I'm currently recreating a Civilization game in Processing. I'm planning to implement the feature in a which a given unit can see every possible move it can make with a given number of hexes it is allowed to move. All possible endpoints are marked with red circles. However, units cannot move through mountains or bodies of water. I'm trying to approach this by finding out every possible combination of moves I can make without the unit going into a mountain or body of water but I can't figure out how I can determine every combination.
There are 6 directions that any unit can go in, north-east, north, north-west, south-east, south, south-west. The max number of movements I'm assigning to any unit would probably go up to 6. Any higher and I'm afraid processing may become to slow every time I move a unit.
I'm trying to recreate this:
What I'm hoping the result will look like with two possible movements (without the black arrows):
Raw version of that image:
Here is the code I use to draw the hex grid. Immediately after drawing each individual hex, its center's x coords and y coords are stored in xHexes and yHexes respectively. Also, immediately after generating the type of tile (e.g. grass, beach), the type of tile is also stored in an array named hexTypes. Therefore, I can get the x and y coords and type of hex of any hex I want on the map just by referencing its index.
Code used to draw a single hexagon:
beginShape();
for (float a = PI/6; a < TWO_PI; a += TWO_PI/6) {
float vx = x + cos(a) * gs*2;
float vy = y + sin(a) * gs*2;
vertex(vx, vy);
}
x is the x coord for centre of hexagon
y is the y coord for centre of hexagon
gs = radius of hexagon
Code used to tesselate hex over the window creating a hex grid:
void redrawMap() {
float xChange = 1.7;
float yChange = 6;
for (int y = 0; y < ySize/hexSize; y++) {
for (int x = 0; x < xSize/hexSize; x++) {
if (x % 2 == 1) {
// if any part of this hexagon being formed will be visible on the window and not off the window.
if (x*hexSize*xChange <= width+2*hexSize && int(y*hexSize*yChange) <= height+3*hexSize) {
drawHex(x*hexSize*xChange, y*hexSize*yChange, hexSize);
}
// only record and allow player to react with it if the entire tile is visible on the window
if (x*hexSize*xChange < width && int(y*hexSize*yChange) < height) {
xHexes.add(int(x*hexSize*xChange));
yHexes.add(int(y*hexSize*yChange));
}
} else {
if (x*hexSize*xChange <= width+2*hexSize && int(y*hexSize*yChange) <= height+3*hexSize) {
drawHex(x*hexSize*xChange, y*hexSize*yChange+(hexSize*3), hexSize);
}
if (x*hexSize*xChange < width && int(y*hexSize*yChange+(hexSize*3)) < height) {
xHexes.add(int(x*hexSize*xChange));
yHexes.add(int(y*hexSize*yChange+(hexSize*3)));
}
}
}
}
}
hexSize is a user-specified size for each hexagon, determining the number of hexagons that will be on the screen.
This answer will help you get to this (green is plains, red is hills and blue is water, also please don't flame my terrible grid):
Note that there is no pathfinding in this solution, only some very simple "can I get there" math. I'll include the full code of the sketch at the end so you can reproduce what I did and test it yourself. One last thing: this answer doesn't use any advanced design pattern, but it assume that you're confortable with the basics and Object Oriented Programming. If I did something which you're not sure you understand, you can (and should) ask about it.
Also: this is a proof of concept, not a "copy and paste me" solution. I don't have your code, so it cannot be that second thing anyway, but as your question can be solved in a bazillion manners, this is only one which I deliberately made as simple and visual as possible so you can get the idea and run with it.
First, I strongly suggest that you make your tiles into objects. First because they need to carry a lot of information (what's on each tile, how hard they are to cross, maybe things like resources or yield... I don't know, but there will be a lot of stuff).
The Basics
I organized my global variables like this:
// Debug
int unitTravelPoints = 30; // this is the number if "travel points" currently being tested, you can change it
// Golbals
float _tileSize = 60;
int _gridWidth = 10;
int _gridHeight = 20;
ArrayList<Tile> _tiles = new ArrayList<Tile>(); // all the tiles
ArrayList<Tile> _canTravel = new ArrayList<Tile>(); // tiles you can currently travel to
The basics being that I like to be able to change my grid size on the fly, but that's just a detail. What's next is to choose a coordinate system for the grid. I choose the simplest one as I didn't want to bust my brain on something complicated, but you may want to adapt this to another coordinate system. I choose the offset coordinate type of grid: my "every second row" is half a tile offset. So, instead of having this:
I have this:
The rest is just adjusting the spatial coordinates of the tiles so it doesn't look too bad, but their coordinates stays the same:
Notice how I consider that the spatial coordinates and the grid coordinates are two different things. I'll mostly use the spatial coordinates for the proximity checks, but that's because I'm lazy, because you could make a nice algorithm which do the same thing without the spatial coordinates and it would probably be less costly.
