Catan Optimal Placement - java

Is it possible to calculate the best possible placements for settlements in Catan without using an ML algorithm?
While it is trivial to simply add up the numbers surrounding the settlement (highest point location), I'm looking to build a deeper analysis of the settlement locations. For example, if the highest point location is around a sheep-sheep-sheep, it might be better to go to a lower point location for better resource access. It could also weight for complementary resources, blocking other players from resources, and being closer to ports.
It seems feasible to program arithmetically, yet some friends said this is an ML problem. If it is ML, how would one go about training, as the gameboard changes every game?

Related

GPS data comparison after smoothing

I'm trying to compare multiple algorithms that are used to smooth GPS data. I'm wondering what should be the standard way to compare the results to see which one provides better smoothing.
I was thinking on a machine learning approach. To crate a car model based on a classifier and check on which tracks provides better behaviour.
For the guys who have more experience on this stuff, is this a good approach? Are there other ways to do this?
Generally, there is no universally valid way for comparing two datasets, since it completely depends on the applied/required quality criterion.
For your appoach
I was thinking on a machine learning approach. To crate a car model
based on a classifier and check on which tracks provides better
behaviour.
this means that you will need to define your term "better behavior" mathematically.
One possible quality criterion for your application is as follows (it consists of two parts that express opposing quality aspects):
First part (deviation from raw data): Compute the RMSE (root mean squared error) between the smoothed data and the raw data. This gives you a measure for the deviation of your smoothed track from the given raw coordinates. This means, that the error (RMSE) increases, if you are smoothing more. And it decreases if you are smoothing less.
Second part (track smoothness): Compute the mean absolute lateral acceleration that the car will experience along the track (second deviation). This will decrease if you are smoothing more, and it will increase if you are smoothing less. I.e., it behaves in contrary to the RMSE.
Result evaluation:
(1) Find a sequence of your data where you know that the underlying GPS track is a straight line or where the tracked object is not moving. Note, that for those tracks, the (lateral) acceleration is zero by definition(!).
For these, compute RMSE and mean absolute lateral acceleration.
The RMSE of appoaches that have (almost) zero acceleration results from measurement inaccuracies!
(2) Plot the results in a coordinate system with the RMSE on the x axis and the mean acceleration on the y axis.
(3) Pick all approaches that have an RMSE similar to what you found in step (1).
(4) From those approaches, pick the one(s) with the smallest acceleration. Those give you the smoothest track with an error explained through measurement inaccuracies!
(5) You're done :)
I have no experience on this topic but I have few things in mind that may help you.
You know it is a car. You know that the data is generated from a car so you can define a set of properties of a car. For example if a car is moving with speed above 50km than the angle of the corner should be at least 110 degrees. I am absolutely guessing with the values but if you do a little research i am sure you will be able to define such properties. Next thing you can do is to test how each approximation fits the car properties and choose the best one.
Raw data. I assume you are testing all methods on a part of given road. You can generate a "raw gps track" - a track that best fits the movement of a car. Google maps may help you to generate such track os some gps devise with higher accuracy. Than you measure the distance between each approximation and your generated track - the one with the min distance wins.
i think you easily match the coordinates after the address conversion.
because address have street,area and city. so you can easily match the different radius.
let try this link
Take a look at this paper that discusses comparing machine learning algorithms:
"Choosing between two learning algorithms
based on calibrated tests" available at:
http://www.cs.waikato.ac.nz/ml/publications/2003/bouckaert-calibrated-tests.pdf
Also check out this paper:
"Bayesian Comparison of Machine Learning Algorithms on Single and
Multiple Datasets" available at:
http://www.jmlr.org/proceedings/papers/v22/lacoste12/lacoste12.pdf
Note: It is noted from the question that you are looking into the best way to compare the results for machine learning algorithms and are not looking for additional machine learning algorithms that may implement this feature.
Machine Learning is not an well suited approach for that task, you would have to define what is good smoothing...
Principially your task cannot be solved by an algorithm that gives an general answer because every smoothing destroy the original data by some amount and adds invented positions, and different systems/humans that use the smoothed data react differently on that changed data.
The question is: What do you want to achieve with smoothing?
Why do you need smoothing? (have you forgotten to implement or enable a stand still filter that eliminates movement while the vehicle is standing still, which in GPS introduces jumping location during stand still?)
The GPS chip has already built in a (best possible?) real time smoothing using a Kalman filter, having on the one side more information than a post processed smotthing algo, on the other side it has less.
So next you have to ask yourself: do you compare post processing smooting algos or real time algos? (probably post processing) Comparing a real time smoothing algorithm with a post process smoothing algorithm is not fair.
Again: What do you expect from smoothed data: That they look somewhat fine, but unrealistic like photoshopped models for tv-advertisments?
What is good smoothing? near to real vehicle postion which nobody ever knows, or a curve whith low acceleration?
I would prefer an smoothing algorithm that produces the curve most near to the real (usually unknown) vehicle trajectory.
Or you might just think it should somehow look beautifull: In that case overlay the curves with different colors, display it on a satelitte image map, and let a team of humans (experts at least owning and driving an own car) decide what looks good and realistic.
We humans have the best multi purpose pattern matching algorithm built in.
Again why smooth?: for display in a map to please humans that look at that map?
or to use the smoothed tracks to feed other algorithms that have problems with the original data?
To please humans I have given an answer above.
To please other algorithms:
What they need? nearer positions? or better course value / direction between points.
What attributes do you want to smooth: only the latitude, longitude coordinates, or also the speed value, and course value?
I have much professional experience with GPS tracks, and recommend, to just remove every location under 7km/h and keep the rest as it is. In most cases there is no need for further smoothing.
Otherwise it gets expensive:
A possible solution:
1) You arrange a 2000€ Reference GPS receiver delivered with a magnetic vehicle roof antenna (E.g Company hemisphere 2000 GPS receiver) and use that as reference
2) You use a comnsumer GPS usually used for your task (smartphone, etc.)
Both mounted inside the car: drive some test tracks, in good conditions (highways) but more tracks at very bad: strong curves combined with big houses left and right. And through tunnel, a struight and a curved one, if you have one.
3) apply the smoothing algoritms to the consumer GPS tracks
4) compare the smoothed to the reference track, by matching two positions and finally calulate the (RMSE Root mean squared error)
Difficulties
matching two positions: Hopefully the time can be exactly matched which is usually not the case (0,5s offset possible).
Think what do you do when having an GPS outage.
Consider first to display a raw track and identify what kind of unsmoothed data is not suitable/ nice looking. (Probably later posting the pics here)
what about using the good old Kalman Filter!

