Difference between SCOPE_SINGLETON and private constructor - java

what is the difference between SCOPE_SINGLETON and private constructor?
After initialized any class with SCOPE_SINGLETON, i am able to create object also.
Error:-
Caused by: org.springframework.aop.framework.AopConfigException: Could not generate CGLIB subclass of class utility: Common causes of this problem include using a final class or a non-visible class; nested exception is java.lang.IllegalArgumentException: No visible constructors in class utility
First i want to clear that i was not making object using new operator. i used #Component and private constructor. it was working fine. but when i upgrade our sb 1.5 to sb2.0 with gradle upgrade to 4.1. Sonar was start giving me this error. then i removed private constructor and added scope_singleton. it worked for me. even i removed #Component and added throw in my private const. it worked. that's why i asked, what is difference b/w scope_singleton and private constructor.
Working Code:
#Component
#Scope(value = ConfigurableBeanFactory.SCOPE_SINGLETON)
public class utility1 {
}
Error Code:
#Component
public class utility2 {
private utility2() {
}
}

Spring is a framework here you are focusing on the part of the deoendency injection.
By default, the components in Spring are singletons, you do not need to specify that it is a scope_singleton.
Spring does have requirements for its components and one of them is to have a visible constructor (otherwise, spring is not able to create them, so making a public constructor should work for you).
It wiol be a Singleton for Spring as Spring will manage only one instance, but using new you can create as much as you want (I rather think is not a good idea)

If you are using Spring framework you shouldn't try to create annotated classes with new operator or somehow else. Only Spring core should be responsible for bean class creation and only in this situation you could be sure that your class is really singleton etc.

Related

Spring create list of beans based on properties

In a simple Spring boot application I have my component like this:
#Data
#Component
public class GenericHandler {
private String path;
private HandlerType type;
}
And my properties might look like this:
my.handlers[0].path='/vol1/abc'
my.handlers[0].type='Single'
my.handlers[1].path='/vol1/dora'
my.handlers[1].type='MultiSequence'
I tried decorating with the GenericHandler-class with #ConfigurationProperties(prefix="my.handlers") and getting a list of all component instances in a service using
#Autowired
private List<GenericHandler> handlers;
But that created just one component, ignoring the property values at all.
How can I get one component instance per my.handlers property-entry?
You need a wrapper class
#Component
#ConfigurationProperties(prefix="my.handlers")
#Data
public class GenericHandlerWrapper {
private List<GenericHandler> handlers;
...
}
Then you can autowire the GenericHandlerWrapper
Update
As #zoolway pointed out in the comments, for the properties in the question to work as it is, #ConfigurationProperties(prefix="my.handlers") should be changed to #ConfigurationProperties(prefix="my")
That's not possible. What can be done is this:
#Data
#Component
public class GenericHandler {
private List<String> path;
private List<HandlerType> type;
}
I dealt with a similar issue in a different manner. I created a factory and an interface. The factory would hold different implementations of that interface In your case, GenericHandler would be your interface. Then you write any number of implementations of your interface and each implementation is declared as a Component. So, Spring will instantiate it as bean upon a startup (you might use #Lazy(false) to force the instantiation at startup) using some infrastructure that I wrote each bean of that interface will self-insert itself into its factory. Then at any part of your code in any bean, you can use the factory to access concrete implementation (base on your property "type" for example). The beauty is that you don't need to inject all the implementations in your bean at the time of writing but access needed implementation dynamically at run-time. I found this to be a useful pattern and created an infrastructure that does most of the work for you and published it as an Open Source library called MgntUtils. The detailed description of the idea (including reference to the library) could be found here. Also detailed explanation with examples of how to use it can be found in library Javadoc here. The library is available (with source code and Javadoc) as Maven artifacts and on the Github. Also a general article about the MgntUtils library could be found here

Internal working of field injection in spring and why is it not recommended to use

