Oh, and I introduced new constants for MIN_VALUE and MAX_VALUE but you can ignore those if you prefer.
static final int LOWEST_VALUE = Byte.MIN_VALUE;
static final int HIGHEST_VALUE = Byte.MAX_VALUE;
private AtomicInteger counter = new AtomicInteger(LOWEST_VALUE - 1);
private AtomicInteger resetCounter = new AtomicInteger(0);
public byte nextValue() {
int oldValue;
int newValue;
do {
oldValue = counter.get();
if (oldValue >= HIGHEST_VALUE) {
newValue = LOWEST_VALUE;
resetCounter.incrementAndGet();
if (isSlow) slowDownAndLog(10, "resetting");
} else {
newValue = oldValue + 1;
if (isSlow) slowDownAndLog(1, "missed");
}
} while (!counter.compareAndSet(oldValue, newValue));
return (byte) newValue;
}
compareAndSet() works in conjunction with get() to manage concurrency.
At the start of your critical section, you perform a get() to retrieve the old value. You then perform some function dependent only on the old value to compute a new value. Then you use compareAndSet() to set the new value. If the AtomicInteger is no longer equal to the old value at the time compareAndSet() is executed (because of concurrent activity), it fails and you must start over.
If you have an extreme amount of concurrency and the computation time is long, it is conceivable that the compareAndSet() may fail many times before succeeding and it may be worth gathering statistics on that if concerns you.
I'm not suggesting that this is a better or worse approach than a simple synchronized block as others have suggested, but I personally would probably use a synchronized block for simplicity.
EDIT: I'll answer your actual question "Why doesn't mine work?"
Your code has:
int next = counter.incrementAndGet();
if (next > Byte.MAX_VALUE) {
As these two lines are not protected by a synchronized block, multiple threads can execute them concurrently and all obtain values of next > Byte.MAX_VALUE. All of them will then drop through into the synchronized block and set counter back to INITIAL_VALUE (one after another as they wait for each other).
Over the years, there has been a huge amount written over the pitfalls of trying to get a performance tweak by not synchronizing when it doesn't seem necessary. For example, see Double Checked Locking
Notwithstanding that Heinz Kabutz is the clean answer to the specific question, ye olde Java SE 8 [March 2014] added AtomicIntger.updateAndGet (and friends). This leads to a more general solution if circumstances required:
public class ByteGenerator {
private static final int MIN = Byte.MIN_VALUE;
private static final int MAX = Byte.MAX_VALUE;
private final AtomicInteger counter = new AtomicInteger(MIN);
public byte nextValue() {
return (byte)counter.getAndUpdate(ByteGenerator::update);
}
private static int update(int old) {
return old==MAX ? MIN : old+1;
}
}