Rat in a Maze using Stack (Java) - java

We are given a 2D character array and, starting from a given point, we have to find an 'exit', which is a '0' in the perimeter of the given matrix. The program returns true if a path is found, which will print a message when I run it in my main method later. We can only move up, left, down or right to a nearby '0'. I have already tried to make this work, however I get a memory error, which probably means I am stuck in an infinite loop. I have tried to implement this project using a Stack that I made using Nodes, which I also implemented myself using generics, like this: e.g.
StringStackImpl<int[][]> s = new StringStackImpl<>();
in a different .java file. These work fine. I tried to store the coordinates of a character in the matrix like this:
StringStackImpl<int[]> s = new StringStackImpl<>();
s.push(new int[]{i, j});
Here is my code:
private static boolean hasExit(char[][] maze, int n, int m, int i, int j) {
int d = -1;
boolean[][] visited = new boolean[n][m];
for (int a = 0; a < visited.length; a++) {
for (int b = 0; b < (visited[a]).length; b++) {
visited[a][b] = false;
}
}
StringStackImpl<int[]> s = new StringStackImpl<>();
s.push(new int[]{i, j});
while (!(s.isEmpty())) {
int[] temp = s.peek();
d += 1;
i = temp[0];
j = temp[1];
if (((i == 0) || (i == n-1) || (j == 0) || (j == m-1)) && (maze[i][j] == '0')) {
return true;
}
if (d == 0) {
if ((i-1 >= 0) && (maze[i-1][j] == '0') && !(visited[i-1][j])) {
visited[i-1][j] = true;
s.push(new int[]{i-1, j});
d = -1;
}
}
else if (d == 1) {
if ((j-1 >= 0) && (maze[i][j-1] == '0') && !(visited[i][j-1])) {
visited[i][j-1] = true;
s.push(new int[]{i, j-1});
d = -1;
}
}
else if (d == 2) {
if ((i+1 < n) && (maze[i+1][j] == '0') && !(visited[i+1][j])) {
visited[i+1][j] = true;
s.push(new int[]{i+1, j});
d = -1;
}
}
else if (d == 3) {
if ((j+1 < m) && (maze[i][j+1] == '0') && !(visited[i][j+1])) {
visited[i][j+1] = true;
s.push(new int[]{i, j+1});
d = -1;
}
}
else {
s.pop();
d = -1;
}
}
return false;
}
}
EDIT: It works now, thanks to kendavidson! <3

At first glance, and trusting you about StringStackImpl, I think you should only use d = -1;in the last else. Right now you are always setting it back to -1, and so you only check the d == 0 condition. From what I understood, d is the direction possible, and so should go from 0 to 3 ?
Other than that, take some time to give meaningfull names to your variables :
visited[i][j] is true when the node [i][j] has not been visited yet... That's counter-intuitive, and doesn't help others, or yourself, from understanding your code.
Are you forced to use char for i and j ? It really tends to make the code long and tedious for nothing.

Related

Colored Triangles Riddle

The riddle I'm hoping to solve can be found in this video.
In case you're unable to watch the whole video, here is an outline of the riddle:
In short, I need to find the smallest number of points where there is guaranteed to be at least one single-color triangle from any arrangement of red and blue lines connecting every single pair of points.
Below is a Java program I wrote to solve it.
public class RedBlueTimeTravelProblem {
public static void main(String[] args) {
int max = 3;
boolean alltri = false;
long start, end;
double time;
while (!alltri) {
start = System.nanoTime();
int edgecount = max * (max - 1) / 2;
int combos = (int) Math.pow(2, edgecount);
alltri = false;
for (int i=1; i<=combos; i++) {
int a = i-1;
int[][] edge = new int[edgecount][3];
for (int j=0; j<edgecount; j++) {
edge[j][2] = a % 2;
a = (a - a % 2) / 2;
}
int c2 = 0;
for (int j=1; j<=max; j++) {
for (int k=j+1; k<=max; k++) {
edge[c2][0] = j;
edge[c2][1] = k;
c2++;
}
}
boolean tri = false;
for (int j=0; j<edgecount-2; j++) {
for (int k=j+1; k<edgecount-1; k++) {
for (int m=k+1; m<edgecount; m++) {
if ((edge[j][0] == edge[k][0] && ((edge[j][1] == edge[m][0] && edge[k][1] == edge[m][1]) || (edge[j][1] == edge[m][1] && edge[k][1] == edge[m][0]))) ||
(edge[j][0] == edge[k][1] && ((edge[j][1] == edge[m][0] && edge[k][0] == edge[m][1]) || (edge[j][1] == edge[m][1] && edge[k][0] == edge[m][0]))) ||
(edge[j][0] == edge[m][0] && ((edge[j][1] == edge[k][0] && edge[k][1] == edge[m][1]) || (edge[j][1] == edge[k][1] && edge[k][0] == edge[m][1]))) ||
(edge[j][0] == edge[m][1] && ((edge[j][1] == edge[k][0] && edge[k][1] == edge[m][0]) || (edge[j][1] == edge[k][1] && edge[k][0] == edge[m][0])))) {
tri = tri || (edge[j][2] == edge[k][2] && edge[k][2] == edge[m][2]);
}
}
}
}
alltri = alltri && tri;
}
end = System.nanoTime();
time = (end - start) / 1000000000.0;
System.out.println(max + ": " + time + " seconds");
max++;
}
System.out.println("DONE");
}
}
It seems to work so far in checking whether 3, then 4, 5, etc. points will guarantee a single color triangle, but its time complexity is ridiculous. For example, here are the times for 3-8 points:
3: 1.8475E-5 seconds
4: 2.59876E-4 seconds
5: 0.009313668 seconds
6: 0.192455789 seconds
7: 19.226652708 seconds
Based on the trend, 8 points will take 30 min to 1 hr, 9 points will take roughly a few days, 10 will take over 6 months, and well... nobody wants to wait that long.
Any suggestions on how to make my program more time efficient?
Edit: Apparently the answer was 6. Not only was my code inefficient, it was just plain wrong. Also thanks for the suggestions everyone.

