How can I create method to generate new LinkedList? - java

I am trying to create a method that creates new LinkedLists. I want to pass a String parameter to use as the new LinkedList identifier but I'm getting an error "java: variable s is already defined in method createQueue(java.lang.String)"
Is there anyway to use a String to create the new LinkedList like this?
I need to do it this way for an assignment so I can't change the method declaration.
public void createQueue(String s){
LinkedList<obj> s = new LinkedList<obj>();
}
I may be looking at this the wrong way also. I'm just trying to create the linkedList atm. But my requirements are as follows:
boolean addQueue(String)
This method will have a String parameter. It will return a boolean.
It will add a new queue specified by the parameter. E.g. addQueue(“ready”) would create a new queue called “ready” to the list of queues. If there is already a queue by the specified name, then this method will return false. E.g. If you already have a queue named “ready” and you call addQueue(“ready”), it will return false. Otherwise, it will create the queue and return true.

You have to maintain a collection of queues. Because each queue has a unique name, the most appropriate collection is Map:
public class QueueManager {
private Map<String, List<Pcb>> queues = new HashMap<String, List<Pcb>>();
public boolean addQueue(String queueName) {
if (queues.containsKey(queueName)) {
// There is already a queue with that name
return false;
} else {
queues.put(queueName, new ArrayList<Pcb>());
return true;
}
}
}
Here I made the assumption that the queue is implemented with an ArrayList, but of course LinkedListwould work similarly. Then the method addPcb()is quite obvious:
public void addPcb(Pcb pcb, String queueName) {
List<Pcb> queue = queues.get(queueName);
if (queue != null) {
queue.add(pcb);
} else {
throw new IllegalArgumentException("Queue does not exist: " + queueName);
}
}
An alternative implementation of addPcb(), using addQueue()could be:
public void addPcb(Pcb pcb, String queueName) {
addQueue(queueName);
List<Pcb> queue = queues.get(queueName);
queue.add(pcb);
}

The problem is that you have two different variables named s - the String s parameter (which is a variable) and LinkedList<obj> s.
Just rename either one of them.

Related

Java can't verify that an array list of another type has an element of string type

I'm trying to access to an array list and add a new instance of another class only if there are no elements with that name in the array list itself..
Implementation:
private final ArrayList<MyExternalClass> count = new ArrayList<MyExternalClass>();
public boolean operate(String test) {
if (!count.contains(test)) {
count.add(new MyExternalClass(test));
return true;
}
return false;
}
This doesn't work and return me true also with the same string sent to the method. How can I solve?
Since your List contains MyExternalClass objects, contains(String) will always return false. You need to iterate over the objects in the List and see if the String property of the class matches the given String. Java 8+ you can do:
public boolean operate(String test) {
if (!count.stream().anyMatch(e -> e.strVar.equals(test))) {
count.add(new MyExternalClass(test));
return true;
}
return false;
}
Use SET instead of list. Set works same as list but same element can not be added to the list more than once.

