Consider the service class below:-
//Singleton service
public class InquiryService{
private final ExecutorService es = Executors. newSingleThreadExecutor();
private final CustomerService cs = new CustomerServiceImpl();
public String process(){
//Asynchronous calls to get info from CustomerService
Future<String> result = es.submit(()->{return cs.getCustomer()});
//Query database
//Perform logic et all
String customerName = result.submit.get();
//continue processing.
}
}
Service class above has an ExecutorService as field. If say, 100 concurrent requests on process method, does remaining (100-1) requests need to wait for thread availability?
How to solve the request wait? One option I could think is, instantiate, use and shutdown ExecutorService within process method. However aren't thread pool is meant to be reused?
Another option would be run as new Thread(new FutureTask<>(() -> {return cs.getCustomer()})) . Which one is correct way?
Updates:-
Based from comments and answers, the ExecutorService meant to be reused and frequent new Thread creation is expensive. Therefore another option is just run service call sequentially.
Your service is singleton which means only one instance exists throughout the runtime of your application (If implemented right!). So, effectively you have one ExecutorService handling a newFixedThreadPool(1).
does remaining (100-1) requests need to wait for thread availability?
Oh yes, all your 100-1 other requests has to wait since the first request is already executing in the thread present in the threadpool. Since the thread pool is of fixed size, it can never grow to handle other requests.
How to solve the request wait?
You need more threads in your threadpool to take up your task.
One option I could think is, instantiate, use and shutdown
ExecutorService within process method
This is really a bad idea. The time taken to create and destroy Thread is too much. More on this here. That is whole idea of using a ThreadPool.
Another option would be run as new Thread(new FutureTask<>(() ->
{return cs.getCustomer()}))
Constructing a new Thread(). Read my previous point.
So, what is right!?
One way would be to a Executors.newFixedThreadPool(10), so that (90-10) requests wait. Is it okay? Or maybe you are looking for newCachedThreadPool!
Warning: Also, please read about side-effects of using ThreadLocal in a ThreadPool, if applicable.
Related
When my application launches, a executor service (using Executors.newFixedThreadPool(maxThreadNum) in java.util.concurrent) object is created. When requests come, the executor service will creates threads to handle them.
Because it takes time to create threads at run time, I want to make threads available when launching application, so that when requests come, it would take less time to process.
What I did is following:
executorService = Executors.newFixedThreadPool(200);
for (int i=0; i<200; i++) {
executorService.execute(new Runnable() {
#Override
public void run() {
System.out.println("Start thread in pool " );
}
});
}
It will creates 200 threads in the executorService pool when application launches.
Just wonder is this a correct way of creating threads when application starts?
Or is there a better way of doing it?
You are missing shutdown().It is very important to shutdown the Executor service once the operation is completed. So have try,catch and Finally block
try{
executorService.execute(...);
}catach(Exception e){
...
}finally{
executorService.shutdown(); //Mandatory
}
If you can use a ThreadPoolExecutor directly rather than an ExecutorService from Executors1, then there's perhaps a more standard/supported way to start all the core threads immediately.
int nThreads = 200;
ThreadPoolExecutor executor = new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<>());
executor.prestartAllCoreThreads();
The above uses prestartAllCoreThreads().
Note that, currently, the implementation of Executors.newFixedThreadPool(int) creates a ThreadPoolExecutor in the exact same manner as above. This means you could technically cast the ExecutorService returned by the factory method to a ThreadPoolExecutor. There's nothing in the documentation that guarantees it will be a ThreadPoolExecutor, however.
1. ThreadPoolExecutor implements ExecutorService but provides more functionality. Also, many of the factory methods in Executors either returns a ThreadPoolExecutor directly or a wrapper that delegates to one. Some, like newWorkStealingPool, use the ForkJoinPool. Again, the return types of these factory methods are implementation details so don't rely too much on it.
The number of threads which could run parallel depends on your processor core. Unless you have 200 cores it would be pretty useless to make a thread pool of 200.
A great way to find out how many processors cores you have is:
int cores = Runtime.getRuntime().availableProcessors();
Moreover the overhead which develops during creating a new thread and executing it is unavoidable, so unless the task is heavily computed it would not be worth to create a new single thread for this task.
But after all your code is total fine so far.
Your code is totally fine if it works for your scenario. Since we don't know your use case, only you can answer your question with enough tests and benchmark.
However, do take note that the ThreadPool will reclaim idle threads after some time. That may bite you if you don't pay attention to it.
Just wonder is this a correct way of creating threads when application
starts?
Yes. That's a correct way of creating threads.