Why won't my while loop if condition work correctly?

My checkWin method returns false until there's a winner in the Connect 4 game by putting 4 "checkers" in a row horizontally, vertically, or diagonally in my board array. Once there's a winner, the checkWin method returns true, the nearest if statement iterates, printing the winner, then terminating the entire loop (if I coded it all correctly). However, when I run the program, the while loop iterates only once, accepts one input for red, states red won, then does the same thing for yellow, then terminates.
What am I missing here?
Below is the relevant code.
Thank you.
public static void main(String[] args) {
char[][] board = new char[6][7];
boolean loop = true;
// loop to alternate players until there's a winner
while (loop) {
printData(board);
red(board);
if (checkWin(board) == true) {
printData(board);
System.out.print("Red wins!");
loop = false;
}
printData(board);
yellow(board);
if (checkWin(board) == true) {
printData(board);
System.out.print("Yellow wins!");
loop = false;
}
}
}
public static void printData(char[][] tbl) {
for (int r = 0; r < tbl.length; r++) {
for (int c = 0; c < tbl[r].length; c++) {
if (tbl[r][c] == 0) {
System.out.print("| ");
} else {
System.out.print("|" + tbl[r][c]);
}
} // end for col loop
System.out.println("|");
} // end for row loop
System.out.println("---------------");
} // end printData method
public static void red(char[][] f) {
System.out.println("Place a red checker at column (0-6)");
Scanner in = new Scanner(System.in);
int c = in.nextInt();
for (int i = 5; i >= 0; i--) {
if (f[i][c] == 0) {
f[i][c] = 'R';
break;
}
}
}
public static void yellow(char[][] f) {
System.out.println("Place a yellow checker at column (0-6)");
Scanner in = new Scanner(System.in);
int c = in.nextInt();
for (int i = 5; i >= 0; i--) {
if (f[i][c] == 0) {
f[i][c] = 'Y';
break;
}
}
}
// Method to check for a winner. Receives 2-D array as parameter. Returns
// boolean value.
public static boolean checkWin(char[][] b) {
// Create four boolean variables, one for each set of rows. Initialize
// all of them to false.
boolean foundRow = false;
boolean foundCol = false;
boolean foundMjrD = false;
boolean foundMinD = false;
// Check to see if four consecutive cells in a row match.
// check rows
for (int r = 0; r <= 5; r++) {
for (int c = 0; c <= 3; c++) {
if (b[r][c] == b[r][c + 1] && b[r][c] == b[r][c + 2] && b[r][c] == b[r][c + 3] && b[r][c] != ' ') {
foundRow = true;
break;
}
}
}
// Check to see if four columns in the same row match
// check columns
for (int r = 0; r <= 2; r++) {
for (int c = 0; c <= 6; c++) {
if (b[r][c] == b[r + 1][c] && b[r][c] == b[r + 2][c] && b[r][c] == b[r + 3][c] && b[r][c] != ' ') {
foundCol = true;
break;
}
}
}
// Check to see if four diagonals match (top left to bottom right)
// check major diagonal
for (int r = 0; r <= 2; r++) {
for (int c = 0; c <= 3; c++) {
if (b[r][c] == b[r + 1][c + 1] && b[r][c] == b[r + 2][c + 2] && b[r][c] == b[r + 3][c + 3]
&& b[r][c] != ' ') {
foundMjrD = true;
break;
}
}
}
// Check to see if four diagonals in the other direction match (top
// right to bottom left)
// check minor diagonal
for (int r = 0; r <= 2; r++) {
for (int c = 3; c <= 6; c++) {
if (b[r][c] == b[r + 1][c - 1] && b[r][c] == b[r + 2][c - 2] && b[r][c] == b[r + 3][c - 3]
&& b[r][c] != ' ') {
foundMinD = true;
break;
}
}
}
// If ONE of the booleans is true, we have a winner.
// checks boolean for a true
if (foundRow || foundCol || foundMjrD || foundMinD)
return true;
else
return false;
} // end checkWin method
By what I've analyzed by debugging your code , you have not set boolean variable to "true" after toggling it to false. After you are coming out of condition make that boolean variable "true" again.
May this help you. Happy Coding
You should take a closer look at this line:
if (b[r][c] == b[r][c + 1] && b[r][c] == b[r][c + 2] && b[r][c] == b[r][c + 3] && b[r][c] != ' ') {
You check for b[r][c] != ' ', but you never put a space in char[][] board, therefore the default value in board[?][?] is 0.