As the title suggests , I want to know how does field injection internally works in spring , I read many articles on this and got to know few things like below but didn't understood the exact reason behind it :
-> It should not be used because when you do unit testing then you are dependent upon the spring
container to instantiate the class in case of field injection.
-> You cannot use "final" keyword in case of field injection , means you cannot make the field immutable.
-> It internally uses reflection
I want to know how exactly does #Autowired works internally , how does it uses reflection , I am trying to understand the exact reason behind all the above mentioned points, what happens behind the scenes when we write the below code :
#Component
public class B {
#Autowired
private A a1;
}
I have read similar questions on stack overflow about this topic , but I couldn't find the exact explanation that I am looking.
Spring has a concept of Bean Post Processors.
When spring builds a bean it applies registered bean post processors that help to "initialize" the bean.
So, there is org.springframework.beans.factory.annotation.AutowiredAnnotationBeanPostProcessor that handles autowiring.
Basically it works with an newly created object. Spring introspects the fields of the beans (by using reflection). The fields that have #Autowired is a subject for processing with this bean post processor. It finds the candidate for injection in the application context and actually injects the value.
Now given this information, its understandable why final fields cannot be autowired. Leave alone spring, In pure Java, final fields must be instantiated directly right during the declaration (final int i = 123) or in the constructor of the class. But the autowiring happens after constructor, so its impossible to autowire the final fields.
As for the unit testing, the private properties must be somehow configured from the test. But since they're encapsulated (yes, spring kind of breaks encapsulation in this case for its usage), its impossible to write a good test for the class that contains fields injection. That's is a reason to switch to constructor injection.
public class FieldInjection {
#Autowired
private A a;
}
VS.
public class ConstructorInjection {
private final A a;
// this can be generated by lombok, you don't have to put #Autowired on constructor in the case of single constructor, spring will use it to create a bean
public ConstructorInjection(A a) {
this.a = a;
}
}
Now the test for FieldInjection class is impossible:
public class FieldInjectionTest {
#Test
void test() {
FieldInjection underTest = new FieldInjection();
how do you know that you should instantiate A a. ????
}
}
However in the case of constructor injection its a trivial task:
public class ConstructorInjectionTest {
#Test
void test() {
A a = mock(A.class);
ConstructorInjection underTest = new ConstructorInjection(a);
// the dependencies must be supplied in the constructor
// otherwise its impossible to create an object under test
}
}

Interface to concrete class conditional instantiation in Spring

I have a Spring based Java application where a lot of classes use the following autowired interface.. they work off this interface at all places.
#Autowired
private IOperatingSystemManager m_operatingSystemManager;
Right now, there is only one implementation of the interface as follows:
#Component
public class WindowsManager implements IOperatingSystemManager
{
// Windows based shenanigans
}
And the application works as expected. Spring is happy. Everybody is happy.
Alright, not everybody...
So, I want to add another concrete implementation of IOperatingSystemManager ..
#Component
public class LinuxManager implements IOperatingSystemManager
{
// Linux based shenanigans
}
What we want is the auto wiring of IOperatingSystemManager conditionally based on a properties file setting. (say.. os=windows.. basically something that is an arbitrary string and cannot be derived from system properties etc. simply because this is a dummy example. the actual managers are not OS related.)
I don't want to change any of the classes who have autowired to the interface and are working off the interface. All I need is for Spring to look at some logic that will dictate the Autowiring of the variables and wire up the right concrete instance for:
#Autowired
IOperatingSystemManager m_operatingSystemManager
at all the gazillion places.
The documentation & web search talk about profiles, condition, bean factory, qualifiers etc.. but we don't want to use Profiles; and Qualifiers seem to be needing changes to all the interface variable annotations.
Factory methods look promising, but being new to Spring, couldn't find a crisp answer.
What is a simple and recommended way to achieve this?
Instead of scanning the WindowsManager class, create one concrete instance that implements the IOperatingSystemManager interface or another one, depending on the your logical conditions.
First, remove the #Component annotation from the WindowsManager class.
Then, create and scan this #Configuration class, which will act as a factory for your beans:
#Configuration
public class OperatingSystemManagerFactory {
#Bean
public IOperatingSystemManager getOperatingSystemManager() {
if ( /* some logic that evaluates to true if windows */ ) {
return new WindowsManager();
} else {
// Linux default option ;)
return new LinuxManager();
}
}
}
With this solution, you shouldn't need to update anyone of your classes that reference the IOperatingSystemManager interface.
I dont know which version of spring you are using but you have options for this
http://www.intertech.com/Blog/spring-4-conditional-bean-configuration/
Here, as you can see, you can create a bean based on a condition that you can decide. It actully gave your example, Windows and Linux :), so i believe thats what you are looking for.
Edit:
If you are using spring-boot, you have some other Conditional annotations
http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-developing-auto-configuration.html#boot-features-condition-annotations

Using Guice with a custom class?

