how to determine if a number is a smart number in java? - java

I have this question I am trying to solve. I have tried coding for the past 4 hours.
An integer is defined to be a Smart number if it is an element in the infinite sequence
1, 2, 4, 7, 11, 16 …
Note that 2-1=1, 4-2=2, 7-4=3, 11-7=4, 16-11=5 so for k>1, the kth element of the sequence is equal to the k-1th element + k-1. For example, for k=6, 16 is the kth element and is equal to 11 (the k-1th element) + 5 ( k-1).
Write function named isSmart that returns 1 if its argument is a Smart number, otherwise it returns 0. So isSmart(11) returns 1, isSmart(22) returns 1 and isSmart(8) returns 0
I have tried the following code to
import java.util.Arrays;
public class IsSmart {
public static void main(String[] args) {
// TODO Auto-generated method stub
int x = isSmart(11);
System.out.println(x);
}
public static int isSmart(int n) {
int[] y = new int[n];
int j = 0;
for (int i = 1; i <= n; i++) {
y[j] = i;
j++;
}
System.out.println(Arrays.toString(y));
for (int i = 0; i <= y.length; i++) {
int diff = 0;
y[j] = y[i+1] - y[i] ;
y[i] = diff;
}
System.out.println(Arrays.toString(y));
for (int i = 0; i < y.length; i++) {
if(n == y[i])
return 1;
}
return 0;
}
}
When I test it with 11 it is giving me 0 but it shouldn't. Any idea how to correct my mistakes?

It can be done in a simpler way as follows
import java.util.Arrays;
public class IsSmart {
public static void main(String[] args) {
int x = isSmart(11);
System.out.println("Ans: "+x);
}
public static int isSmart(int n) {
//------------ CHECK THIS LOGIC ------------//
int[] y = new int[n];
int diff = 1;
for (int i = 1; i < n; i++) {
y[0] =1;
y[i] = diff + y[i-1];
diff++;
}
//------------ CHECK THIS LOGIC ------------//
System.out.println(Arrays.toString(y));
for (int i = 0; i < y.length; i++) {
if(n == y[i])
return 1;
}
return 0;
}
}

One of the problems is the way that your populating your array.
The array can be populated as such
for(int i = 0; i < n; i++) {
y[i] = (i == 0) ? 1 : y[i - 1] + i;
}
The overall application of the function isSmart can be simplified to:
public static int isSmart(int n) {
int[] array = new int[n];
for(int i = 0; i < n; i++) {
array[i] = (i == 0) ? 1 : array[i - 1] + i;
}
for (int i = 0; i < array.length; i++) {
if (array[i] == n) return 1;
}
return 0;
}

Note that you don't need to build an array:
public static int isSmart(int n) {
int smart = 1;
for (int i = 1; smart < n; i++) {
smart = smart + i;
}
return smart == n ? 1 : 0;
}

Here is a naive way to think of it to get you started - you need to fill out the while() loop. The important thing to notice is that:
The next value of the sequence will be the number of items in the sequence + the last item in the sequence.
import java.util.ArrayList;
public class Test {
public static void main(String[] args) {
System.out.println(isSmart(11));
}
public static int isSmart(int n) {
ArrayList<Integer> sequence = new ArrayList<Integer>();
// Start with 1 in the ArrayList
sequence.add(1);
// You need to keep track of the index, as well as
// the next value you're going to add to your list
int index = 1; // or number of elements in the sequence
int nextVal = 1;
while (nextVal < n) {
// Three things need to happen in here:
// 1) set nextVal equal to the sum of the current index + the value at the *previous* index
// 2) add nextVal to the ArrayList
// 3) incriment index by 1
}
// Now you can check to see if your ArrayList contains n (is Smart)
if (sequence.contains(n)) { return 1; }
return 0;
}
}

First think of a mathematical solution.
Smart numbers form a sequence:
a0 = 1
an+1 = n + an
This gives a function for smart numbers:
f(x) = ax² + bx + c
f(x + 1) = f(x) + x = ...
So the problem is to find for a given y a matching x.
You can do this by a binary search.
int isSmart(int n) {
int xlow = 1;
int xhigh = n; // Exclusive. For n == 0 return 1.
while (xlow < xhigh) {
int x = (xlow + xhigh)/2;
int y = f(x);
if (y == n) {
return 1;
}
if (y < n) {
xlow = x + 1;
} else {
xhigh = x;
}
}
return 0;
}
Yet smarter would be to use the solution for x and look whether it is an integer:
ax² + bx + c' = 0 where c' = c - n
x = ...

I was playing around with this and I noticed something. The smart numbers are
1 2 4 7 11 16 22 29 ...
If you subtract one you get
0 1 3 6 10 15 21 28 ...
0 1 2 3 4 5 6 7 ...
The above sequence happens to be the sum of the first n numbers starting with 0 which is n*(n+1)/2. So add 1 to that and you get a smart number.
Since n and n+1 are next door to each other you can derive them by reversing the process.
Take 29, subtract 1 = 28, * 2 = 56. The sqrt(56) rounded up is 8. So the 8th smart number (counting from 0) is 29.
Using that information you can detect a smart number without a loop by simply reversing the process.
public static int isSmart(int v) {
int vv = (v-1)*2;
int sq = (int)Math.sqrt(vv);
int chk = (sq*(sq+1))/2 + 1;
return (chk == v) ? 1 : 0;
}
Using a version which supports longs have verified this against the iterative process from 1 to 10,000,000,000.