Solution of twoTwo riddle on codingBat in Java

The question is about Solving this problem from codingBat in Java.
Problem Statement:
Given an array of ints, return true if every 2 that appears in the array is next to another 2.
twoTwo({4, 2, 2, 3}) → true
twoTwo({2, 2, 4}) → true
twoTwo({2, 2, 4, 2}) → false
First of all going by the problem statement that every 2 that appears in the array is next to another 2. then
do you think as suggested the outcome for the first inputs shown above
should be true?
twoTwo({4, 2, 2, 3}) → true
Because as I see it it the first 2 itself that appears in the array is next to 4 not 2
am I confused or it's a wrongly stated question? I had to grapple with the problem to somehow get the right code to crack the problem as below but it seems a hotch potch:
public boolean twoTwo(int[] nums) {
if(nums.length==0)
{
return true;
}
if(nums.length==1)
{
return !(nums[0]==2);
}
if((nums.length==2))
{
if((nums[1]==2)&&(nums[0]==2))
return true;
else
return false;
}
for(int i=0;i+2<nums.length;i++)
{
if((nums[i]!=2)&&(nums[i+1]==2)&&(nums[i+2]!=2))
return false;
}
if((nums[nums.length-2]!=2)&&(nums[nums.length-1]==2))
return false;
return true;
}
Any efficient alternate solutions are welcome.
Thanks!
Here's how I would do it. It's a bit easier to follow I think:
public boolean twoTwo(int[] nums)
{
for (int i=0; i<nums.length; i++)
{
if (nums[i] != 2)
continue;
if (i >= 1 && nums[i-1] == 2)
continue;
if (i < (nums.length-1) && nums[i+1] == 2)
continue;
return false;
}
return true;
}
The solution I got to the problem is below:
public boolean twoTwo(int[] nums) {
final int length = nums.length;
for (int i = 0; i < length;){
int count = 0; // Used to count following 2's
while(i < length && nums[i++] == 2){
count++;
}
if(count == 1){ // No adjacent 2's! Set doesn't work.
return false;
}
}
return true; // Didn't come across a lone 2
}
The way that I handle this, is that I count all the adjacent 2's. If the count is not 1, we are good. This means that there was either no 2 at that index, or a group of 2's was present. This holds, since we traverse the array in a single direction.
A good thing about this solution is that it will work for an array of any size. Note that it would have a linear complexity, even though 2 loops are present. They both just traverse using the same index value, only ever sweeping over the array once.
If at any time we find a 2, then check the following only to find there are 0 following 2's (denoted by count), we return false.
public boolean twoTwo(int[] nums) {
for (int i=0; i<nums.length; i++) {
if(nums[i] == 2) { //If current number is 2
if (
// if prev or next is not 2 return true
!(i-1>=0 && nums[i-1] == 2) &&
!(i+1<nums.length && nums[i+1] == 2)
) { return false; }
}
}
return true;
}
For the sake of simplicity and clean code, this code forces the check
i-1>=0 and i+1<nums.length in every iteration.
This can be avoided by iterating from (1...nums.length-1) and checking the edge cases separately.
I know this is an old question, but I came up with a new solution. Short, and with no complicated conditionals.
public boolean twoTwo(int[] nums) {
int position = -2;
boolean result = true;
for (int i = 0; i < nums.length; i++) {
if (nums[i] == 2) {
result = position == i - 1;
position = i;
}
}
return result;
}
Next to means either before or after. Loop through each number and check the values before and after to see if there's an adjacent 2. The special cases are when you're checking the 1st and last element because there won't be an element before or after to check.
public boolean twoTwo(int[] nums) {
if(nums.length == 1 && nums[0] == 2)
return false;
for(int i = 0; i < nums.length; i++) {
if(nums[i] == 2) {
if(i == 0) { // check the next element
if(nums[i+1] != 2)
return false;
}
else if(i == (nums.length - 1)) { // check the previous element
if(nums[i-1] != 2)
return false;
}
else { // check both
if(nums[i+1] != 2 && nums[i-1] != 2)
return false;
}
}
}
return true;
}
Here is mine solution to two two's problem. I think my solution is clear i.e. understandable.
package codingbat.array2;
public class TwoTwo
{
public static void main(String[] args)
{
}
public boolean twoTwo(int[] nums)
{
boolean twoTwo = true;
for (int i = 0; i < nums.length; i++)
{
if (2 == nums[i])
{
if (i > 0 && 2 == nums[i - 1]
|| nums.length > i+1 && 2 == nums[i+1])
{
twoTwo = true;
i++;
}
else
{
twoTwo = false;
break;
}
}
}
return twoTwo;
}
}
public boolean twoTwo(int[] nums) {
for(int i = 0 ; i < nums.length; i++ ) {
int count = 0;
if(nums[i] == 2 ) {
while(i+1 < nums.length && nums[i+1] == 2 ) {