Or is there a better way of doing it?
Maybe. Under some workloads you might want to use a Thread pool with a variable number of threads (unlike the one created by newFixedThreadPool) - one that removes from the pool threads that have been idle for some time.
In my Android project I had a lot of places where I need to run some code asynchronously (a web request, call to db etc.). This is not long running tasks (maximum a few seconds).
Until now I was doing this kind of stuff with creating a new thread, passing it a new runnable with the task. But recently I have read an article about threads and concurrency in Java and understood that creating a new Thread for every single task is not a good decision.
So now I have created a ThreadPoolExecutor in my Application class which holds 5 threads.
Here is the code:
public class App extends Application {
private ThreadPoolExecutor mPool;
#Override
public void onCreate() {
super.onCreate();
mPool = (ThreadPoolExecutor)Executors.newFixedThreadPool(5);
}
}
And also I have a method to submit Runnable tasks to the executor:
public void submitRunnableTask(Runnable task){
if(!mPool.isShutdown() && mPool.getActiveCount() != mPool.getMaximumPoolSize()){
mPool.submit(task);
} else {
new Thread(task).start();
}
}
So when I want to run an asynchronous task in my code I get the instance of App and call the submitRunnableTask method passing the runnable to it. As you can see, I also check, if the thread pool has free threads to execute my task, if not, I create a new Thread (I don't think that this will happen, but in any case... I don't want my task to wait in a queue and slow down the app).
In the onTerminate callback method of Application I shutdown the pool.
So my question is the following: Is this kind of pattern better then creating new Threads in code? What pros and cons my new approach has? Can it cause problems that I am not aware off yet? Can you advice me something better than this to manage my asynchronous tasks?
P.S. I have some experience in Android and Java, but I am far from being a concurrency guru ) So may be there are aspects that I don't understand well in this kind of questions. Any advice will be appreciated.
This answer assumes your tasks are short
Is this kind of pattern better then creating new Threads in code?
It's better, but it's still far from ideal. You are still creating threads for short tasks. Instead you just need to create a different type of thread pool - for example by Executors.newScheduledThreadPool(int corePoolSize).
What's the difference in behaviour?
A FixedThreadPool will always have a set of threads to use and if all threads are busy, a new task will be put into a queue.
A (default) ScheduledThreadPool, as created by the Executors class, has a minimum thread pool that it keeps, even when idle. If all threads are busy when a new task comes in, it creates a new thread for it, and disposes of the thread 60 seconds after it is done, unless it's needed again.
The second one can allow you to not create new threads by yourself. This behaviour can be achieved without the "Scheduled" part, but you will then have to construct the executor yourself. The constructor is
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue)
The various options allow you to fine-tune the behaviour.
If some tasks are long...
And I mean long. As in most of your application lifetime (Realtime 2-way connection? Server port? Multicast listener?). In that case, putting your Runnable in an executor is detrimental - standard executors are not designed to cope with it, and their performance will deteriorate.
Think about your fixed thread pool - if you have 5 long-running tasks, then any new task will spawn a new thread, completely destroying any possible gains of the pool. If you use a more flexible executor - some threads will be shared, but not always.
The rule of thumb is
If it's a short task - use an executor.
If it's a long task - make sure your executor can handle it (i.e. it either doesn't have a max pool size, or enough max threads to deal with 1 more thread being gone for a while)
If it's a parallel process that needs to always run alongside your main thread - use another Thread.
To answer your question — Yes, using Executor is better than creating new threads because:
Executor provides a selection of different thread pools. It allows re-use of already existing threads which increases performance as thread creation is an expensive operation.
In case a thread dies, Executor can replace it with a new thread without affecting the application.
Changes to multi-threading policies are much easier, as only the Executor implementation needs to be changed.
Based on the comment of Ordous I have modified my code to work with only one pool.
public class App extends Application {
private ThreadPoolExecutor mPool;
#Override
public void onCreate() {
super.onCreate();
mPool = new ThreadPoolExecutor(5, Integer.MAX_VALUE, 1, TimeUnit.MINUTES, new SynchronousQueue<Runnable>());
}
}
public void submitRunnableTask(Runnable task){
if(!mPool.isShutdown() && mPool.getActiveCount() != mPool.getMaximumPoolSize()){
mPool.submit(task);
} else {
new Thread(task).start(); // Actually this should never happen, just in case...
}
}
So, I hope this can be useful to someone else, and if more experienced people have some comments on my approach, I will very appreciate their comments.
I'm faced with a very slow data import console app and I'm trying to speed it up by multithreading it.