Related

Find the max value of the same length nails after hammered

I'm trying to solve this problem:
Given an array of positive integers, and an integer Y, you are allowed to replace at most Y array-elements with lesser values. Your goal is for the array to end up with as large a subset of identical values as possible. Return the size of this largest subset.
The array is originally sorted in increasing order, but you do not need to preserve that property.
So, for example, if the array is [10,20,20,30,30,30,40,40,40] and Y = 3, the result should be 6, because you can get six 30s by replacing the three 40s with 30s. If the array is [20,20,20,40,50,50,50,50] and Y = 2, the result should be 5, because you can get five 20s by replacing two of the 50s with 20s.
Below is my solution with O(nlogn) time complexity. (is that right?) I wonder if I can further optimize this solution?
Thanks in advance.
public class Nails {
public static int Solutions(int[] A, int Y) {
int N = A.length;
TreeMap < Integer, Integer > nailMap = new TreeMap < Integer, Integer > (Collections.reverseOrder());
for (int i = 0; i < N; i++) {
if (!nailMap.containsKey(A[i])) {
nailMap.put(A[i], 1);
} else {
nailMap.put(A[i], nailMap.get(A[i]) + 1);
}
}
List < Integer > nums = nailMap.values().stream().collect(Collectors.toList());
if (nums.size() == 1) {
return nums.get(0);
}
//else
int max = nums.get(0);
int longer = 0;
for (int j = 0; j < nums.size(); j++) {
int count = 0;
if (Y < longer) {
count = Y + nums.get(j);
} else {
count = longer + nums.get(j);
}
if (max < count) {
max = count;
}
longer += nums.get(j);
}
return max;
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
while (scanner.hasNext()) {
String[] input = scanner.nextLine().replaceAll("\\[|\\]", "").split(",");
System.out.println(Arrays.toString(input));
int[] A = new int[input.length - 1];
int Y = Integer.parseInt(input[input.length - 1]);
for (int i = 0; i < input.length; i++) {
if (i < input.length - 1) {
A[i] = Integer.parseInt(input[i]);
} else {
break;
}
}
int result = Solutions(A, Y);
System.out.println(result);
}
}
}
A C++ implementation would like the following where A is the sorted pin size array and K is the number of times the pins can be hammered.
{1,1,3,3,4,4,4,5,5}, K=2 should give 5 as the answer
{1,1,3,3,4,4,4,5,5,6,6,6,6,6,6}, K=2 should give 6 as the answer
int maxCount(vector<int>& A, int K) {
int n = A.size();
int best = 0;
int count = 1;
for (int i = 0; i < n-K-1; i++) {
if (A[i] == A[i + 1])
count = count + 1;
else
count = 1;
if (count > best)
best = count;
}
int result = max(best+K, min(K+1, n));
return result;
}
Since the array is sorted to begin with, a reasonably straightforward O(n) solution is, for each distinct value, to count how many elements have that value (by iteration) and how many elements have a greater value (by subtraction).
public static int doIt(final int[] array, final int y) {
int best = 0;
int start = 0;
while (start < array.length) {
int end = start;
while (end < array.length && array[end] == array[start]) {
++end;
}
// array[start .. (end-1)] is now the subarray consisting of a
// single value repeated (end-start) times.
best = Math.max(best, end - start + Math.min(y, array.length - end));
start = end; // skip to the next distinct value
}
assert best >= Math.min(y + 1, array.length); // sanity-check
return best;
}
First, iterate through all the nails and create a hash H that stores the number of nails for each size. For [1,2,2,3,3,3,4,4,4], H should be:
size count
1 : 1
2 : 2
3 : 3
4 : 3
Now create an little algorithm to evaluate the maximum sum for each size S, given Y:
BestForSize(S, Y){
total = H[S]
while(Y > 0){
S++
if(Y >= H[S] and S < biggestNailSize){
total += H[S]
Y -= H[S]
}
else{
total += Y
Y = 0
}
}
return total;
}
Your answer should be max(BestForSize(0, Y), BestForSize(1, Y), ..., BestForSize(maxSizeOfNail, Y)).
The complexity is O(n²). A tip to optimize is to start from the end. For example, after you have the maximum value of nails in the size 4, how can you use your answer to find the maximum number of size 3?
Here is my java implementation: First I build a reversed map of each integer and its occurence for example {1,1,1,1,3,3,4,4,5,5} would give {5=2, 4=2, 3=2, 1=4}, then for each integer I calculate the max occurence that we can get of it regarding the K and the occurences of the highest integers in the array.
public static int ourFunction(final int[] A, final int K) {
int length = A.length;
int a = 0;
int result = 0;
int b = 0;
int previousValue = 0;
TreeMap < Integer, Integer > ourMap = new TreeMap < Integer, Integer > (Collections.reverseOrder());
for (int i = 0; i < length; i++) {
if (!ourMap.containsKey(A[i])) {
ourMap.put(A[i], 1);
} else {
ourMap.put(A[i], ourMap.get(A[i]) + 1);
}
}
for (Map.Entry<Integer, Integer> entry : ourMap.entrySet()) {
if( a == 0) {
a++;
result = entry.getValue();
previousValue = entry.getValue();
} else {
if( K < previousValue)
b = K;
else
b = previousValue;
if ( b + entry.getValue() > result )
result = b + entry.getValue();
previousValue += entry.getValue();
}
}
return result;
}
Since the array is sorted, we can have an O(n) solution by iterating and checking if current element is equals to previous element and keeping track of the max length.
static int findMax(int []a,int y) {
int n = a.length,current = 1,max = 0,diff = 0;
for(int i = 1; i< n; i++) {
if(a[i] == a[i-1]) {
current++;
diff = Math.min(y, n-i-1);
max = Math.max(max, current+diff);
}else {
current = 1;
}
}
return max;
}
given int array is not sorted than you should sort
public static int findMax(int []A,int K) {
int current = 1,max = 0,diff = 0;
List<Integer> sorted=Arrays.stream(A).sorted().boxed().collect(Collectors.toList());
for(int i = 1; i< sorted.size(); i++) {
if(sorted.get(i).equals(sorted.get(i-1))) {
current++;
diff = Math.min(K, sorted.size()-i-1);
max = Math.max(max, current+diff);
}else {
current = 1;
}
}
return max;
}
public static void main(String args[]) {
List<Integer> A = Arrays.asList(3,1,5,3,4,4,3,3,5,5,5,1);
int[] Al = A.stream().mapToInt(Integer::intValue).toArray();
int result=findMax(Al, 5);
System.out.println(result);
}