count ++;
i++;
}
if (count == 0 ) {
return false;
}
}
}
return true;
}
public boolean twoTwo(int[] nums) {
for(int i = 0;i<nums.length;i++)
if(nums[i]==2 && !isTwoBeforeOrAfter(nums,i))
return false;
return true;
}
private boolean isTwoBeforeOrAfter(int[] nums,int i){
return i+1<nums.length && nums[i+1]==2 || i-1>=0 && nums[i-1]==2;
}
public boolean twoTwo(int[] nums) {
float two = 0;
double count = 0;
for (int i = 0; i < nums.length; i++) {
if (i < nums.length - 2 && nums[i] == 2 && nums[i + 1] == 2 && nums[i + 2] == 2) {
return true;
}
if (i < nums.length - 1 && nums[i] == 2 && nums[i + 1] == 2) {
count++; //count the pair
}
if (nums[i] == 2) {
two++;
}
}
return ((count * 2) == two);
//each pair contain 2 ,two"s .so pair*2=total two counts
//count
}
public boolean twoTwo(int[] nums) {
boolean two = false;
boolean result = true;
for (int i=0; i<nums.length; i++) {
if (nums[i] == 2) {
if (two) {
result = true;
} else {
result = false;
}
two = true;
} else {
two = false;
}
}
return result;
}
Here's my solution. Enjoy.
public boolean twoTwo(int[] nums)
{
//If the length is 2 or more
if (nums.length >= 2)
{
//If the last char is a 2, but the one before it is not a char, we return false;
if (nums[nums.length - 1] == 2 && nums[nums.length - 2] != 2)
{
return false;
}
//If larger than three, we create a for loop to test if we have any 2s that are alone.
if (nums.length >= 3)
{
for (int i = 1; i < nums.length-1; i++)
{
//If we find a two that is alone, we return false;
if ((nums[i] == 2) && (nums[i-1] != 2 && nums[i+1] != 2))
{
return false;
}
}
}
//If we don't return false, we return true;
return true;
}
//If we have less than two characters, we return true if the length is 0, or \
//One the one number there is not a 2.
else
{
return ((nums.length == 0) || !(nums[0] == 2));
}
}
public boolean twoTwo(int[] nums) {
int len = nums.length;
Boolean check = false;
int count = 0;
for(int i=0; i<len ; i++){
if(nums[i]==2){
count++;
if((i<len-1 && nums[i+1]==2) || (i>0 && nums[i-1]==2)) check = true;
else check = false;
}
}
if(count==0) check = true;
return check;
}
public boolean twoTwo(int[] nums) {
int count = 0;
for (int i = 0; i < nums.length; i++)
if (nums[i] == 2) count++;
else if (count == 1) return false;
else count = 0;
return count != 1;
}
Every time we encounter a 2, we increase the counter of consecutive 2s.
When it's not a 2 — but the counter indicates that there was a single 2 before it —, we know we've found a lonely 2.
Otherwise the search continues, resetting the 2-counter.
easy to understand)
static boolean twoTwo(int[] nums) {
int len = nums.length;
boolean result = true;
boolean found = false;
for(int i=0; i<len; i++){
//if it not 2, no meaning to go true other if-s
if(nums[i] !=2) {found = false; continue;}
// if current element is 2 and found is true(last element is 2)
if(nums[i] ==2 && found) result = true;
// if current element is 2, but last element not
if(nums[i] ==2 && !found){
found = true;
result = false;
}
}
return result;
}
This might be easier to follow if the other suggestions confuse you..
public boolean twoTwo(int[] nums) {
int len = nums.length;
if(len == 0) return true; // no 2's to worry about
if(len == 1) return nums[0] != 2; // make sure it's not a single 2
for(int i = 1; i < len -1; i++){ // loop for each except edge cases
if(nums[i] == 2 && nums[i-1] != 2 && nums[i+1] != 2) return false; // check surrounding
}
if(nums[len - 1] == 2) return nums[len - 2] == 2; //if last num is 2 check for 2 before it
return true; // made it here it's true
}
that one was tough for me... here's mine:
public boolean twoTwo(int[] nums) {
boolean two = false, res = true;
for (int i : nums) {
if (i == 2) {
if (two)
res = true;
else {
two = true;
res = false;
}
} else {
two = false;
}
}
return res;
}
One more alternative. Here is the main idea:
Convert array into String. Add a character different from "2" at the beginning and end of the string, to avoid going out of bounds.
Look for standalone "2" - if element of the string is equal to 2, check whether chars immediately before and after are also equal to "2". If they are it means that not all "2" are adjacent, and therefore method returns false.
public boolean twoTwo(int[] nums) {
// convert array to string
String text = "";
for (int i = 0; i < nums.length; i++) {
text += String.valueOf(nums[i]);
}
text = " " + text + " ";
// find standalone "2"
for (int i = 1; i < text.length() - 1; i++) {
if (text.charAt(i) == '2' && text.charAt(i - 1) != '2' && text.charAt(i + 1)
!= '2') {
return false;
}
}
return true;
}