What about the travel points? Here's how I decided to work: your unit has a finite amount of "travel points". Here there's no unit, but instead a global variable unitTravelPoints which will do the same thing. I decided to work with this scale: one normal tile is worth 10 travel points. So:
Plains: 10 points
Hills: 15 points
Water: 1000 points (this is impassable terrain but without going into the details)
I'm not going to go into the details of drawing a grid, but that's mostly because your algorithm looks way better than mine on this front. On the other hand, I'll spend some time on explaining how I designed the Tiles.
The Tiles
We're entering OOP: they are Drawable. Drawable is a base class which contains some basic info which every visible thing should have: a position, and an isVisible setting which can be turned off. And a method to draw it, which I call Render() since draw() is already taken by Processing:
class Drawable {
PVector position;
boolean isVisible;
public Drawable() {
position = new PVector(0, 0);
isVisible = true;
}
public void Render() {
// If you forget to overshadow the Render() method you'll see this error message in your console
println("Error: A Drawable just defaulted to the catch-all Render(): '" + this.getClass() + "'.");
}
}
The Tile will be more sophisticated. It'll have more basic informations: row, column, is it currently selected (why not), a type like plains or hills or water, a bunch of neighboring tiles, a method to draw itself and a method to know if the unit can travel through it:
class Tile extends Drawable {
int row, column;
boolean selected = false;
TileType type;
ArrayList<Tile> neighbors = new ArrayList<Tile>();
Tile(int row, int column, TileType type) {
super(); // this calls the parent class' constructor
this.row = row;
this.column = column;
this.type = type;
// the hardcoded numbers are all cosmetics I included to make my grid looks less awful, nothing to see here
position.x = (_tileSize * 1.5) * (column + 1);
position.y = (_tileSize * 0.5) * (row + 1);
// this part checks if this is an offset row to adjust the spatial coordinates
if (row % 2 != 0) {
position.x += _tileSize * 0.75;
}
}
// this method looks recursive, but isn't. It doesn't call itself, but it calls it's twin from neighbors tiles
void FillCanTravelArrayList(int travelPoints, boolean originalTile) {
if (travelPoints >= type.travelCost) {
// if the unit has enough travel points, we add the tile to the "the unit can get there" list
if (!_canTravel.contains(this)) {
// well, only if it's not already in the list
_canTravel.add(this);
}
// then we check if the unit can go further
for (Tile t : neighbors) {
if (originalTile) {
t.FillCanTravelArrayList(travelPoints, false);
} else {
t.FillCanTravelArrayList(travelPoints - type.travelCost, false);
}
}
}
}
void Render() {
if (isVisible) {
// the type knows which colors to use, so we're letting the type draw the tile
type.Render(this);
}
}
}
The Tile Types
The TileType is a strange animal: it's a real class, but it's never used anywhere. That's because it's a common root for all tile types, which will inherit it's basics. The "City" tile may need very different variables than, say, the "Desert" tile. But both need to be able to draw themselves, and both need to be owned by the tiles.
class TileType {
// cosmetics
color fill = color(255, 255, 255);
color stroke = color(0);
float strokeWeight = 2;
// every tile has a "travelCost" variable, how much it cost to travel through it
int travelCost = 10;
// while I put this method here, it could have been contained in many other places
// I just though that it made sense here
void Render(Tile tile) {
fill(fill);
if (tile.selected) {
stroke(255);
} else {
stroke(stroke);
}
strokeWeight(strokeWeight);
DrawPolygon(tile.position.x, tile.position.y, _tileSize/2, 6);
textAlign(CENTER, CENTER);
fill(255);
text(tile.column + ", " + tile.row, tile.position.x, tile.position.y);
}
}
Each tile type can be custom, now, yet each tile is... just a tile, whatever it's content. Here are the TileType I used in this demonstration:
// each different tile type will adjust details like it's travel cost or fill color
class Plains extends TileType {
Plains() {
this.fill = color(0, 125, 0);
this.travelCost = 10;
}
}
class Water extends TileType {
// here I'm adding a random variable just to show that you can custom those types with whatever you need
int numberOfFishes = 10;
Water() {
this.fill = color(0, 0, 125);
this.travelCost = 1000;
}
}
class Hill extends TileType {
Hill() {
this.fill = color(125, 50, 50);
this.travelCost = 15;
}
}
Non-class methods
I added a mouseClicked() method so we can select a hex to check how far from it the unit can travel. In your game, you would have to make it so when you select a unit all these things fall into place, but as this is just a proof of concept the unit is imaginary and it's location is wherever you click.