How would these methods be setup to increment and decrement the last number in an array by 1? Java

For this project I am creating arrays, each with 50 elements, each element with a value between 0 and 9, and using those arrays called "BigIntegers" in addition, subtraction, multiplication and division. There are a few smaller methods called increment and decrement that I am having trouble figuring out. This is the code that I have done...
public class BigInteger {
int[] BigInteger = new int[50];
//xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
//x BigInteger(): creates a BigInteger of all 0's x
//xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
public BigInteger() {
for (int i = 0; i < 50; i++) {
BigInteger[i] = 0;
}
}
//xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
//x BigInteger(n): creates a BigInteger the size of n x
//xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
public BigInteger(int n) {
for (int i = 49; i > 0; i--) {
BigInteger[i] = n%10;
n = n/10;
}
BigInteger[0] = n;
}
public int[] getBigInteger() {
return BigInteger;
}
public BigInteger(BigInteger n) {
for(int i = 0; i < 50; i++) {
BigInteger[i] = n.getBigInteger()[i];
}
}
//xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
//x print(): prints out each element of the BigInteger array x
//xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
public void print() {
int index = 0;
for (int i = 0; i < BigInteger.length; i++) {
if (BigInteger[i] == 0) { index = 0; }
else { index = i; break; }
}
for(int i = index; i < BigInteger.length; i++) {
System.out.print(BigInteger[i] + " ");
}
}
public void decrement() {
int last = BigInteger.length;
for(int i = last; i < 50; i++) {
if (i == 0) { }
else last = BigInteger[last] - 1;
}
}
public static void main(String args[]) {
BigInteger big = new BigInteger(50);
BigInteger big2 = new BigInteger();
BigInteger big3 = new BigInteger(602345812);
}
The functions of these methods are:
• void increment( ) --- increase the value of the invoking object by 1
• void decrement( ) --- decrement the value of the invoking object by 1
I've spent numerous hours trying to figure out these, what seem to be, easy methods. Any help or advice?
Thanks I.
If I understand your question well, you should try this (with remarks from #Andy Turner and #Yang Li) as a starting point:
public void increment() {
for (int i = BigInteger.length - 1; i; i--)
if (BigInteger[i] < 9) {
BigInteger[i]++;
for (int j = i + 1; j < BigInteger.length; j++)
BigInteger[j] = 0;
break;
}
else if (i == 0)
// cannot increment 9
}
public void decrement() {
for (int i = BigInteger.length - 1; i; i--)
if (BigInteger[i] > 0) {
BigInteger[i]--;
for (int j = i + 1; j < BigInteger.length; j++)
BigInteger[j] = 9;
break;
}
else if (i == 0)
// cannot decrement 0
}
This will increment / decrement the last int element of your BigInteger array, where BigInteger.length - 1 is the index of the last element in your array.
There are already some answers by this post, but you need to be careful because some of these answers don't deal with overflow. If the last digit is 9 and you increment it by 1, it will overflow, if the last digit is 0 and you subtract, it will also be problematic.
You should also consider the case where all the digits in your BigInteger array are '9'. In this case if you increment it by one, no more rooms would be allowed in your array. Same thing may happen if all the digits in BigInteger are '0' and you want to subtract it by 1. For those cases you should probably throw an error.
Update
I have implemented the recursive way to increment the big integer.
Please note that I have handled the case where all digits in BigInteger are '9'. You should check if this input is expected, otherwise you should remove this check.
public void increment() {
increment(BigInteger.length-1);
}
private void increment(int index) {
if (index < 0) {
throw new RuntimeException("BigInteger maximum capacity reached!");
}
if (BigInteger[index] < 9) {
BigInteger[index]++;
} else {
BigInteger[index] = 0;
increment(--index);
}
}
Basically this will keep looking for leading digits until it is less than 9 and then increment that digit, during the process it will set any '9' it encounters to '0'.
I didn't implement the "decrease" method because I think it would be good that you can come up with your own solution.