Is there an example pattern for starting and managing X number of worker threads in a console app? Ideally I was hoping that there would be something like:
ThreadManager tm = new ThreadManager(maxthreads=10);
while (moreWork = true) {
tm.addThread(new Thread(new MyClass));
}
The ThreadManager would add threads until the max was reached and then wait patiently until a slot became available for a new thread.
Anything like that out there? I can't be the first one that's faced this problem.
#jeshurun's answer is correct but for posterity, I thought I'd add some more information. If you utilize the great ExecutorService code then your code would turn into:
ExecutorService threadPool = Executors.newFixedThreadPool(10);
while (moreWork) {
threadPool.submit(new MyClass);
}
// stop pool after you've submitted the last job, submitted jobs will still run
threadPool.shutdown();
// you can wait for the last job to finish if you'd like
threadPool.awaitTermination(Long.MAX_VALUE, TimeUnit.MILLISECONDS);
Your MyClass should either implement Runnable or Callable. If it is a Runnable then the thread pool will execute the MyClass.run() method when it has an available thread. Same with Callable except that the Future<?> returned by the submit() method can be used to get the value returned by your MyClass.call() method. You can also get any exceptions that were thrown by call(). Here's a decent tutorial.
If you are using Java 5 or above, why don't you use the ExecutorService interface from the java.util.concurrent framework, and its implementation ThreadPoolExecutor for managing a fixed number of threads? Normally you would use one of the static methods in the Executors class to obtain an instance of a ThreadPool with a fixed size, and submit as many threads as you want to it for execution.
The documentation for ThreadPoolExecutor and all its friends in the java.util.concurrent package is available here.
I am creating a http proxy server in java. I have a class named Handler which is responsible for processing the requests and responses coming and going from web browser and to web server respectively. I have also another class named Copy which copies the inputStream object to outputStream object . Both these classes implement Runnable interface. I would like to use the concept of Thread pooling in my design, however i don't know how to go about that! Any hint or idea would be highly appreciated.
I suggest you look at Executor and ExecutorService. They add a lot of good stuff to make it easier to use Thread pools.
...
#Azad provided some good information and links. You should also buy and read the book Java Concurrency in Practice. (often abbreviated as JCiP) Note to stackoverflow big-wigs - how about some revenue link to Amazon???
Below is my brief summary of how to use and take advantage of ExecutorService with thread pools. Let's say you want 8 threads in the pool.
You can create one using the full featured constructors of ThreadPoolExecutor, e.g.
ExecutorService service = new ThreadPoolExecutor(8,8, more args here...);
or you can use the simpler but less customizable Executors factories, e.g.
ExecutorService service = Executors.newFixedThreadPool(8);
One advantage you immediately get is the ability to shutdown() or shutdownNow() the thread pool, and to check this status via isShutdown() or isTerminated().
If you don't care much about the Runnable you wish to run, or they are very well written, self-contained, never fail or log any errors appropriately, etc... you can call
execute(Runnable r);
If you do care about either the result (say, it calculates pi or downloads an image from a webpage) and/or you care if there was an Exception, you should use one of the submit methods that returns a Future. That allows you, at some time in the future, check if the task isDone() and to retrieve the result via get(). If there was an Exception, get() will throw it (wrapped in an ExecutionException). Note - even of your Future doesn't "return" anything (it is of type Void) it may still be good practice to call get() (ignoring the void result) to test for an Exception.
However, this checking the Future is a bit of chicken and egg problem. The whole point of a thread pool is to submit tasks without blocking. But Future.get() blocks, and Future.isDone() begs the questions of which thread is calling it, and what it does if it isn't done - do you sleep() and block?
If you are submitting a known chunk of related of tasks simultaneously, e.g., you are performing some big mathematical calculation like a matrix multiply that can be done in parallel, and there is no particular advantage to obtaining partial results, you can call invokeAll(). The calling thread will then block until all the tasks are complete, when you can call Future.get() on all the Futures.
What if the tasks are more disjointed, or you really want to use the partial results? Use ExecutorCompletionService, which wraps an ExecutorService. As tasks get completed, they are added to a queue. This makes it easy for a single thread to poll and remove events from the queue. JCiP has a great example of an web page app that downloads all the images in parallel, and renders them as soon as they become available for responsiveness.