I'm working with a Guice enabled framework.
When using classes that were created by the framework (or subclasses that override existing bindings), I can instantiate framework provided variables very easily. Whatever I need, it's just a matter of
#Inject
FrameworkProvidedType variable;
However, in my custom created classes, that doesn't work. All of the injected variables are null.
It's my understanding that in order to use injection, my class has to have a binding.
If I'm subclassing an existing framework class, I can override the binding in my module class. That's pretty straightforward.
But I have a new class and I don't know how to bind it to the underlying framework.
public Class myCustomClass {
private String iNeedthis;
private Context thisToo;
#Inject
FrameWorkThing magic;
public myCustomClass(String iNeedThis, Context thisToo){
this.iNeedThis = iNeedThis;
this.thisToo = thisToo;
}
public void DoMagic(){
//null pointer error because magic was not injected
magic.doMagic(this.iNeedthis);
}
}
How do I Guice-enable this new class?
I tried this in my Runtime Module
public Class<myCustomClass> bindMyCustomClass(){
return MyCustomClass.class;
}
and failed miserably.
No thanks to #bmorris591 who dismissed and downvoted the question out of the gate, I found an answer.
#Inject-ing a field into a class means that the class instance needs to be created by Guice.
Step 1 is creating a factory for the class. This may not be necessary, but it worked for me.
public interface MyCustomClassFactory {
public MyCustomClass create(String iNeedThis, Context thisToo);
}
Step 2 is installing the factory into Guice
#Override
public void configure(Binder binder) {
super.configure(binder);
binder.install(new FactoryModuleBuilder().build(MyCustomClass.class));
}
In my particular case - the framework I'm working with provides a Module class that is an implementation of com.google.inject.Module.
Within that class is a "configure(Binder binder)" function that is called on startup.
Step 3 is actually annotating the constructor
#Inject
public myCustomClass(String iNeedThis, Context thisToo){
this.iNeedThis = iNeedThis;
this.thisToo = thisToo;
}
Useful and related web page that put me on the right track:
http://beust.com/weblog/2012/08/21/advanced-dependency-injection-with-guice/
This talks about assisted injection, but it gave enough information and a simple enough to understand example that taking the next step was pretty easy.

How to use eclipse 4 DI in classes that are not attached to the application model?

I have created a OSGI service with declarative services to inject an object that implements an interface. If I inject the object in a class that is attached to the application model (handler,part,....) it is working fine. If I inject it in a class that is not attached to the application model it is always returning null.
Is it possible to use DI in classes that are not attached to the application model? I looked in the vogella tutorials but somehow I don't find a solution.
I know of three ways of how Eclipse 4 can inject objects in your classes:
During start-up the Eclipse runtime looks for relevant annotations in the classes it instantiates.
Objects injected in 1. are tracked and will be re-injected if changed.
Manually triggering injection using the ContextInjectionFactory and IEclipseContext.
What you want may be possible with the third option. Here is a code example:
ManipulateModelhandler man = new ManipulateModelhandler();
//inject the context into an object
//IEclipseContext iEclipseContext was injected into this class
ContextInjectionFactory.inject(man,iEclipseContext);
man.execute();
The problem is, however; that the IEclipseContext already needs to be injected into a class that can access the object that needs injection. Depending on the number of necessary injections, it might be more useful to use delegation instead (testability would be one argument).
#Inject
public void setFoo(Foo foo) {
//Bar is not attached to the e4 Application Model
bar.setFoo(foo);
}
Therefore, a better solution is probably using the #Creatable annotation.
Simply annotate your class, and give it a no-argument constructor.
#Creatable
public class Foo {
public Foo () {}
}
Using #Inject on that type as in the method above, will let Eclipse instantiate and inject it.
The disadvantage is that you cannot control the object creation anymore, as you would with ContextInjectionFactory.inject(..).
I refactored out some part of e(fx)clipse in order to achieve that. Have a look at this. Sorry for the shameless plug...

Categories

Resources