Dynamic programming approach to TSP in Java

I'm a beginner, and I'm trying to write a working travelling salesman problem using dynamic programming approach.
This is the code for my compute function:
public static int compute(int[] unvisitedSet, int dest) {
if (unvisitedSet.length == 1)
return distMtx[dest][unvisitedSet[0]];
int[] newSet = new int[unvisitedSet.length-1];
int distMin = Integer.MAX_VALUE;
for (int i = 0; i < unvisitedSet.length; i++) {
for (int j = 0; j < newSet.length; j++) {
if (j < i) newSet[j] = unvisitedSet[j];
else newSet[j] = unvisitedSet[j+1];
}
int distCur;
if (distMtx[dest][unvisitedSet[i]] != -1) {
distCur = compute(newSet, unvisitedSet[i]) + distMtx[unvisitedSet[i]][dest];
if (distMin > distCur)
distMin = distCur;
}
else {
System.out.println("No path between " + dest + " and " + unvisitedSet[i]);
}
}
return distMin;
}
The code is not giving me the correct answers, and I'm trying to figure out where the error is occurring. I think my error occurs when I add:
distCur = compute(newSet, unvisitedSet[i]) + distMtx[unvisitedSet[i]][dest];
So I've been messing around with that part, moving the addition to the very end right before I return distMin and so on... But I couldn't figure it out.
Although I'm sure it can be inferred from the code, I will state the following facts to clarify.
distMtx stores all the intercity distances, and distances are symmetric, meaning if distance from city A to city B is 3, then the distance from city B to city A is also 3. Also, if two cities don't have any direct paths, the distance value is -1.
Any help would be very much appreciated!
Thanks!
Edit:
The main function reads the intercity distances from a text file. Because I'm assuming the number of cities will always be less than 100, global int variable distMtx is [100][100].
Once the matrix is filled with the necessary information, an array of all the cities are created. The names of the cities are basically numbers. So if I have 4 cities, set[4] = {0, 1, 2, 3}.
In the main function, after distMtx and set is created, first call to compute() is called:
int optRoute = compute(set, 0);
System.out.println(optRoute);
Sample input:
-1 3 2 7
3 -1 10 1
2 10 -1 4
7 1 4 -1
Expected output:
10
Here's a working iterative solution to the TSP with dynamic programming. What would make your life easier is to store the current state as a bitmask instead of in an array. This has the advantage that the state representation is compact and can be cached easily.
I made a video detailing the solution to this problem on Youtube, please enjoy! Code was taken from my github repo
/**
* An implementation of the traveling salesman problem in Java using dynamic
* programming to improve the time complexity from O(n!) to O(n^2 * 2^n).
*
* Time Complexity: O(n^2 * 2^n)
* Space Complexity: O(n * 2^n)
*
**/
import java.util.List;
import java.util.ArrayList;
import java.util.Collections;
public class TspDynamicProgrammingIterative {
private final int N, start;
private final double[][] distance;
private List<Integer> tour = new ArrayList<>();
private double minTourCost = Double.POSITIVE_INFINITY;
private boolean ranSolver = false;
public TspDynamicProgrammingIterative(double[][] distance) {
this(0, distance);
}
public TspDynamicProgrammingIterative(int start, double[][] distance) {
N = distance.length;
if (N <= 2) throw new IllegalStateException("N <= 2 not yet supported.");
if (N != distance[0].length) throw new IllegalStateException("Matrix must be square (n x n)");
if (start < 0 || start >= N) throw new IllegalArgumentException("Invalid start node.");
this.start = start;
this.distance = distance;
}
// Returns the optimal tour for the traveling salesman problem.
public List<Integer> getTour() {
if (!ranSolver) solve();
return tour;
}
// Returns the minimal tour cost.
public double getTourCost() {
if (!ranSolver) solve();
return minTourCost;
}
// Solves the traveling salesman problem and caches solution.
public void solve() {
if (ranSolver) return;
final int END_STATE = (1 << N) - 1;
Double[][] memo = new Double[N][1 << N];
// Add all outgoing edges from the starting node to memo table.
for (int end = 0; end < N; end++) {
if (end == start) continue;
memo[end][(1 << start) | (1 << end)] = distance[start][end];
}
for (int r = 3; r <= N; r++) {
for (int subset : combinations(r, N)) {
if (notIn(start, subset)) continue;
for (int next = 0; next < N; next++) {
if (next == start || notIn(next, subset)) continue;
int subsetWithoutNext = subset ^ (1 << next);
double minDist = Double.POSITIVE_INFINITY;
for (int end = 0; end < N; end++) {
if (end == start || end == next || notIn(end, subset)) continue;
double newDistance = memo[end][subsetWithoutNext] + distance[end][next];
if (newDistance < minDist) {
minDist = newDistance;
}
}
memo[next][subset] = minDist;
}
}
}
// Connect tour back to starting node and minimize cost.
for (int i = 0; i < N; i++) {
if (i == start) continue;
double tourCost = memo[i][END_STATE] + distance[i][start];
if (tourCost < minTourCost) {
minTourCost = tourCost;
}
}
int lastIndex = start;
int state = END_STATE;
tour.add(start);
// Reconstruct TSP path from memo table.
for (int i = 1; i < N; i++) {
int index = -1;
for (int j = 0; j < N; j++) {
if (j == start || notIn(j, state)) continue;
if (index == -1) index = j;
double prevDist = memo[index][state] + distance[index][lastIndex];
double newDist = memo[j][state] + distance[j][lastIndex];
if (newDist < prevDist) {
index = j;
}
}
tour.add(index);
state = state ^ (1 << index);
lastIndex = index;
}
tour.add(start);
Collections.reverse(tour);
ranSolver = true;
}
private static boolean notIn(int elem, int subset) {
return ((1 << elem) & subset) == 0;
}
// This method generates all bit sets of size n where r bits
// are set to one. The result is returned as a list of integer masks.
public static List<Integer> combinations(int r, int n) {
List<Integer> subsets = new ArrayList<>();
combinations(0, 0, r, n, subsets);
return subsets;
}
// To find all the combinations of size r we need to recurse until we have
// selected r elements (aka r = 0), otherwise if r != 0 then we still need to select
// an element which is found after the position of our last selected element
private static void combinations(int set, int at, int r, int n, List<Integer> subsets) {
// Return early if there are more elements left to select than what is available.
int elementsLeftToPick = n - at;
if (elementsLeftToPick < r) return;
// We selected 'r' elements so we found a valid subset!
if (r == 0) {
subsets.add(set);
} else {
for (int i = at; i < n; i++) {
// Try including this element
set |= 1 << i;
combinations(set, i + 1, r - 1, n, subsets);
// Backtrack and try the instance where we did not include this element
set &= ~(1 << i);
}
}
}
public static void main(String[] args) {
// Create adjacency matrix
int n = 6;
double[][] distanceMatrix = new double[n][n];
for (double[] row : distanceMatrix) java.util.Arrays.fill(row, 10000);
distanceMatrix[5][0] = 10;
distanceMatrix[1][5] = 12;
distanceMatrix[4][1] = 2;
distanceMatrix[2][4] = 4;
distanceMatrix[3][2] = 6;
distanceMatrix[0][3] = 8;
int startNode = 0;
TspDynamicProgrammingIterative solver = new TspDynamicProgrammingIterative(startNode, distanceMatrix);
// Prints: [0, 3, 2, 4, 1, 5, 0]
System.out.println("Tour: " + solver.getTour());
// Print: 42.0
System.out.println("Tour cost: " + solver.getTourCost());
}
}
I know this is pretty old question but it might help somebody in the future.
Here is very well written paper on TSP with dynamic programming approach
https://github.com/evandrix/SPOJ/blob/master/DP_Main112/Solving-Traveling-Salesman-Problem-by-Dynamic-Programming-Approach-in-Java.pdf
I think you have to make some changes in your program.
Here there is an implementation
http://www.sanfoundry.com/java-program-implement-traveling-salesman-problem-using-nearest-neighbour-algorithm/