void mouseClicked() {
// clearing the array which contains tiles where the unit can travel as we're changing those
_canTravel.clear();
for (Tile t : _tiles) {
// select the tile we're clicking on (and nothing else)
t.selected = IsPointInRadius(t.position, new PVector(mouseX, mouseY), _tileSize/2);
if (t.selected) {
// if a tile is selected, check how far the imaginary unit can travel
t.FillCanTravelArrayList(unitTravelPoints, true);
}
}
}
At last, I added 2 "helper methods" to make things easier:
// checks if a point is inside a circle's radius
boolean IsPointInRadius(PVector center, PVector point, float radius) {
// simple math, but with a twist: I'm not using the square root because it's costly
// we don't need to know the distance between the center and the point, so there's nothing lost here
return pow(center.x - point.x, 2) + pow(center.y - point.y, 2) <= pow(radius, 2);
}
// draw a polygon (I'm using it to draw hexagons, but any regular shape could be drawn)
void DrawPolygon(float x, float y, float radius, int npoints) {
float angle = TWO_PI / npoints;
beginShape();
for (float a = 0; a < TWO_PI; a += angle) {
float sx = x + cos(a) * radius;
float sy = y + sin(a) * radius;
vertex(sx, sy);
}
endShape(CLOSE);
}
How Travel is calculated
Behind the scenes, that's how the program knows where the unit can travel: in this example, the unit has 30 travel points. Plains cost 10, hills cost 15. If the unit has enough points left, the tile is marked as "can travel there". Every time a tile is in travel distance, we also check if the unit can get further from this tile, too.
Now, if you're still following me, you may ask: how do the tiles know which other tile is their neighbor? That's a great question. I suppose that an algorithm checking their coordinates would be the best way to handle this, but as this operation will happen only once when we create the map I decided to take the easy route and check which tiles were the close enough spatially:
void setup() {
// create the grid
for (int i=0; i<_gridWidth; i++) {
for (int j=0; j<_gridHeight; j++) {
int rand = (int)random(100);
if (rand < 20) {
_tiles.add(new Tile(j, i, new Water()));
} else if (rand < 50) {
_tiles.add(new Tile(j, i, new Hill()));
} else {
_tiles.add(new Tile(j, i, new Plains()));
}
}
}
// detect and save neighbor tiles for every Tile
for (Tile currentTile : _tiles) {
for (Tile t : _tiles) {
if (t != currentTile) {
if (IsPointInRadius(currentTile.position, t.position, _tileSize)) {
currentTile.neighbors.add(t);
}
}
}
}
}
Complete code for copy-pasting
Here's the whole thing in one place so you can easily copy and paste it into a Processing IDE and play around with it (also, it includes how I draw my awful grid):
// Debug
int unitTravelPoints = 30; // this is the number if "travel points" currently being tested, you can change it
// Golbals
float _tileSize = 60;
int _gridWidth = 10;
int _gridHeight = 20;
ArrayList<Tile> _tiles = new ArrayList<Tile>();
ArrayList<Tile> _canTravel = new ArrayList<Tile>();
void settings() {
// this is how to make a window size's dynamic
size((int)(((_gridWidth+1) * 1.5) * _tileSize), (int)(((_gridHeight+1) * 0.5) * _tileSize));
}
void setup() {
// create the grid
for (int i=0; i<_gridWidth; i++) {
for (int j=0; j<_gridHeight; j++) {
int rand = (int)random(100);
if (rand < 20) {
_tiles.add(new Tile(j, i, new Water()));
} else if (rand < 50) {
_tiles.add(new Tile(j, i, new Hill()));
} else {
_tiles.add(new Tile(j, i, new Plains()));
}
}
}
// detect and save neighbor tiles for every Tile
for (Tile currentTile : _tiles) {
for (Tile t : _tiles) {
if (t != currentTile) {
if (IsPointInRadius(currentTile.position, t.position, _tileSize)) {
currentTile.neighbors.add(t);
}
}
}
}
}
void draw() {
background(0);
// show the tiles
for (Tile t : _tiles) {
t.Render();
}
// show how far you can go
for (Tile t : _canTravel) {
fill(0, 0, 0, 0);
if (t.selected) {
stroke(255);
} else {
stroke(0, 255, 0);
}
strokeWeight(5);
DrawPolygon(t.position.x, t.position.y, _tileSize/2, 6);
}
}
class Drawable {
PVector position;