Implemented Iterable hands wrong size back

I'm new to this site, so please feel free to correct me if there's anything wrong about my question or the style of the question.
I need to implement the Iterable Interface in my ShareCollection class, so that I can iterate over all the shares in this class. When I'm testing my class with the sample data it always hands back '0' as size, even though there are (in my example) two shares in my collection.
Here's the code of the class + one sample method which hands back an error:
public class ShareCollection implements Iterable<Share>{
private HashSet<Share> shares;
public ShareCollection() {
this.shares = new HashSet<Share>();
}
public ShareCollection(Collection<Share> shares) {
for (Share s : shares) {
HashSet<Share> checkSet = new HashSet<Share>(shares);
checkSet.remove(s);
if (checkSet.contains(s)) {
throw new IllegalArgumentException("There can't be two shares with the same name!");
}
}
this.shares = new HashSet<Share>(shares);
}
public boolean add(Share share) {
if (share == null) {
throw new NullPointerException("share isnt allowed to be null!");
}
return shares.add(share);
}
#Override
public Iterator<Share> iterator() {
return new HashSet<Share>(shares).iterator();
}
}
Here's the main method with the sample data I'm using:
public static void main(String[] args) {
Share s1 = new Share("s1", new ArrayList<>());
Share s2 = new Share("s2", new ArrayList<>());
ShareCollection sc = new ShareCollection()
sc.add(s1);
sc.add(s2);
int counter = 0;
for (Share s : sc) {
counter++;
}
System.out.print("Counter: " + counter + "\n");
System.out.print("Size: " + sc.size());
}
Here's the output for the main-method:
Counter: 2
Size: 0
Here's the error for the 'add'-method:
java.lang.AssertionError: ShareCollection#size should give 1 for a collection with 1 elements.
Expected: <1>
but: was <0>
at org.hamcrest.MatcherAssert.assertThat(MatcherAssert.java:20)
at org.junit.Assert.assertThat(Assert.java:956)
at jpp.marketanalysis.tests.data.TestShareCollection.hasElements(TestShareCollection.java:158)
at jpp.marketanalysis.tests.data.TestShareCollection.testAdd(TestShareCollection.java:55)
Thank you in advance for your answers!
Update:
Exchanged the ArrayList with a HashSet (see #SeanPatrickFloyd's first answer)
Possible error: Does your Share class override the .equals() method?
Because ArrayList.contains() delegates to .equals()
Also, I see at least two problems with your code:
An ArrayList is very bad at a .contains() lookup (O(n)). You should use a HashSet instead (in that case you'd need to override both .equals() and .hashCode() in your Share class), it gives you O(1) and handles the .add() method properly for you as well
The Iterator you are returning is the ArrayList's original iterator, which makes your code vulnerable in several ways, including ConcurrentModificationException if you add something while iterating, but also mutation, if someone calls .remove() on the iterator. I'd suggest you make a defensive copy of the collection and use that iterator.
Here's your code rewritten accordingly:
public class ShareCollection implements Iterable<Share>{
private final Set<Share> shares;
public ShareCollection() {
this.shares = new HashSet<>();
}
public ShareCollection(Collection<Share> shares) {
this.shares = new HashSet<>(shares);
}
public boolean add(Share share) {
if (share == null) {
throw new NullPointerException("share isnt allowed to be null!");
}
return shares.add(share);
}
#Override
public Iterator<Share> iterator() {
return new HashSet<>(shares).iterator();
}
}

Java peek next element in hashmap

I have a hashmap with a queue object and I want to peek different objects in the different queue in the order they are located in queue each time i peek an object, typically consumer-producer problem;
public class MainQueue {
public static Map<Integer, SingleQueue> list = new ConcurrentHashMap<>();
public MainQueue() {
}
public Map getQueue() {
return this.list;
}
public void addToMainQueue(SendObject sfo) {
int ohashcode = sfo.hashCode();
if (!list.containsKey(ohashcode)) {
list.put(ohashcode, new SingleQueue());
list.get(ohashcode).addQueue(sfo);
} else {
list.get(ohashcode).addQueue(sfo);
}
}
public SendObject getFromQueue() {
???
return TempFax;
}
}
---------HashMap-------------
423532,queue1:{1,2,3,4,5,6,7,8,9}
564898,queue2:{a,b,c,d,e}
039894,queue3:{x,y,z}
When I call getFromQueue function, it should return '1'
after I call, return 'a'
after I call, return 'x'
finally= 1,a,x,2,b,y,3,c,z,4,d,5,e,6,7,8,9
How can I do this?
Based on your question you are interested in retrieving those elements in a FIFO order and you need some way to group them into hashcodes.
I suggest adding those SendObject into a single queue like LinkedList<SendObject>, this way you can poll() those elements one by one.
If you need to have some way to group different items into categories (or hashcodes in your case), you can add a Category field for example in SendObject so you can keep track of those.

Get specific objects from ArrayList when objects were added anonymously?