java codility Frog-River-One

I have been trying to solve a Java exercise on a Codility web page.
Below is the link to the mentioned exercise and my solution.
https://codility.com/demo/results/demoH5GMV3-PV8
Can anyone tell what can I correct in my code in order to improve the score?
Just in case here is the task description:
A small frog wants to get to the other side of a river. The frog is currently located at position 0, and wants to get to position X. Leaves fall from a tree onto the surface of the river.
You are given a non-empty zero-indexed array A consisting of N integers representing the falling leaves. A[K] represents the position where one leaf falls at time K, measured in minutes.
The goal is to find the earliest time when the frog can jump to the other side of the river. The frog can cross only when leaves appear at every position across the river from 1 to X.
For example, you are given integer X = 5 and array A such that:
A[0] = 1
A[1] = 3
A[2] = 1
A[3] = 4
A[4] = 2
A[5] = 3
A[6] = 5
A[7] = 4
In minute 6, a leaf falls into position 5. This is the earliest time when leaves appear in every position across the river.
Write a function:
class Solution { public int solution(int X, int[] A); }
that, given a non-empty zero-indexed array A consisting of N integers and integer X, returns the earliest time when the frog can jump to the other side of the river.
If the frog is never able to jump to the other side of the river, the function should return −1.
For example, given X = 5 and array A such that:
A[0] = 1
A[1] = 3
A[2] = 1
A[3] = 4
A[4] = 2
A[5] = 3
A[6] = 5
A[7] = 4
the function should return 6, as explained above. Assume that:
N and X are integers within the range [1..100,000];
each element of array A is an integer within the range [1..X].
Complexity:
expected worst-case time complexity is O(N);
expected worst-case space complexity is O(X), beyond input storage (not counting the storage required for input arguments).
Elements of input arrays can be modified.
And here is my solution:
import java.util.ArrayList;
import java.util.List;
class Solution {
public int solution(int X, int[] A) {
int list[] = A;
int sum = 0;
int searchedValue = X;
List<Integer> arrayList = new ArrayList<Integer>();
for (int iii = 0; iii < list.length; iii++) {
if (list[iii] <= searchedValue && !arrayList.contains(list[iii])) {
sum += list[iii];
arrayList.add(list[iii]);
}
if (list[iii] == searchedValue) {
if (sum == searchedValue * (searchedValue + 1) / 2) {
return iii;
}
}
}
return -1;
}
}
You are using arrayList.contains inside a loop, which will traverse the whole list unnecessarily.
Here is my solution (I wrote it some time ago, but I believe it scores 100/100):
public int frog(int X, int[] A) {
int steps = X;
boolean[] bitmap = new boolean[steps+1];
for(int i = 0; i < A.length; i++){
if(!bitmap[A[i]]){
bitmap[A[i]] = true;
steps--;
if(steps == 0) return i;
}
}
return -1;
}
Here is my solution. It got me 100/100:
public int solution(int X, int[] A)
{
int[] B = A.Distinct().ToArray();
return (B.Length != X) ? -1 : Array.IndexOf<int>(A, B[B.Length - 1]);
}
100/100
public static int solution (int X, int[] A){
int[]counter = new int[X+1];
int ans = -1;
int x = 0;
for (int i=0; i<A.length; i++){
if (counter[A[i]] == 0){
counter[A[i]] = A[i];
x += 1;
if (x == X){
return i;
}
}
}
return ans;
}
A Java solution using Sets (Collections Framework) Got a 100%
import java.util.Set;
import java.util.TreeSet;
public class Froggy {
public static int solution(int X, int[] A){
int steps=-1;
Set<Integer> values = new TreeSet<Integer>();
for(int i=0; i<A.length;i++){
if(A[i]<=X){
values.add(A[i]);
}
if(values.size()==X){
steps=i;
break;
}
}
return steps;
}
Better approach would be to use Set, because it only adds unique values to the list. Just add values to the Set and decrement X every time a new value is added, (Set#add() returns true if value is added, false otherwise);
have a look,
public static int solution(int X, int[] A) {
Set<Integer> values = new HashSet<Integer>();
for (int i = 0; i < A.length; i++) {
if (values.add(A[i])) X--;
if (X == 0) return i;
}
return -1;
}
do not forget to import,
import java.util.HashSet;
import java.util.Set;
Here's my solution, scored 100/100:
import java.util.HashSet;
class Solution {
public int solution(int X, int[] A) {
HashSet<Integer> hset = new HashSet<Integer>();
for (int i = 0 ; i < A.length; i++) {
if (A[i] <= X)
hset.add(A[i]);
if (hset.size() == X)
return i;
}
return -1;
}
}
Simple solution 100%
public int solution(final int X, final int[] A) {
Set<Integer> emptyPosition = new HashSet<Integer>();
for (int i = 1; i <= X; i++) {
emptyPosition.add(i);
}
// Once all the numbers are covered for position, that would be the
// moment when the frog will jump
for (int i = 0; i < A.length; i++) {
emptyPosition.remove(A[i]);
if (emptyPosition.size() == 0) {
return i;
}
}
return -1;
}
Here's my solution.
It isn't perfect, but it's good enough to score 100/100.
(I think that it shouldn't have passed a test with a big A and small X)
Anyway, it fills a new counter array with each leaf that falls
counter has the size of X because I don't care for leafs that fall farther than X, therefore the try-catch block.
AFTER X leafs fell (because it's the minimum amount of leafs) I begin checking whether I have a complete way - I'm checking that every int in count is greater than 0.
If so, I return i, else I break and try again.
public static int solution(int X, int[] A){
int[] count = new int[X];
for (int i = 0; i < A.length; i++){
try{