boolean isVisible;
public Drawable() {
position = new PVector(0, 0);
isVisible = true;
}
public void Render() {
// If you forget to overshadow the Render() method you'll see this error message in your console
println("Error: A Drawable just defaulted to the catch-all Render(): '" + this.getClass() + "'.");
}
}
class Tile extends Drawable {
int row, column;
boolean selected = false;
TileType type;
ArrayList<Tile> neighbors = new ArrayList<Tile>();
Tile(int row, int column, TileType type) {
super(); // this calls the parent class' constructor
this.row = row;
this.column = column;
this.type = type;
// the hardcoded numbers are all cosmetics I included to make my grid looks less awful, nothing to see here
position.x = (_tileSize * 1.5) * (column + 1);
position.y = (_tileSize * 0.5) * (row + 1);
// this part checks if this is an offset row to adjust the spatial coordinates
if (row % 2 != 0) {
position.x += _tileSize * 0.75;
}
}
// this method looks recursive, but isn't. It doesn't call itself, but it calls it's twin from neighbors tiles
void FillCanTravelArrayList(int travelPoints, boolean originalTile) {
if (travelPoints >= type.travelCost) {
// if the unit has enough travel points, we add the tile to the "the unit can get there" list
if (!_canTravel.contains(this)) {
// well, only if it's not already in the list
_canTravel.add(this);
}
// then we check if the unit can go further
for (Tile t : neighbors) {
if (originalTile) {
t.FillCanTravelArrayList(travelPoints, false);
} else {
t.FillCanTravelArrayList(travelPoints - type.travelCost, false);
}
}
}
}
void Render() {
if (isVisible) {
// the type knows which colors to use, so we're letting the type draw the tile
type.Render(this);
}
}
}
class TileType {
// cosmetics
color fill = color(255, 255, 255);
color stroke = color(0);
float strokeWeight = 2;
// every tile has a "travelCost" variable, how much it cost to travel through it
int travelCost = 10;
// while I put this method here, it could have been contained in many other places
// I just though that it made sense here
void Render(Tile tile) {
fill(fill);
if (tile.selected) {
stroke(255);
} else {
stroke(stroke);
}
strokeWeight(strokeWeight);
DrawPolygon(tile.position.x, tile.position.y, _tileSize/2, 6);
textAlign(CENTER, CENTER);
fill(255);
text(tile.column + ", " + tile.row, tile.position.x, tile.position.y);
}
}
// each different tile type will adjust details like it's travel cost or fill color
class Plains extends TileType {
Plains() {
this.fill = color(0, 125, 0);
this.travelCost = 10;
}
}
class Water extends TileType {
// here I'm adding a random variable just to show that you can custom those types with whatever you need
int numberOfFishes = 10;
Water() {
this.fill = color(0, 0, 125);
this.travelCost = 1000;
}
}
class Hill extends TileType {
Hill() {
this.fill = color(125, 50, 50);
this.travelCost = 15;
}
}
void mouseClicked() {
// clearing the array which contains tiles where the unit can travel as we're changing those
_canTravel.clear();
for (Tile t : _tiles) {
// select the tile we're clicking on (and nothing else)
t.selected = IsPointInRadius(t.position, new PVector(mouseX, mouseY), _tileSize/2);
if (t.selected) {
// if a tile is selected, check how far the imaginary unit can travel
t.FillCanTravelArrayList(unitTravelPoints, true);
}
}
}
// checks if a point is inside a circle's radius
boolean IsPointInRadius(PVector center, PVector point, float radius) {
// simple math, but with a twist: I'm not using the square root because it's costly
// we don't need to know the distance between the center and the point, so there's nothing lost here
return pow(center.x - point.x, 2) + pow(center.y - point.y, 2) <= pow(radius, 2);
}
// draw a polygon (I'm using it to draw hexagons, but any regular shape could be drawn)
void DrawPolygon(float x, float y, float radius, int npoints) {
float angle = TWO_PI / npoints;
beginShape();
for (float a = 0; a < TWO_PI; a += angle) {
float sx = x + cos(a) * radius;
float sy = y + sin(a) * radius;
vertex(sx, sy);
}
endShape(CLOSE);
}
Hope it'll help. Have fun!