I hope below will help you:,
class Executor
An object that executes submitted Runnable tasks. This interface provides a way of decoupling task submission from the mechanics of how each task will be run, including details of thread use, scheduling, etc. An Executor is normally used instead of explicitly creating threads. For example, rather than invoking new Thread(new(RunnableTask())).start() for each of a set of tasks, you might use:
Executor executor = anExecutor;
executor.execute(new RunnableTask1());
executor.execute(new RunnableTask2());
...
class ScheduledThreadPoolExecutor
A ThreadPoolExecutor that can additionally schedule commands to run after a given delay, or to execute periodically. This class is preferable to Timer when multiple worker threads are needed, or when the additional flexibility or capabilities of ThreadPoolExecutor (which this class extends) are required.
Delayed tasks execute no sooner than they are enabled, but without any real-time guarantees about when, after they are enabled, they will commence. Tasks scheduled for exactly the same execution time are enabled in first-in-first-out (FIFO) order of submission.
and
Interface ExecutorService
An Executor that provides methods to manage termination and methods that can produce a Future for tracking progress of one or more asynchronous tasks.
An ExecutorService can be shut down, which will cause it to stop accepting new tasks. After being shut down, the executor will eventually terminate, at which point no tasks are actively executing, no tasks are awaiting execution, and no new tasks can be submitted.
Edited:
you can find example to use Executor and ExecutorService herehereand here Question will be useful for you.
What is the advantage of using ExecutorService over running threads passing a Runnable into the Thread constructor?
ExecutorService abstracts away many of the complexities associated with the lower-level abstractions like raw Thread. It provides mechanisms for safely starting, closing down, submitting, executing, and blocking on the successful or abrupt termination of tasks (expressed as Runnable or Callable).
From JCiP, Section 6.2, straight from the horse's mouth:
Executor may be a simple interface, but it forms the basis for a flexible and powerful framework for asynchronous task execution that supports a wide variety of task execution policies. It provides a standard means of decoupling task submission from task execution, describing tasks as Runnable. The Executor implementations also provide lifecycle support and hooks for adding statistics gathering, application management, and monitoring.
...
Using an Executor is usually the easiest path to implementing a producer-consumer design in your application.
Rather than spending your time implementing (often incorrectly, and with great effort) the underlying infrastructure for parallelism, the j.u.concurrent framework allows you to instead focus on structuring tasks, dependencies, potential parallelism. For a large swath of concurrent applications, it is straightforward to identify and exploit task boundaries and make use of j.u.c, allowing you to focus on the much smaller subset of true concurrency challenges which may require more specialized solutions.
Also, despite the boilerplate look and feel, the Oracle API page summarizing the concurrency utilities includes some really solid arguments for using them, not least:
Developers are likely to already
understand the standard library
classes, so there is no need to learn
the API and behavior of ad-hoc
concurrent components. Additionally,
concurrent applications are far
simpler to debug when they are built
on reliable, well-tested components.
Java concurrency in practice is a good book on concurrency. If you haven't already, get yourself a copy. The comprehensive approach to concurrency presented there goes well beyond this question, and will save you a lot of heartache in the long run.
An advantage I see is in managing/scheduling several threads. With ExecutorService, you don't have to write your own thread manager which can be plagued with bugs. This is especially useful if your program needs to run several threads at once. For example you want to execute two threads at a time, you can easily do it like this:
ExecutorService exec = Executors.newFixedThreadPool(2);
exec.execute(new Runnable() {
public void run() {
System.out.println("Hello world");
}
});
exec.shutdown();
The example may be trivial, but try to think that the "hello world" line consists of a heavy operation and you want that operation to run in several threads at a time in order to improve your program's performance. This is just one example, there are still many cases that you want to schedule or run several threads and use ExecutorService as your thread manager.
For running a single thread, I don't see any clear advantage of using ExecutorService.
The following limitations from traditional Thread overcome by Executor framework(built-in Thread Pool framework).
Poor Resource Management i.e. It keep on creating new resource for every request. No limit to creating resource. Using Executor framework we can reuse the existing resources and put limit on creating resources.
Not Robust : If we keep on creating new thread we will get StackOverflowException exception consequently our JVM will crash.
Overhead Creation of time : For each request we need to create new resource. To creating new resource is time consuming. i.e. Thread Creating > task. Using Executor framework we can get built in Thread Pool.
Benefits of Thread Pool
Use of Thread Pool reduces response time by avoiding thread creation during request or task processing.
Use of Thread Pool allows you to change your execution policy as you need. you can go from single thread to multiple thread by just replacing ExecutorService implementation.
Thread Pool in Java application increases stability of system by creating a configured number of threads decided based on system load and available resource.
Thread Pool frees application developer from thread management stuff and allows to focus on business logic.
Source
Below are some benefits:
Executor service manage thread in asynchronous way
Use Future callable to get the return result after thread completion.