count[A[i]-1]++;
} catch (ArrayIndexOutOfBoundsException e){ }
if (i >= X - 1){
for (int j = 0; j< count.length; j++){
if (count[j] == 0){
break;
}
if (j == count.length - 1){
return i;
}
}
}
}
return -1;
}
Here's my solution with 100 / 100.
public int solution(int X, int[] A) {
int len = A.length;
if (X > len) {
return -1;
}
int[] isFilled = new int[X];
int jumped = 0;
Arrays.fill(isFilled, 0);
for (int i = 0; i < len; i++) {
int x = A[i];
if (x <= X) {
if (isFilled[x - 1] == 0) {
isFilled[x - 1] = 1;
jumped += 1;
if (jumped == X) {
return i;
}
}
}
}
return -1;
}
Here's what I have in C#. It can probably still be refactored.
We throw away numbers greater than X, which is where we want to stop, and then we add numbers to an array if they haven't already been added.
When the count of the list has reached the expected number, X, then return the result. 100%
var tempArray = new int[X+1];
var totalNumbers = 0;
for (int i = 0; i < A.Length; i++)
{
if (A[i] > X || tempArray.ElementAt(A[i]) != 0)
continue;
tempArray[A[i]] = A[i];
totalNumbers++;
if (totalNumbers == X)
return i;
}
return -1;
below is my solution. I basically created a set which allows uniques only and then go through the array and add every element to set and keep a counter to get the sum of the set and then using the sum formula of consecutive numbers then I got 100% . Note : if you add up the set using java 8 stream api the solution is becoming quadratic and you get %56 .
public static int solution2(int X, int[] A) {
long sum = X * (X + 1) / 2;
Set<Integer> set = new HashSet<Integer>();
int setSum = 0;
for (int i = 0; i < A.length; i++) {
if (set.add(A[i]))
setSum += A[i];
if (setSum == sum) {
return i;
}
}
return -1;
}
My JavaScript solution that got 100 across the board. Since the numbers are assumed to be in the range of the river width, simply storing booleans in a temporary array that can be checked against duplicates will do. Then, once you have amassed as many numbers as the quantity X, you know you have all the leaves necessary to cross.
function solution(X, A) {
covered = 0;
tempArray = [];
for (let i = 0; i < A.length; i++) {
if (!tempArray[A[i]]) {
tempArray[A[i]] = true;
covered++
if(covered === X) return i;
}
}
return -1;
}
Here is my answer in Python:
def solution(X, A):
# write your code in Python 3.6
values = set()
for i in range (len(A)):
if A[i]<=X :
values.add(A[i])
if len(values)==X:
return i
return -1
Just tried this problem as well and here is my solution. Basically, I just declared an array whose size is equal to position X. Then, I declared a counter to monitor if the necessary leaves have fallen at the particular spots. The loop exits when these leaves have been met and if not, returns -1 as instructed.
class Solution {
public int solution(int X, int[] A) {
int size = A.length;
int[] check = new int[X];
int cmp = 0;
int time = -1;
for (int x = 0; x < size; x++) {
int temp = A[x];
if (temp <= X) {
if (check[temp-1] > 0) {
continue;
}
check[temp - 1]++;
cmp++;
}
if ( cmp == X) {
time = x;
break;
}
}
return time;
}
}
It got a 100/100 on the evaluation but I'm not too sure of its performance. I am still a beginner when it comes to programming so if anybody can critique the code, I would be grateful.
Maybe it is not perfect but its straightforward. Just made a counter Array to track the needed "leaves" and verified on each iteration if the path was complete. Got me 100/100 and O(N).
public static int frogRiver(int X, int[] A)
{
int leaves = A.Length;
int[] counter = new int[X + 1];
int stepsAvailForTravel = 0;
for(int i = 0; i < leaves; i++)
{
//we won't get to that leaf anyway so we shouldnt count it,
if (A[i] > X)
{
continue;
}
else
{
//first hit!, keep a count of the available leaves to jump
if (counter[A[i]] == 0)
stepsAvailForTravel++;
counter[A[i]]++;
}
//We did it!!
if (stepsAvailForTravel == X)
{
return i;
}
}
return -1;
}
This is my solution. I think it's very simple. It gets 100/100 on codibility.
set.contains() let me eliminate duplicate position from table.
The result of first loop get us expected sum. In the second loop we get sum of input values.
class Solution {
public int solution(int X, int[] A) {
Set<Integer> set = new HashSet<Integer>();
int sum1 = 0, sum2 = 0;
for (int i = 0; i <= X; i++){
sum1 += i;
}
for (int i = 0; i < A.length; i++){
if (set.contains(A[i])) continue;
set.add(A[i]);
sum2 += A[i];
if (sum1 == sum2) return i;
}
return -1;
}
}
Your algorithm is perfect except below code
Your code returns value only if list[iii] matches with searchedValue.
The algorithm must be corrected in such a way that, it returns the value if sum == n * ( n + 1) / 2.
import java.util.ArrayList;
import java.util.List;
class Solution {
public int solution(int X, int[] A) {
int list[] = A;
int sum = 0;
int searchedValue = X;
int sumV = searchedValue * (searchedValue + 1) / 2;
List<Integer> arrayList = new ArrayList<Integer>();
for (int iii = 0; iii < list.length; iii++) {
if (list[iii] <= searchedValue && !arrayList.contains(list[iii])) {
sum += list[iii];
if (sum == sumV) {
return iii;
}
arrayList.add(list[iii]);
}
}
return -1;
}
}
I think you need to check the performance as well. I just ensured the output only
This solution I've posted today gave 100% on codility, but respectivly #rafalio 's answer it requires K times less memory
public class Solution {
private static final int ARRAY_SIZE_LOWER = 1;
private static final int ARRAY_SIZE_UPPER = 100000;
private static final int NUMBER_LOWER = ARRAY_SIZE_LOWER;
private static final int NUMBER_UPPER = ARRAY_SIZE_UPPER;