You will have to use similar algorithms we use on pathfinding. you create a stack or queue that will hold a class storing the position of the hex and the number of moves left from that point, initially you insert your starting position with the number of moves you have and mark that hex as done ( to not re-use a position you have already been on ), then you pop an element, and you insert every neighbor of that hex with a number of moves -1. when you insert the hexes with zero moves, those are your endpoints. And before inserting any hex check if it's not already done.
I hope I was clear, your question was a bit vague but I tried to give you an idea of how these solutions are usually done, also I think your question fits more into algorithms rather then processing
Best of luck
I am currently working on a 3 cushion billiards game project. I have added two balls on the table so far. I am trying to move one of the balls but I am having a hard time doing that. Should I use a timer? If so then could you tell me an effective way to use the timer on my code so I can move my balls?
Your help would be much appreciated.
Thanks in advance.
Farhan Hasan
I have tried to create a move function for the class balls. But I am not sure what I should put inside the function, I have added the xSpeed and ySpeed. The xLocation and the yLocation changes depending on the xSpeed and ySpeed.
public class Balls
{
private Color ballFillColor;
private Color ballBorderColor;
private int ballX = 0;
private int ballY = 0;
private int xSpeed = 5;
private int ySpeed = 0;
private int ballWidth = 0;
private int ballHeight = 0;
Timer t;
public boolean fillBall = false;
private static Balls ballArray[]; //Required for drawMultipleBalls
Balls(){ //Constructor
ballBorderColor = Color.black;
}
Balls(int ballX, int ballY, int ballWidth, int ballHeight, Color ballBorderColor, JFrame window){ //Constructor
// X , Y , Width, Height, Border Colour, container
this.setBallBorderColor(ballBorderColor);
this.setBallWidth(ballWidth);
this.setBallHeight(ballHeight);
this.setBallX(ballX);
this.setBallY(ballY);
this.drawBall(window);
}
//Here is the move function. I am not really sure what to do here.
public void move()
{
if(this.ballX < 1000 - this.ballWidth)
{
this.ballX += this.xSpeed;
}
try
{
Thread.sleep(1);
}
catch(Exception e)
{
}
}
//GET AND SET FUNCTIONS HERE
//HERE ARE THE FUNCTIONS WHICH ARE RESPONSIBLE FOR DRAWING MY BALLS IN JFRAME
public void drawBall(JFrame frame)
{
frame.getContentPane().add(new MyComponent());
}
public void drawMultipleBalls(JFrame frame, Balls[] balls)
{
ballArray = balls;
frame.getContentPane().add(new MyComponent2());
}
private class MyComponent extends JComponent{
public void paintComponent(Graphics g){
if (fillBall) //Fill first, and then draw outline.
{
g.setColor(ballFillColor);
g.fillOval(getBallX(),getBallY(), getBallHeight(),getBallWidth());
}
g.setColor(getBallBorderColor());
g.drawOval(getBallX(),getBallY(), getBallHeight(),getBallWidth());
}
}
private class MyComponent2 extends JComponent{
public void paintComponent(Graphics g){
for (int i = 0; i < ballArray.length; i++)
{
if (ballArray[i].fillBall) //Fill first, and then draw outline.
{
g.setColor(ballArray[i].ballFillColor);
g.fillOval(ballArray[i].getBallX(),ballArray[i].getBallY(), ballArray[i].getBallHeight(),ballArray[i].getBallWidth());
}
g.setColor(ballArray[i].getBallBorderColor());
g.drawOval(ballArray[i].getBallX(),ballArray[i].getBallY(), ballArray[i].getBallHeight(),ballArray[i].getBallWidth());
}
}
}
Hopefully, I can have two movable balls for the game, the should bounce back as the hit the edge of the screen and they should be able to slow down over time. For that, I am thinking to use a damper (I will multiply the xSpeed and ySpeed with a number less than 1, eventually it will slow down the ball)
Here is a simple example I came up with to show a ball moving and bouncing off the edges.