Fastest algorithm for locating an object in a field

What would be the best algorithm in terms of speed for locating an object in a field?
The field consists of 18 by 18 squares with side length 30.48 cm. The robot is placed in the square (0,0) and its job is to reach the light source while avoiding obstacles along the way. To locate the light source, the robot does a 360 degree turn to find the angle with the highest light reading and then travels towards the source. It can reliably detect a light source from 100 cm.
The way I'm implementing this presently is I'm storing the information about each tile in a 2x2 array. The possible values of the tiles are unexplored (default), blocked (there's an obstacle), empty (there's nothing in there). I'm thinking of using the DFS algorithm where the children are at position (i+3,j) or (i,j+3). However, considering the fact that I will be doing a rotation to locate the angle with the highest light reading at each child, I think there may be an algorithm which may be able to locate the light source faster than DFS. Also, I will only be travelling in the x and y directions since the robot will be using the grid lines on the floor to make corrections to it's x and y positions.
I would appreciate it if a fast and reliable algorithm could be suggested to accomplish this task.
This is a really broad question, and I'm not an expert so my answer is based on "first principles" thinking rather than experience in the field.
(I'm assuming that your robot has generally unobstructed line of sight and movement; i.e. it is an open area with scattered obstacles, not in a maze.)
The problem is interpreting the information that you get back from a 360 degree scan.
If the robot sees the light source, then traversing a route to the light source is either trivial, or a "simple" maze walking task.
The difficulty is when you don't see the source. It might mean that the source is not within the circle of visibility. But it could also mean that the light is behind an obstacle. And unfortunately, a simple sensor like you are describing cannot distinguish these two cases.
If your sensor system allowed you to see the obstacles, you could plot the locations of the "shadow" regions (regions behind obstacles), and use that to keep track of the places that are left to search. So your strategy would be to visit a small number of locations and do a scan at each, then methodically "tidy up" a small number of areas that were in shadow.
But since you cannot easily tell where the shadow areas are, you need an algorithm that (ultimately) searches everywhere. DFS is a general strategy that searches everywhere, but it does it by (in effect) looking in the nooks and crannies first. A better strategy is to a breadth first search, and only visit the nooks and crannies if the wide-scale scans didn't find the light source.
I would appreciate it if a fast and reliable algorithm could be suggested to accomplish this task.
I think you are going to need to develop one yourself. (Isn't this the point of the problem / task / competition?)
Although it may not look like it, this looks a more like a maze following problem than anything. I suppose this is some kind of challenge or contest situation, where there's always a path from start to target, but suppose there's not for a moment. One of the successful results for a robot navigating a beacon fully surrounded by obstacles would be a report with a description of a closed path of obstacles surrounding a signal. If there's not such a closed path, then you can find a hole in somewhere; this is why is looks like maze following.
So the basic algorithm I'd choose is to start with a spiraling-inward tranversal, sweeping out a path narrow enough so that you're sure to see a beacon if one is present. If there are no obstacles (a degenerate case), this finds the target in minimal time. (Hint: each turn reduces the number of cells your sensor can locate per step.)
Take the spiral traversal to be counter-clockwise. What you have then is related to the rule for solving mazes by keeping your right hand on the wall and following the generated path. In this case, you have the complication that, while the start of the maze is on the boundary, the end may not be. It's possible of the right-hand-touching path to fail in such a situation. Detecting this situation requires looking for "cavities" in the region swept out by adjacency to the wall.