public static class Set {
final long[] buckets;
public Set(int size) {
this.buckets = new long[(size % 64 == 0 ? (size/64) : (size/64) + 1)];
}
/**
* number should be greater than zero
* #param number
*/
public void put(int number) {
buckets[getBucketindex(number)] |= getFlag(number);
}
public boolean contains(int number) {
long flag = getFlag(number);
// check if flag is stored
return (buckets[getBucketindex(number)] & flag) == flag;
}
private int getBucketindex(int number) {
if (number <= 64) {
return 0;
} else if (number <= 128) {
return 1;
} else if (number <= 192) {
return 2;
} else if (number <= 256) {
return 3;
} else if (number <= 320) {
return 4;
} else if (number <= 384) {
return 5;
} else
return (number % 64 == 0 ? (number/64) : (number/64) + 1) - 1;
}
private long getFlag(int number) {
if (number <= 64) {
return 1L << number;
} else
return 1L << (number % 64);
}
}
public static final int solution(final int X, final int[] A) {
if (A.length < ARRAY_SIZE_LOWER || A.length > ARRAY_SIZE_UPPER) {
throw new RuntimeException("Array size out of bounds");
}
Set set = new Set(X);
int ai;
int counter = X;
final int NUMBER_REAL_UPPER = min(NUMBER_UPPER, X);
for (int i = 0 ; i < A.length; i++) {
if ((ai = A[i]) < NUMBER_LOWER || ai > NUMBER_REAL_UPPER) {
throw new RuntimeException("Number out of bounds");
} else if (ai <= X && !set.contains(ai)) {
counter--;
if (counter == 0) {
return i;
}
set.put(ai);
}
}
return -1;
}
private static int min(int x, int y) {
return (x < y ? x : y);
}
}
This is my solution it got me 100/100 and O(N).
public int solution(int X, int[] A) {
Map<Integer, Integer> leaves = new HashMap<>();
for (int i = A.length - 1; i >= 0 ; i--)
{
leaves.put(A[i] - 1, i);
}
return leaves.size() != X ? -1 : Collections.max(leaves.values());
}
This is my solution
public func FrogRiverOne(_ X : Int, _ A : inout [Int]) -> Int {
var B = [Int](repeating: 0, count: X+1)
for i in 0..<A.count {
if B[A[i]] == 0 {
B[A[i]] = i+1
}
}
var time = 0
for i in 1...X {
if( B[i] == 0 ) {
return -1
} else {
time = max(time, B[i])
}
}
return time-1
}
A = [1,2,1,4,2,3,5,4]
print("FrogRiverOne: ", FrogRiverOne(5, &A))
Actually I re-wrote this exercise without seeing my last answer and came up with another solution 100/100 and O(N).
public int solution(int X, int[] A) {
Set<Integer> leaves = new HashSet<>();
for(int i=0; i < A.length; i++) {
leaves.add(A[i]);
if (leaves.contains(X) && leaves.size() == X) return i;
}
return -1;
}
I like this one better because it is even simpler.
This one works good on codality 100% out of 100%. It's very similar to the marker array above but uses a map:
public int solution(int X, int[] A) {
int index = -1;
Map<Integer, Integer> map = new HashMap();
for (int i = 0; i < A.length; i++) {
if (!map.containsKey(A[i])) {
map.put(A[i], A[i]);
X--;
if (X == 0) {index = i;break;}
}
}
return index;
}
%100 with js
function solution(X, A) {
let leafSet = new Set();
for (let i = 0; i < A.length; i += 1) {
if(A[i] <= 0)
continue;
if (A[i] <= X )
leafSet.add(A[i]);
if (leafSet.size == X)
return i;
}
return -1;
}
With JavaScript following solution got 100/100.
Detected time complexity: O(N)
function solution(X, A) {
let leaves = new Set();
for (let i = 0; i < A.length; i++) {
if (A[i] <= X) {
leaves.add(A[i])
if (leaves.size == X) {
return i;
}
}
}
return -1;
}
100% Solution using Javascript.
function solution(X, A) {
if (A.length === 0) return -1
if (A.length < X) return -1
let steps = X
const leaves = {}
for (let i = 0; i < A.length; i++) {
if (!leaves[A[i]]) {
leaves[A[i]] = true
steps--
}
if (steps === 0) {
return i
}
}
return -1
}
C# Solution with 100% score:
using System;
using System.Collections.Generic;
class Solution {
public int solution(int X, int[] A) {
// go through the array
// fill a hashset, until the size of hashset is X
var set = new HashSet<int>();
int i = 0;
foreach (var a in A)
{
if (a <= X)
{
set.Add(a);
}
if (set.Count == X)
{
return i;
}
i++;
}
return -1;
}
}
https://app.codility.com/demo/results/trainingXE7QFJ-TZ7/
I have a very simple solution (100% / 100%) using HashSet. Lots of people check unnecessarily whether the Value is less than or equal to X. This task cannot be otherwise.
public static int solution(int X, int[] A) {
Set<Integer> availableFields = new HashSet<>();
for (int i = 0; i < A.length; i++) {
availableFields.add(A[i]);
if (availableFields.size() == X){
return i;
}
}
return -1;
}
public static int solutions(int X, int[] A) {
Set<Integer> values = new HashSet<Integer>();
for (int i = 0; i < A.length; i++) {
if (values.add(A[i])) {
X--;
}
if (X == 0) {
return i;
}
}
return -1;
}
This is my solution. It uses 3 loops but is constant time and gets 100/100 on codibility.
class FrogLeap
{
internal int solution(int X, int[] A)
{
int result = -1;
long max = -1;
var B = new int[X + 1];
//initialize all entries in B array with -1
for (int i = 0; i <= X; i++)
{
B[i] = -1;
}
//Go through A and update B with the location where that value appeared
for (int i = 0; i < A.Length; i++)
{
if( B[A[i]] ==-1)//only update if still -1
B[A[i]] = i;
}
//start from 1 because 0 is not valid
for (int i = 1; i <= X; i++)
{
if (B[i] == -1)
return -1;
//The maxValue here is the earliest time we can jump over
if (max < B[i])
max = B[i];
}
result = (int)max;
return result;
}
}
Short and sweet C++ code. Gets perfect 100%... Drum roll ...
#include <set>
int solution(int X, vector<int> &A) {
set<int> final;
for(unsigned int i =0; i< A.size(); i++){
final.insert(A[i]);
if(final.size() == X) return i;
}
return -1;
}