Please arrays, and loops

A. how do i write this simpler?
if (fclass[0] == 0 && fclass[1] == 0 && fclass[2] == 0 && fclass[3] == 0 && fclass[4] == 0 && fclass[5] == 0 && fclass[6] == 0 && fclass[7] == 0 && fclass[8] == 0 && fclass[9] == 0 && fclass[10] == 0){
}else{
}
B. Solved! How would i scan an array (atm all values in it are at 0), when i change some of the element are set to one and show only the ones that have a 0 still.
example:
if fclass[1], fclass[2], fclass[4], fclass[5], fclass[6], fclass[10],
were all set to 1. How would i get my program to show me fclass[3], fclass[7],
fclass[8], and fclass[9]?
Thanks for the help...
for (int f = 0; f <= fclass.length; f++){
if (fclass[f] == 0){
System.out.println(fclass[f]);
}
C. My teacher requires us to learn GUI but doesn't know it herself, any good websites to start learning that?
A. You can set a boolean and loop through them to check if all are zero. I'm assuming that your fclass variable is int[].
boolean flag = true;
for (int i : fclass)
{
flag &= (i == 0);
}
if (flag)
{
// if all are zero...
}
else
{
// if one of them is not zero...
}
B. Similarly you can loop through the array and scan what is not equal to zero.
for (int i : fclass)
{
if (i != 0)
System.out.println(i); // these are array not equals to zero.
}
A.
boolean allZero = true;
for(int i=0; i<fclass.length; i++){
if(fclass[i] !=0) allZero = false;
}
if(allZero){
}
else{
}
B.
for(int i=0; i<fclass.length; i++){
if(fclass[i] ==0) System.out.println(i + "is 0");
}
C. Google
A:
boolean checkFClass(int[] flcass) {
for(int i =0 ; i < 11; i++) {
if(fclass[i] !=0) {
return false;}
}
return true;
}
B:
for(int i = 0 ; i < fclass.lenght ; i++) {
if(fclass[i] != 1) { System.out.println(fclass[i]);}
}