The direction changes based on the boundary. Left and top edges just check for 0. Bottom and right edges need to include the diameter of the ball.
The x and y increments are independent. And these amounts in conjunction with the timer can change the movement. Notice however, that to have objects bounce off of each other (as in a pool game) is more complicated due to angle of trajectories, etc. And the distances bounced will vary and slow with time based on frictional values. Everything else is documented in the Java API.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class MovementDemo extends JPanel implements ActionListener {
JFrame frame = new JFrame("Movement Demo");
int size = 500;
int x = 50;
int y = 200;
int diameter = 50;
int yinc = 2;
int xinc = 2;
int xdirection = 1;
int ydirection = 1;
public MovementDemo() {
setPreferredSize(new Dimension(size, size));
frame.add(this);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();
frame.setLocationRelativeTo(null);
frame.setVisible(true);
}
public static void main(String[] args) {
SwingUtilities.invokeLater(() -> new MovementDemo().start());
}
public void start() {
Timer timer = new Timer(100, this);
timer.setDelay(5);
timer.start();
}
public void actionPerformed(ActionEvent ae) {
if (x < 0) {
xdirection = 1;
}
else if (x > size - diameter) {
xdirection = -1;
}
if (y < 0) {
ydirection = 1;
}
else if (y > size - diameter) {
ydirection = -1;
}
x = x + xdirection * xinc;
y = y + ydirection * yinc;
repaint();
}
public void paintComponent(Graphics g) {
super.paintComponent(g);
Graphics2D g2d = (Graphics2D) g.create();
g2d.setColor(Color.BLUE);
g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
g2d.fillOval(x, y, diameter, diameter);
}
}
It seems in general there are a few things you need to figure out:
has the ball collided with another ball
has the ball collided with a wall
otherwise just figure out what is the ball's new position based on its velocity
Below is some sample code that stubs some of this out. You can first compare the current ball's position to all others (not including the current ball of course). If there are any equal positions, process a collision with a ball. If the ball is at the window border i.e it hit a wall, process a collision with a wall. Otherwise just calculate its new position based on its current velocity.
The process collision part is just to apply physics mechanics to whatever degree of complexity you require. One general suggested change would be to update the velocity of the balls then apply it to the position after. The specific calculations for velocity changes you could apply as needed and as you can imagine it can get pretty involved which is why I suggest using a separate method and possibly a sub class for velocity instead of managing each part of the velocity vector in the ball itself. I used the wall as an object because of this. The composition, weights, velocities etc of the object's colliding can affect the resulting collision, but how complex you want that processing to be is up to you.
Sorry I'm no physics expert but I hope this sends you in the right direction in terms of code! Also this might help with the specific calculations you might want to use:
https://www.khanacademy.org/science/physics/one-dimensional-motion/displacement-velocity-time/v/calculating-average-velocity-or-speed
public void move()
{
// check if balls are on same position not including this ball
for(Ball b: ballArray){
if (this.position == b.position && this != b){
processCollision(this, b, null);
} else{
// if the ball hasn't collided with anything process its movement based on speed
// this assumes a 1000 x 1000 window for keeping objects inside it
if(this.ballX < 1000 - this.ballWidth && this.ballY < 1000 - this.ballHeight){
this.ballX += this.xSpeed;
this.ballY += this.ySpeed;
}else {
processCollision(this, null, new Wall());
}
}
}
try
{
Thread.sleep(1);
}
catch(Exception e)
{
}
}
public void processCollision(Ball b1, Ball b2, Wall w){
// if ball hasn't collided with a wall, process a ball - ball collision
if(w == null){
// apply physics mechanics according the complexity desired for ball collisions
b1.xSpeed -= b2.xSpeed;
b1.ySpeed -= b2.ySpeed;
// ball 2 would end up slowing down
b2.xSpeed -= b1.xSpeed;
b2.ySpeed -= b1.ySpeed;
}
// if ball hasn't collided with a ball, process a ball - wall collision
if(b2 == null){
// apply physics mechanics for hitting a wall
// e.g as below: just send ball in opposite direction
b1.xSpeed = b1.xSpeed * -1;
b1.ySpeed = b1.ySpeed * -1;
}
// either way, process ball's new position based on its new speed
b1.ballX += b1.xSpeed;
b1.ballY += b1.ySpeed;
b2.ballX += b2.xSpeed;
b2.ballY += b2.ySpeed;
}
This is a follow-up post to my previous question, here. I got a remarkable response to instead of using array data tracking, to use matrixes. Now, the code here works just as planned (as in, the rectangles somewhat most of the time get filled in properly with white), but it's very inconsistent. When holding the left or right mouse button the colors phase over each other in a battle of randomness, and I don't know nearly that much about why this is happening. Just for reference, I'm using Java in Processing 3.