Manage allocation of work to free thread and resale completed work from thread for assigning new work automatically
fork - join framework for parallel processing
Better communication between threads
invokeAll and invokeAny give more control to run any or all thread at once
shutdown provide capability for completion of all thread assigned work
Scheduled Executor Services provide methods for producing repeating invocations of runnables and callables
Hope it will help you
Is it really that expensive to create a new thread?
As a benchmark, I just created 60,000 threads with Runnables with empty run() methods. After creating each thread, I called its start(..) method immediately. This took about 30 seconds of intense CPU activity. Similar experiments have been done in response to this question. The summary of those is that if the threads do not finish immediately, and a large number of active threads accumulate (a few thousand), then there will be problems: (1) each thread has a stack, so you will run out of memory, (2) there might be a limit on the number of threads per process imposed by the OS, but not necessarily, it seems.
So, as far as I can see, if we're talking about launching say 10 threads per second, and they all finish faster than new ones start, and we can guarantee that this rate won't be exceeded too much, then the ExecutorService doesn't offer any concrete advantage in visible performance or stability. (Though it may still make it more convenient or readable to express certain concurrency ideas in code.) On the other hand, if you might be scheduling hundreds or thousands of tasks per second, which take time to run, you could run into big problems straight away. This might happen unexpectedly, e.g. if you create threads in response to requests to a server, and there is a spike in the intensity of requests that your server receives. But e.g. one thread in response to every user input event (key press, mouse motion) seems to be perfectly fine, as long as the tasks are brief.
ExecutorService also gives access to FutureTask which will return to the calling class the results of a background task once completed. In the case of implementing Callable
public class TaskOne implements Callable<String> {
#Override
public String call() throws Exception {
String message = "Task One here. . .";
return message;
}
}
public class TaskTwo implements Callable<String> {
#Override
public String call() throws Exception {
String message = "Task Two here . . . ";
return message;
}
}
// from the calling class
ExecutorService service = Executors.newFixedThreadPool(2);
// set of Callable types
Set<Callable<String>>callables = new HashSet<Callable<String>>();
// add tasks to Set
callables.add(new TaskOne());
callables.add(new TaskTwo());
// list of Future<String> types stores the result of invokeAll()
List<Future<String>>futures = service.invokeAll(callables);
// iterate through the list and print results from get();
for(Future<String>future : futures) {
System.out.println(future.get());
}
Prior to java 1.5 version, Thread/Runnable was designed for two separate services
Unit of work
Execution of that unit of work
ExecutorService decouples those two services by designating Runnable/Callable as unit of work and Executor as a mechanism to execute ( with lifecycling) the unit of work
Executor Framework
//Task
Runnable someTask = new Runnable() {
#Override
public void run() {
System.out.println("Hello World!");
}
};
//Thread
Thread thread = new Thread(someTask);
thread.start();
//Executor
Executor executor = new Executor() {
#Override
public void execute(Runnable command) {
Thread thread = new Thread(someTask);
thread.start();
}
};
Executor is just an interface which accept Runnable. execute() method can just call command.run() or working with other classes which use Runnable(e.g. Thread)
interface Executor
execute(Runnable command)
ExecutorService interface which extends Executor and adds methods for managing - shutdown() and submit() which returns Future[About] - get(), cancel()
interface ExecutorService extends Executor
Future<?> submit(Runnable task)
shutdown()
...
ScheduledExecutorService extends ExecutorService for planning executing tasks
interface ScheduledExecutorService extends ExecutorService
schedule()
Executors class which is a Factory to provide ExecutorService realisations for running async tasks[About]
class Executors
newFixedThreadPool() returns ThreadPoolExecutor
newCachedThreadPool() returns ThreadPoolExecutor
newSingleThreadExecutor() returns FinalizableDelegatedExecutorService
newWorkStealingPool() returns ForkJoinPool
newSingleThreadScheduledExecutor() returns DelegatedScheduledExecutorService
newScheduledThreadPool() returns ScheduledThreadPoolExecutor
...
Conclusion
Working with Thread is an expensive operation for CPU and memory.
ThreadPoolExecutor consist of Task Queue(BlockingQueue) and Thread Pool(Set of Worker) which have better performance and API to handle async tasks
Creating a large number of threads with no restriction to the maximum threshold can cause application to run out of heap memory. Because of that creating a ThreadPool is much better solution. Using ThreadPool we can limit the number of threads can be pooled and reused.
Executors framework facilitate process of creating Thread pools in java. Executors class provide simple implementation of ExecutorService using ThreadPoolExecutor.
Source:
What is Executors Framework