Review an answer - Decode Ways

I'm trying to solve a question and my question here is why doesn't my solution work?. Here's the question and below's the answer.
Question taken from leetcode: http://oj.leetcode.com/problems/decode-ways/
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, determine the total number of ways to decode it.
For example,Given encoded message "12", it could be decoded as "AB" (1 2) or "L" (12). The number of ways decoding "12" is 2.
My solution:
The point with my solution is going backwards and multiplying the number of options if a split is found. By split I mean that digits can be interpreted in two ways. For example: 11 can interpreted in two ways 'aa' or 'k'.
public class Solution {
public int numDecodings(String s) {
if (s.isEmpty() || s.charAt(0) == '0') return 0;
int decodings = 1;
boolean used = false; // Signifies that the prev was already use as a decimal
for (int index = s.length()-1 ; index > 0 ; index--) {
char curr = s.charAt(index);
char prev = s.charAt(index-1);
if (curr == '0') {
if (prev != '1' && prev != '2') {
return 0;
}
index--; // Skip prev because it is part of curr
used = false;
} else {
if (prev == '1' || (prev == '2' && curr <= '6')) {
decodings = decodings * 2;
if (used) {
decodings = decodings - 1;
}
used = true;
} else {
used = false;
}
}
}
return decodings;
}
}
The failure is on the following input:
Input:"4757562545844617494555774581341211511296816786586787755257741178599337186486723247528324612117156948"
Output: 3274568
Expected: 589824
This is a really interesting problem. First, I will show how I would solve this problem. We will see that it is not that complicated when using recursion, and that the problem can be solved using dynamic programming. We will produce a general solution that does not hardcode an upper limit of 26 for each code point.
A note on terminology: I will use the term code point (CP) not in the Unicode sense, but to refer to one of the code numbers 1 though 26. Each code point is represented as a variable number of characters. I will also use the terms encoded text (ET) and clear text (CT) in their obvious meanings. When talking about a sequence or array, the first element is called the head. The remaining elements are the tail.
Theoretical Prelude
The EC "" has one decoding: the CT "".
The EC "3" can be destructured into '3' + "", and has one decoding.
The EC "23" can be destructured as '2' + "3" or '23' + "". Each of the tails has one decoding, so the whole EC has two decodings.
The EC "123" can be destructured as '1' + "23" or '12' + "3". The tails have two and one decodings respectively. The whole EC has three decodings. The destructuring '123' + "" is not valid, because 123 > 26, our upper limit.
… and so on for ECs of any length.
So given a string like "123", we can obtain the number of decodings by finding all valid CPs at the beginning, and summing up the number of decodings of each tail.
The most difficult part of this is to find valid heads. We can get the maximal length of the head by looking at a string representation of the upper limit. In our case, the head can be up to two characters long. But not all heads of appropriate lengths are valid, because they have to be ≤ 26 as well.
Naive Recursive Implementation
Now we have done all the necessary work for a simple (but working) recursive implementation:
static final int upperLimit = 26;
static final int maxHeadSize = ("" + upperLimit).length();
static int numDecodings(String encodedText) {
// check base case for the recursion
if (encodedText.length() == 0) {
return 1;
}
// sum all tails
int sum = 0;
for (int headSize = 1; headSize <= maxHeadSize && headSize <= encodedText.length(); headSize++) {
String head = encodedText.substring(0, headSize);
String tail = encodedText.substring(headSize);
if (Integer.parseInt(head) > upperLimit) {
break;
}
sum += numDecodings(tail);
}
return sum;
}
Cached Recursive Implementation
Obviously this isn't very efficient, because (for longer ETs), the same tail will be analyzed multiple times. Also, we create a lot of temporary strings, but we'll let that be for now. One thing we can easily do is to memoize the number of decodings of a specific tail. For that, we use an array of the same length as the input string:
static final int upperLimit = 26;
static final int maxHeadSize = ("" + upperLimit).length();
static int numDecodings(String encodedText) {
return numDecodings(encodedText, new Integer[1 + encodedText.length()]);
}
static int numDecodings(String encodedText, Integer[] cache) {
// check base case for the recursion
if (encodedText.length() == 0) {
return 1;
}
// check if this tail is already known in the cache
if (cache[encodedText.length()] != null) {
return cache[encodedText.length()];
}
// cache miss -- sum all tails
int sum = 0;
for (int headSize = 1; headSize <= maxHeadSize && headSize <= encodedText.length(); headSize++) {
String head = encodedText.substring(0, headSize);
String tail = encodedText.substring(headSize);
if (Integer.parseInt(head) > upperLimit) {
break;
}
sum += numDecodings(tail, cache); // pass the cache through
}
// update the cache
cache[encodedText.length()] = sum;
return sum;
}
Note that we use an Integer[], not an int[]. This way, we can check for non-existent entries using a test for null. This solution is not only correct, it is also comfortably fast – naive recursion runs in O(number of decodings) time, while the memoized version runs in O(string length) time.
Towards a DP Solution
When you run above code in your head, you will notice that the first invocation with the whole string will have a cache miss, then calculate the number of decodings for the first tail, which also misses the cache every time. We can avoid this by evaluating the tails first, starting from the end of the input. Because all tails will have been evaluated before the whole string is, we can remove the checks for cache misses. Now we also don't have any reason for recursion, because all previous results are already in the cache.
static final int upperLimit = 26;
static final int maxHeadSize = ("" + upperLimit).length();
static int numDecodings(String encodedText) {
int[] cache = new int[encodedText.length() + 1];
// base case: the empty string at encodedText.length() is 1:
cache[encodedText.length()] = 1;
for (int position = encodedText.length() - 1; position >= 0; position--) {
// sum directly into the cache
for (int headSize = 1; headSize <= maxHeadSize && headSize + position <= encodedText.length(); headSize++) {
String head = encodedText.substring(position, position + headSize);
if (Integer.parseInt(head) > upperLimit) {
break;
}
cache[position] += cache[position + headSize];
}
}
return cache[0];
}
This algorithm could be optimized further by noticing that we only ever query the last maxHeadSize elements in the cache. So instead of an array, we could use a fixed-sized queue. At that point, we would have a dynamic programming solution that runs in *O(input length) time and O(maxHeadSize) space.
Specialization for upperLimit = 26
The above algorithms were kept as general as possible, but we can go and manually specialize it for a specific upperLimit. This can be useful because it allows us to do various optimizations. However, this introduces “magic numbers” that make the code harder to maintain. Such manual specializations should therefore be avoided in non-critical software (and the above algorithm is already as fast as it gets).
static int numDecodings(String encodedText) {
// initialize the cache
int[] cache = {1, 0, 0};
for (int position = encodedText.length() - 1; position >= 0; position--) {
// rotate the cache
cache[2] = cache[1];
cache[1] = cache[0];
cache[0] = 0;
// headSize == 1
if (position + 0 < encodedText.length()) {
char c = encodedText.charAt(position + 0);
// 1 .. 9
if ('1' <= c && c <= '9') {
cache[0] += cache[1];
}
}
// headSize == 2
if (position + 1 < encodedText.length()) {
char c1 = encodedText.charAt(position + 0);
char c2 = encodedText.charAt(position + 1);
// 10 .. 19
if ('1' == c1) {
cache[0] += cache[2];
}
// 20 .. 26
else if ('2' == c1 && '0' <= c2 && c2 <= '6') {
cache[0] += cache[2];
}
}
}
return cache[0];
}
Comparision with your code
The code is superficially similar. However, your parsing around characters is more convoluted. You have introduced a used variable that, if set, will decrement the decode count in order to account for double-character CPs. This is wrong, but I am not sure why. The main problem is that you are doubling the count at almost every step. As we have seen, the previous counts are added, and may very well be different.
This indicates that you wrote the code without proper preparation. You can write many kinds of software without having to think too much, but you can't do without careful analysis when designing an algorithm. For me, it is often helpful to design an algorithm on paper, and draw diagrams of each step (along the lines of the “Theoretical Prelude” of this answer). This is especially useful when you are thinking too much about the language you are going to implement in, and too little about possibly wrong assumptions.
I suggest that you read up on “proofs by induction” to understand how to write a correct recursive algorithm. Once you have a recursive solution, you can always translate it into an iterative version.
So here is some what simpler way out for your problem. This is pretty close to calculating Fibonacci, with the difference that there are condition checks on each smaller size subproblem.
The space complexity is O(1) and time is O(n)
The code is in C++.
int numDecodings(string s)
{
if( s.length() == 0 ) return 0;
int j = 0;
int p1 = (s[j] != '0' ? 1 : 0); // one step prev form j=1
int p2 = 1; // two step prev from j=1, empty
int p = p1;
for( int j = 1; j < s.length(); j++ )
{
p = 0;
if( s[j] != '0' )
p += p1;
if( isValidTwo(s, j-1, j) )
p += p2;
if( p==0 ) // no further decoding necessary,
break; // as the prefix 0--j is has no possible decoding.
p2 = p1; // update prev for next j+1;
p1 = p;
}
return p;
}
bool isValidTwo(string &s, int i, int j)
{
int val= 10*(s[i]-'0')+s[j]-'0';
if ( val <= 9 )
return false;
if ( val > 26 )
return false;
return true;
}
Here is my code to solve the problem. I use DP , I think it's clear to understand.
Written in Java
public class Solution {
public int numDecodings(String s) {
if(s == null || s.length() == 0){
return 0;
}
int n = s.length();
int[] dp = new int[n+1];
dp[0] = 1;
dp[1] = s.charAt(0) != '0' ? 1 : 0;
for(int i = 2; i <= n; i++){
int first = Integer.valueOf(s.substring(i-1,i));
int second = Integer.valueOf(s.substring(i-2,i));
if(first >= 1 && first <= 9){
dp[i] += dp[i-1];
}
if(second >= 10 && second <= 26){
dp[i] += dp[i-2];
}
}
return dp[n];
}
}
Since I struggled with this problem myself, here is my solution and reasoning. Probably I will mostly repeat what amon wrote, but maybe someone will find it helpful. Also it's c# not java.
Let's say that we have input "12131" and want to obtain all possible decoded strings.
Straightforward recursive solution would do iterate from left to right, obtain valid 1 and 2 digits heads, and invoke function recursively for tail.
We can visualize it using a tree:
There are 5 leaves and this is number of all possible decoded strings. There are also 3 empty leaves, because number 31 cannot be decoded into letter, so these leaves are invalid.
Algorithm might look like this:
public IList<string> Decode(string s)
{
var result = new List<string>();
if (s.Length <= 2)
{
if (s.Length == 1)
{
if (s[0] != '0')
result.Add(this.ToASCII(s));
}
else if (s.Length == 2)
{
if (s[0] != '0' && s[1] != '0')
result.Add(this.ToASCII(s.Substring(0, 1)) + this.ToASCII(s.Substring(1, 1)));
if (s[0] != '0' && int.Parse(s) > 0 && int.Parse(s) <= 26)
result.Add(this.ToASCII(s));
}
}
else
{
for (int i = 1; i <= 2; ++i)
{
string head = s.Substring(0, i);
if (head[0] != '0' && int.Parse(head) > 0 && int.Parse(head) <= 26)
{
var tails = this.Decode(s.Substring(i));
foreach (var tail in tails)
result.Add(this.ToASCII(head) + tail);
}
}
}
return result;
}
public string ToASCII(string str)
{
int number = int.Parse(str);
int asciiChar = number + 65 - 1; // A in ASCII = 65
return ((char)asciiChar).ToString();
}
We have to take care of numbers starting with 0 ("0", "03", etc.), and greater than 26.
Because in this problem we need only count decoding ways, and not actual strings, we can simplify this code:
public int DecodeCount(string s)
{
int count = 0;
if (s.Length <= 2)
{