This is a result that I made with the project. As you can see, it looks fine.
Except for that jitter when hovering over a rect, and that more than not the rectangles are not being filled in half the time. And plus, the hover color is cycling almost randomly.
int cols, rows;
int scl = 20;
boolean[][] matrix = new boolean[scl+1][scl+1];
void setup() {
size(400, 400);
int w = 400;
int h = 400;
cols = w / scl;
rows = h / scl;
}
void draw() {
background(255);
for (int x = 0; x < cols; x++) {
for (int y = 0; y < rows; y++) {
int xpos = x*scl;
int ypos = y*scl;
stroke(55);
if ((mouseX >= xpos && mouseX <= xpos+scl) &&
(mouseY >= ypos && mouseY <= ypos+scl)) {
fill(75);
if (mousePressed == true) {
println("Clicked at: " + xpos + " and " + ypos);
if (!matrix[xpos/scl][ypos/scl]) {
matrix[xpos/scl][ypos/scl] = true;
} else {
matrix[xpos/scl][ypos/scl] = false;
}
fill(100);
//here is the desired location for the fill to remain constant even
//after unclicking and leaving hover
}
println("Mouse at: " + xpos + " and " + ypos);
} else {
fill(50);
}
if (matrix[x][y]) {
//fill(204, 102, 0);
fill(240);
rect(xpos, ypos, scl, scl);
}
rect(xpos, ypos, scl, scl);
}
}
}
Remeber that Processing fires the draw() function 60 times per second.
So your check for whether the mouse is pressed is happening 60 times per second. That means you're toggling the state of whatever cell the mouse is in 60 times per second.
To fix that problem, you might switch to using the event functions like mousePressed() instead of constantly polling every frame.
From the reference:
int value = 0;
void draw() {
fill(value);
rect(25, 25, 50, 50);
}
void mousePressed() {
if (value == 0) {
value = 255;
} else {
value = 0;
}
}
As for certain cells being skipped over, that's because when you move the mouse, it doesn't actually go through every pixel. It "jumps" from frame to frame. Those jumps are usually small enough that humans don't notice it, but they're large enough that it's skipping over cells.
One solution to this is to use the pmouseX and pmouseY variables to calculate a line from the previous mouse position to the current mouse position, and fill in any cells that would have been hit along the way.
I am trying to write a small program that has a given number of balls (in the example code below it's 3) travel back and forth across the screen at different speeds and phases (start offset).
This much has been achieved in the code. Although I want to be able to select the balls (one at a time) using a mouse click.
I have used the word "HIT!!!" to signify in the console that a ball has been clicked.
My problem is that when I run the code below, I only get a "HIT!" in the console when I click the top ball. That is when the first element y[0] matches with the click_Y variable. When I am sure (but obviously mistaken somehow) that there should be matches when I click in the vicinity of y[1] & y[2].