I have created a short example of my problem. I'm creating a list of objects anonymously and adding them to an ArrayList. Once items are in the ArrayList I later come back and add more information to each object within the list. Is there a way to extract a specific object from the list if you do not know its index?
I know only the Object's 'name' but you cannot do a list.get(ObjectName) or anything. What is the recommended way to handle this? I'd rather not have to iterate through the entire list every time I want to retrieve one specific object.
public class TestCode{
public static void main (String args []) {
Cave cave = new Cave();
// Loop adds several Parties to the cave's party list
cave.parties.add(new Party("FirstParty")); // all anonymously added
cave.parties.add(new Party("SecondParty"));
cave.parties.add(new Party("ThirdParty"));
// How do I go about setting the 'index' value of SecondParty for example?
}
}
class Cave {
ArrayList<Party> parties = new ArrayList<Party>();
}
class Party extends CaveElement{
int index;
public Party(String n){
name = n;
}
// getter and setter methods
public String toString () {
return name;
}
}
class CaveElement {
String name = "";
int index = 0;
public String toString () {
return name + "" + index;
}
}
Given the use of List, there's no way to "lookup" a value without iterating through it...
For example...
Cave cave = new Cave();
// Loop adds several Parties to the cave's party list
cave.parties.add(new Party("FirstParty")); // all anonymously added
cave.parties.add(new Party("SecondParty"));
cave.parties.add(new Party("ThirdParty"));
for (Party p : cave.parties) {
if (p.name.equals("SecondParty") {
p.index = ...;
break;
}
}
Now, this will take time. If the element you are looking for is at the end of the list, you will have to iterate to the end of the list before you find a match.
It might be better to use a Map of some kind...
So, if we update Cave to look like...
class Cave {
Map<String, Party> parties = new HashMap<String, Party>(25);
}
We could do something like...
Cave cave = new Cave();
// Loop adds several Parties to the cave's party list
cave.parties.put("FirstParty", new Party("FirstParty")); // all anonymously added
cave.parties.put("SecondParty", new Party("SecondParty"));
cave.parties.put("ThirdParty", new Party("ThirdParty"));
if (cave.parties.containsKey("SecondParty")) {
cave.parties.get("SecondParty").index = ...
}
Instead...
Ultimately, this will all depend on what it is you want to achieve...
List.indexOf() will give you what you want, provided you know precisely what you're after, and provided that the equals() method for Party is well-defined.
Party searchCandidate = new Party("FirstParty");
int index = cave.parties.indexOf(searchCandidate);
This is where it gets interesting - subclasses shouldn't be examining the private properties of their parents, so we'll define equals() in the superclass.
#Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (!(o instanceof CaveElement)) {
return false;
}
CaveElement that = (CaveElement) o;
if (index != that.index) {
return false;
}
if (name != null ? !name.equals(that.name) : that.name != null) {
return false;
}
return true;
}
It's also wise to override hashCode if you override equals - the general contract for hashCode mandates that, if x.equals(y), then x.hashCode() == y.hashCode().
#Override
public int hashCode() {
int result = name != null ? name.hashCode() : 0;
result = 31 * result + index;
return result;
}
If you want to lookup objects based on their String name, this is a textbook case for a Map, say a HashMap. You could use a LinkedHashMap and convert it to a List or Array later (Chris has covered this nicely in the comments below).
LinkedHashMap because it lets you access the elements in the order you insert them if you want to do so. Otherwise HashMap or TreeMap will do.
You could get this to work with List as the others are suggesting, but that feels Hacky to me.. and this will be cleaner both in short and long run.
If you MUST use a list for the object, you could still store a Map of the object name to the index in the array. This is a bit uglier, but you get almost the same performance as a plain Map.
You could use list.indexOf(Object) bug in all honesty what you're describing sounds like you'd be better off using a Map.
Try this:
Map<String, Object> mapOfObjects = new HashMap<String, Object>();
mapOfObjects.put("objectName", object);
Then later when you want to retrieve the object, use
mapOfObjects.get("objectName");
Assuming you do know the object's name as you stated, this will be both cleaner and will have faster performance besides, particularly if the map contains large numbers of objects.
If you need the objects in the Map to stay in order, you can use
Map<String, Object> mapOfObjects = new LinkedHashMap<String, Object>();
instead
As per your question requirement , I would like to suggest that Map will solve your problem very efficient and without any hassle.
In Map you can give the name as key and your original object as value.
Map<String,Cave> myMap=new HashMap<String,Cave>();
I would suggest overriding the equals(Object) of your Party class. It might look something like this:
public boolean equals(Object o){
if(o == null)
return false;
if(o instanceof String)
return name.equalsIgnoreCase((String)o);
else if(o instanceof Party)
return equals(((Party)o).name);
return false;
}
After you do that, you could use the indexOf(Object) method to retrieve the index of the party specified by its name, as shown below:
int index = cave.parties.indexOf("SecondParty");
Would return the index of the Party with the name SecondParty.
Note: This only works because you are overriding the equals(Object) method.
You could simply create a method to get the object by it's name.
public Party getPartyByName(String name) {
for(Party party : parties) {
if(name.equalsIgnoreCase(party.name)) {
return party;
}
}
return null;
}