if (s.Length == 1)
{
if (s[0] != '0')
count++;
}
else if (s.Length == 2)
{
if (s[0] != '0' && s[1] != '0')
count++;
if (s[0] != '0' && int.Parse(s) > 0 && int.Parse(s) <= 26)
count++;
}
}
else
{
for (int i = 1; i <= 2; ++i)
{
string head = s.Substring(0, i);
if (head[0] != '0' && int.Parse(head) > 0 && int.Parse(head) <= 26)
count += this.DecodeCount(s.Substring(i));
}
}
return count;
}
The problem with this algorithm is that we compute results for the same input string multiple times. For example there are 3 nodes ending with 31: ABA31, AU31, LA31. Also there are 2 nodes ending with 131: AB131, L131.
We know that if node ends with 31 it has only one child, since 31 can be decoded only in one way to CA. Likewise, we know that if string ends with 131 it has 2 children, because 131 can be decoded into ACA or LA. Thus, instead of computing it all over again we can cache it in map, where key is string (eg: "131"), and value is number of decoded ways:
public int DecodeCountCached(string s, Dictionary<string, int> cache)
{
if (cache.ContainsKey(s))
return cache[s];
int count = 0;
if (s.Length <= 2)
{
if (s.Length == 1)
{
if (s[0] != '0')
count++;
}
else if (s.Length == 2)
{
if (s[0] != '0' && s[1] != '0')
count++;
if (s[0] != '0' && int.Parse(s) > 0 && int.Parse(s) <= 26)
count++;
}
}
else
{
for (int i = 1; i <= 2; ++i)
{
string head = s.Substring(0, i);
if (head[0] != '0' && int.Parse(head) > 0 && int.Parse(head) <= 26)
count += this.DecodeCountCached(s.Substring(i), cache);
}
}
cache[s] = count;
return count;
}
We can refine this even further. Instead of using strings as a keys, we can use length, because what is cached is always tail of input string. So instead of caching strings: "1", "31", "131", "2131", "12131" we can cache lengths of tails: 1, 2, 3, 4, 5:
public int DecodeCountDPTopDown(string s, Dictionary<int, int> cache)
{
if (cache.ContainsKey(s.Length))
return cache[s.Length];
int count = 0;
if (s.Length <= 2)
{
if (s.Length == 1)
{
if (s[0] != '0')
count++;
}
else if (s.Length == 2)
{
if (s[0] != '0' && s[1] != '0')
count++;
if (s[0] != '0' && int.Parse(s) > 0 && int.Parse(s) <= 26)
count++;
}
}
else
{
for (int i = 1; i <= 2; ++i)
{
string head = s.Substring(0, i);
if (s[0] != '0' && int.Parse(head) > 0 && int.Parse(head) <= 26)
count += this.DecodeCountDPTopDown(s.Substring(i), cache);
}
}
cache[s.Length] = count;
return count;
}
This is recursive top-down dynamic programming approach. We start from the begining, and then recursively compute solutions for tails, and memoize those results for further use.
We can translate it to bottom-up iterative DP solution. We start from the end and cache results for tiles like in previous solution. Instead of map we can use array because keys are integers:
public int DecodeCountBottomUp(string s)
{
int[] chache = new int[s.Length + 1];
chache[0] = 0; // for empty string;
for (int i = 1; i <= s.Length; ++i)
{
string tail = s.Substring(s.Length - i, i);
if (tail.Length == 1)
{
if (tail[0] != '0')
chache[i]++;
}
else if (tail.Length == 2)
{
if (tail[0] != '0' && tail[1] != '0')
chache[i]++;
if (tail[0] != '0' && int.Parse(tail) > 0 && int.Parse(tail) <= 26)
chache[i]++;
}
else
{
if (tail[0] != '0')
chache[i] += chache[i - 1];
if (tail[0] != '0' && int.Parse(tail.Substring(0, 2)) > 0 && int.Parse(tail.Substring(0, 2)) <= 26)
chache[i] += chache[i - 2];
}
}
return chache.Last();
}
Some people simplify it even further, initializing cache[0] with value 1, so they can get rid of conditions for tail.Length==1 and tail.Length==2. For me it is unintuitive trick though, since clearly for empty string there is 0 decode ways not 1, so in such case additional condition must be added to handle empty input:
public int DecodeCountBottomUp2(string s)
{
if (s.Length == 0)
return 0;
int[] chache = new int[s.Length + 1];
chache[0] = 1;
chache[1] = s.Last() != '0' ? 1 : 0;
for (int i = 2; i <= s.Length; ++i)
{
string tail = s.Substring(s.Length - i, i);
if (tail[0] != '0')
chache[i] += chache[i - 1];
if (tail[0] != '0' && int.Parse(tail.Substring(0, 2)) > 0 && int.Parse(tail.Substring(0, 2)) <= 26)
chache[i] += chache[i - 2];
}
return chache.Last();
}
My solution is based on the idea that the arrangement of items(char/digit) within a particular substring is completely independent of the same within a different substring.
So we need to multiply each of those independent ways to get the total number of ways.
// nc is the number of consecutive 1's or 2's in a substring.
// Returns the number of ways these can be arranged within
// themselves to a valid expr.
int ways(int nc){
int n = pow(2, (nc/2)); //this part can be memorized using map for optimization
int m = n;
if (nc%2) {
m *= 2;
}
return n + m - 1;
}
bool validTens(string A, int i){
return (A[i] == '1' || (A[i] == '2' && A[i+1] <= '6'));
}
int numDecodings(string A) {
int ans = 1;
int nc;
if ((A.length() == 0)||(A[0] == '0')) return 0;
for(int i = 1; i < A.length();i++){
if(A[i] == '0' && validTens(A, i-1) == false) return 0; //invalid string
while(i < A.length() && validTens(A, i-1)) {
if(A[i] == '0'){
//think of '110' or '1210', the last two digits must be together
if(nc > 0) nc--;
}
else nc++;
i++;
}
ans *= ways(nc);
nc = 0;
}
return ans;
}
Java solution with space and time complexity O(n)
public int numDecodings(String s) {
int n = s.length();
if (n > 0 && s.charAt(0) == '0')
return 0;
int[] d = new int[n + 1];
d[0] = 1;
d[1] = s.charAt(0) != '0' ? 1 : 0;
for (int i = 2; i <= n; i++) {
if (s.charAt(i - 1) > '0')
d[i] = d[i] + d[i - 1];
if (s.charAt(i - 2) == '2' && s.charAt(i - 1) < '7')
d[i] = d[i - 2] + d[i];
if (s.charAt(i - 2) == '1' && s.charAt(i - 1) <= '9')
d[i] = d[i - 2] + d[i];
}
return d[n];
}
Here is an O(N) C++ DP implementation.
int numDecodings(string s) {
if(s[0] == '0') return 0; // Invalid Input
int n = s.length();
// dp[i] denotes the number of ways to decode the string of length 0 to i
vector<int> dp(n+1, 0);
// base case : string of 0 or 1 characters will have only 1 way to decode
dp[0] = dp[1] = 1;
for(int i = 2; i <= n; i++) {
// considering the previous number
if(s[i-1] > '0') dp[i] += dp[i-1];
// considering the previous two numbers
if(s[i-2] == '1' || (s[i-2] == '2' && s[i-1] < '7')) dp[i] += dp[i-2];
}
return dp[n];
}

Categories

Resources