I'd really be grateful for any help with these. As it's gotten to the point where I am starting to stare blankly at the screen. Thanks.
int noCircles; // the number of items in the array (# of circles)
float[] y; // y-position of each circle (fixed)
float[] speed; // speed of each circle
float[] phase; // phase of each circle
float red = 120;
float green = 120;
float blue = 120;
float click_X;
float click_Y;
void setup() {
size(500, 500);
noCircles = 3;
// allocate space for each array
y = new float[noCircles];
speed = new float[noCircles];
phase = new float[noCircles];
// calculate the vertical gap between each circle based on the total number
// of circles
float gap = height / (noCircles + 1);
//setup an initial value for each item in the array
for (int i=0; i<noCircles; i++) {
y[i] = gap * (i + 1);
// y is constant for each so can be calculated once
speed[i] = random(10);
phase[i] = random(TWO_PI);
}
}
void draw() {
background(155);
for (int i=0; i<noCircles; i++) {
// calculate the x-position of each ball based on the speed, phase and
//current frame
float x = width/2 + sin(radians(frameCount*speed[i] ) + phase[i])* 200;
if (dist(x, y[i], click_X, click_Y) <= 20){
println("HIT!!!!!!!!!!!!!!!!!!");
}
ellipse(x, y[i], 20, 20);
click_X = 0;
click_Y = 0;
}
}
void mousePressed() {
println("You clicked******************************************");
click_X = mouseX;
click_Y = mouseY;
println("click_X =" + click_X);
println("click_Y =" + click_Y);
}
Problems like these are best solved by debugging your program. Start by tracing through the code by hand, then add print statements (more than you've already added), and if that doesn't work then don't be afraid to use the debugger.
You're using the click_X and click_Y variables to check the position of the mouse against the position of each ball. Trace through the for loop in your draw() function. What happens at the end of the first iteration?
You reset the values of click_X and click_Y. That's why you aren't detecting any hits on the other circles.
You could probably refactor your code to only reset those variables if something has been hit, but really, I would stop using them altogether.
I'm guessing that you're using those variables because you only want to check when the mouse is pressed? Just use the mousePressed variable for that. Then you can use the mouseX and mouseY variables directly.
Then your if statement would look like this:
if (mousePressed && dist(x, y[i], mouseX, mouseY) <= 20) {
println("HIT: " + i);
}
Also, using separate arrays like this is called parallel arrays, and is general a bad habit to get into. You should probably use classes instead.
Hello as a starting Java programmer I am busy creating a simple Pacman game in Java just to exercise and I have created a method for the ghost to move randomly horizontal of vertical but I have a few problems with it I don't know how to force it to go left-right or up-down (so not at the same time) my code for the ghost right now is as follows:
public void moveUp() {
}
public void moveLeft() {
if (g1x >= 500) { g1x = 500; g1r = false; }
else if (g1x <= 0) { g1x = 0; g1r = true; }
}
public void moveRight() {
if (g1x >= 500) { g1x = 500; g1r = false; }
else if (g1x <= 0) { g1x = 0; g1r = true; }
}
public void moveDown() {
}
public void paintComponent(Graphics g) {
super.paintComponent(g);
// pacman movement
diameter = 25;
pacman.drawPacMan(g, getHorPlaats(), getVerPlaats(), diameter, getView(), Color.yellow);
// ghosts movement
g1x += ghostSpeed * (Math.random() > 0.5? 1 : -1); // random direction
Random randomGen = new Random();
// generate a random number, between 0 - 3
int randomize = randomGen.nextInt(4);
switch(randomize) {
case 0:
moveUp();
System.out.println("up");
break;
case 1:
moveLeft();
System.out.println("Left");
break;
case 2:
moveRight();
System.out.println("Right");
break;
case 3:
moveDown();
System.out.println("down");
break;
}
ghost.drawGhost(g, randomize, 40, diameter, Color.red);
}
I have used the randomize variable for the direction as you can see and the horizontal position is hardcoded but the horizontal position is also stated by randomize but if I use it for both it makes some weird diagonal movements
the next problem is that i use a timer in my construction like this
public PacMan() {
// create timer and start timer
javax.swing.Timer autoKlik = new javax.swing.Timer(WACHTTIJD, this);
autoKlik.start();
}
so the random values for the directions is changing to fast ( 500ms ) but the speed also configures the gameplay speed so I think I made a logical mistake but Im not sure how to solve this.. do I have to seperate the actions maybe? or is there a easier way to achieve this please share your skills with me I am motivated to learn :) and if you might need more code I could post it here or give a link to my github account so you can check it out :)
Thanks in advance!
link to the full source: pacman game source
I suggest to separate the concerns:
a set of classes to model the simulation contains only the entities and the logic
a set of graphic classes which draw the pacman
a controller to handle actions and delegate them to the model, fired by the swing classes
In paint() method, for performance reason, do only the painting, NEVER 'new' nor call complex methods. Paint are called very often by the framework.