Advice for efficient blocking queries

I would like to store tuples objects in a concurent java collection and then have an efficient, blocking query method that returns the first element matching a pattern. If no such element is available, it would block until such element is present.
For instance if I have a class:
public class Pair {
public final String first;
public final String Second;
public Pair( String first, String second ) {
this.first = first;
this.second = second;
}
}
And a collection like:
public class FunkyCollection {
public void add( Pair p ) { /* ... */ }
public Pair get( Pair p ) { /* ... */ }
}
I would like to query it like:
myFunkyCollection.get( new Pair( null, "foo" ) );
which returns the first available pair with the second field equalling "foo" or blocks until such element is added. Another query example:
myFunkyCollection.get( new Pair( null, null ) );
should return the first available pair whatever its values.
Does a solution already exists ? If it is not the case, what do you suggest to implement the get( Pair p ) method ?
Clarification: The method get( Pair p) must also remove the element. The name choice was not very smart. A better name would be take( ... ).
Here's some source code. It basically the same as what cb160 said, but having the source code might help to clear up any questions you may still have. In particular the methods on the FunkyCollection must be synchronized.
As meriton pointed out, the get method performs an O(n) scan for every blocked get every time a new object is added. It also performs an O(n) operation to remove objects. This could be improved by using a data structure similar to a linked list where you can keep an iterator to the last item checked. I haven't provided source code for this optimization, but it shouldn't be too difficult to implement if you need the extra performance.
import java.util.*;
public class BlockingQueries
{
public class Pair
{
public final String first;
public final String second;
public Pair(String first, String second)
{
this.first = first;
this.second = second;
}
}
public class FunkyCollection
{
final ArrayList<Pair> pairs = new ArrayList<Pair>();
public synchronized void add( Pair p )
{
pairs.add(p);
notifyAll();
}
public synchronized Pair get( Pair p ) throws InterruptedException
{
while (true)
{
for (Iterator<Pair> i = pairs.iterator(); i.hasNext(); )
{
Pair pair = i.next();
boolean firstOk = p.first == null || p.first.equals(pair.first);
boolean secondOk = p.second == null || p.second.equals(pair.second);
if (firstOk && secondOk)
{
i.remove();
return pair;
}
}
wait();
}
}
}
class Producer implements Runnable
{
private FunkyCollection funkyCollection;
public Producer(FunkyCollection funkyCollection)
{
this.funkyCollection = funkyCollection;
}
public void run()
{
try
{
for (int i = 0; i < 10; ++i)
{
System.out.println("Adding item " + i);
funkyCollection.add(new Pair("foo" + i, "bar" + i));
Thread.sleep(1000);
}
}
catch (InterruptedException e)
{
Thread.currentThread().interrupt();
}
}
}
public void go() throws InterruptedException
{
FunkyCollection funkyCollection = new FunkyCollection();
new Thread(new Producer(funkyCollection)).start();
System.out.println("Fetching bar5.");
funkyCollection.get(new Pair(null, "bar5"));
System.out.println("Fetching foo2.");
funkyCollection.get(new Pair("foo2", null));
System.out.println("Fetching foo8, bar8");
funkyCollection.get(new Pair("foo8", "bar8"));
System.out.println("Finished.");
}
public static void main(String[] args) throws InterruptedException
{
new BlockingQueries().go();
}
}
Output:
Fetching bar5.
Adding item 0
Adding item 1
Adding item 2
Adding item 3
Adding item 4
Adding item 5
Fetching foo2.
Fetching foo8, bar8
Adding item 6
Adding item 7
Adding item 8
Finished.
Adding item 9
Note that I put everything into one source file to make it easier to run.
I know of no existing container that will provide this behavior. One problem you face is the case where no existing entry matches the query. In that case, you'll have to wait for new entries to arrive, and those new entries are supposed to arrive at the tail of the sequence. Given that you're blocking, you don't want to have to examine all the entries that precede the latest addition, because you've already inspected them and determined that they don't match. Hence, you need some way to record your current position, and be able to search forward from there whenever a new entry arrives.
This waiting is a job for a Condition. As suggested in cb160's answer, you should allocate a Condition instance inside your collection, and block on it via Condition#await(). You should also expose a companion overload to your get() method to allow timed waiting:
public Pair get(Pair p) throws InterruptedException;
public Pair get(Pair p, long time, TimeUnit unit) throws InterruptedException;
Upon each call to add(), call on Condition#signalAll() to unblock the threads waiting on unsatisfied get() queries, allowing them to scan the recent additions.
You haven't mentioned how or if items are ever removed from this container. If the container only grows, that simplifies how threads can scan its contents without worrying about contention from other threads mutating the container. Each thread can begin its query with confidence as to the minimum number of entries available to inspect. However, if you allow removal of items, there are many more challenges to confront.
In your FunkyCollection add method you could call notifyAll on the collection itself every time you add an element.
In the get method, if the underlying container (Any suitable conatiner is fine) doesn't contain the value you need, wait on the FunkyCollection. When the wait is notified, check to see if the underlying container contains the result you need. If it does, return the value, otherwise, wait again.
It appears you are looking for an implementation of Tuple Spaces. The Wikipedia article about them lists a few implementations for Java, perhaps you can use one of those. Failing that, you might find an open source implementation to imitate, or relevant research papers.

Categories

Resources