Android Algorithm for find all Geopoints within a given distance

In my naive beginning Android mind I thought the way to do this would be to loop through each of the objects checking if proximity falls within X range and if so, include the object. This is being done with Google Maps and GeoPoints.
That said, I know this is probably the slowest way possibly. I did a search for Android Proxmity algorithm's and did not get much really. What I am looking for is best options with regard to this the more efficiently.
Are there any libraries I have not been able to find?
If not, should I load these Location objects into SQL then go from there or keep them in a JSONArray?
Once I establish my best datastructure, what is he best method to find all Locations located with X miles of user?
I am not asking for cut and paste code, rather the best method to this efficiently. Then, I can stumble through the code :)
My first gut feeling is to group the Locations by regions but I'm not exactly sure how to do this.
I could potentially have tens of thousands of datapoints.
Any help in simply heading in the right direction is greatly appreciated.
As a side note, I reach this juncture after discovering that a remote API I had been using was.. well.. just PLAIN WRONG and ommiting datapoints from my proximity search. I also realized that if just placed on the datapoints on the phone, then I could allow the user to run the App without internet connection, and only GPS and this would be a HUGE plus. So, with all setbacks come opportunnities!
The answer depends on the representation of the GeoPoints: If these are not sorted you need to scan all of them (this is done in linear time, sorting wrt. distance or clustering will be more expensive). Use Location.distanceTo(Location) or Location.distanceBetween(float, float, float, float, float[]) to calculate the distances.
If the GeoPoints were sorted wrt. distance to your position this task can be done much more efficiently, but since the supplier does not know your position, I assume that this cannot be done.
If the GeoPoints are clustered, i.e. if you have a set of clusters with some center and a radius select each cluster where the distance from your position to the cluster's center is within the limit plus the radius. For these clusters you need to check each GeoPoint contained in the cluster (some of them are possibly farther away from your position than the limit allows). Alternatively you might accept the error and include all points of the cluster (if the radius is relatively small I would recommend this).

Best algorithm for path finding in a tower defense

A have read about A* as well as D* and similar, and i'm not able to choose between them. What is the best searching algorithm when it comes with many searches(50 searches every tick) and with many different possibilities?
Between the two, I would pick D*. D* specifically assumes a best path, but if obstacles were encountered then recalculates. This means that each creep can have it's own personal view of the exit path, which is updated as the creep encounters obstacles.
Such assumptions on the best path with adjustments in behavior is slightly more realistic, as if you or I were walking the path, we wouldn't avoid obstacles prior to knowing about them. It also nicely accounts for path recalculation in the event someone (the players) builds a new tower. If you balance expansion of open nodes well, you might even have creeps walking around both sides of a tower centrally placed in the best path.
However, if you want to really make it fun, take a learning based approach on best path finding. Much more interesting than other solutions. To see an example, look to something like antbuster. Perhaps so interesting that it doesn't quite fit into the standard tower defense game genre.
Q-Learning may be a good choice for this. Q-Learning attempts to map out a grid of penatlies/gains that making a local decision would encoure in a finite world.

Trying to figure out what algorithm to use

You have an input a n games.
Each game has a fame (which can be negative) and prerequisite games (these games must be played before you play the current game).
You want to find the maximum amount of fame you can gain by playing a valid set of games.
One idea I had was to use a weighted directed graph however you still have to try every single pair of nodes in the graph to find the optimal solution.
Any ideas?
Do you have a maximum number of games you can play? Then, it sounds like a variant of the Knapsack problem http://en.wikipedia.org/wiki/Knapsack_problem (find some approaches to the problem in the articlek, even though the problem is NP-complete and as such not efficiently solvable in principle).
If you can play as many games as you like, well it's still hard in a computational sense.
For each prerequisite game, you can compute the number of points you gain by playing it by adding the fame of the games it enables. Of course these change with each prerequisite you play because later prerequisites may enable games that have been enabled by earlier prerequisites, decreasing the gain in fame they provide. I guess you're still stuck with trying out all 2^p combinations for p prerequisite games.
Maybe an A* algorithm would help you here, i.e. you'd make an educated guess (minimum fame for that route) for each route in your graph, follow the most promising one and if you see it gets lower than a guess for a route not taken yet, follow that new route and stop here.
The approach below will work for graphs with non-negative edges:
Since there are dependencies between games, the graph is acyclic. You can negate all the edges in the graph and find the shortest path in P-time. This then gives the longest path in the original graph.
Edit:
Since, the graph is acyclic the shortest path will work for negative edges also. See Shortest / longest path in a DAG in http://algs4.cs.princeton.edu/44sp/

Categories

Resources