Implementing a binary insertion sort using binary search in Java

I'm having trouble combining these two algorithms together. I've been asked to modify Binary Search to return the index that an element should be inserted into an array. I've been then asked to implement a Binary Insertion Sort that uses my Binary Search to sort an array of randomly generated ints.
My Binary Search works the way it's supposed to, returning the correct index whenever I test it alone. I wrote out Binary Insertion Sort to get a feel for how it works, and got that to work as well. As soon as I combine the two together, it breaks. I know I'm implementing them incorrectly together, but I'm not sure where my problem lays.
Here's what I've got:
public class Assignment3
{
public static void main(String[] args)
{
int[] binary = { 1, 7, 4, 9, 10, 2, 6, 12, 3, 8, 5 };
ModifiedBinaryInsertionSort(binary);
}
static int ModifiedBinarySearch(int[] theArray, int theElement)
{
int leftIndex = 0;
int rightIndex = theArray.length - 1;
int middleIndex = 0;
while(leftIndex <= rightIndex)
{
middleIndex = (leftIndex + rightIndex) / 2;
if (theElement == theArray[middleIndex])
return middleIndex;
else if (theElement < theArray[middleIndex])
rightIndex = middleIndex - 1;
else
leftIndex = middleIndex + 1;
}
return middleIndex - 1;
}
static void ModifiedBinaryInsertionSort(int[] theArray)
{
int i = 0;
int[] returnArray = new int[theArray.length + 1];
for(i = 0; i < theArray.length; i++)
{
returnArray[ModifiedBinarySearch(theArray, theArray[i])] = theArray[i];
}
for(i = 0; i < theArray.length; i++)
{
System.out.print(returnArray[i] + " ");
}
}
}
The return value I get for this when I run it is 1 0 0 0 0 2 0 0 3 5 12. Any suggestions?
UPDATE: updated ModifiedBinaryInsertionSort
static void ModifiedBinaryInsertionSort(int[] theArray)
{
int index = 0;
int element = 0;
int[] returnArray = new int[theArray.length];
for (int i = 1; i < theArray.lenght - 1; i++)
{
element = theArray[i];
index = ModifiedBinarySearch(theArray, 0, i, element);
returnArray[i] = element;
while (index >= 0 && theArray[index] > element)
{
theArray[index + 1] = theArray[index];
index = index - 1;
}
returnArray[index + 1] = element;
}
}
Here is my method to sort an array of integers using binary search.
It modifies the array that is passed as argument.
public static void binaryInsertionSort(int[] a) {
if (a.length < 2)
return;
for (int i = 1; i < a.length; i++) {
int lowIndex = 0;
int highIndex = i;
int b = a[i];
//while loop for binary search
while(lowIndex < highIndex) {
int middle = lowIndex + (highIndex - lowIndex)/2; //avoid int overflow
if (b >= a[middle]) {
lowIndex = middle+1;
}
else {
highIndex = middle;
}
}
//replace elements of array
System.arraycopy(a, lowIndex, a, lowIndex+1, i-lowIndex);
a[lowIndex] = b;
}
}
How an insertion sort works is, it creates a new empty array B and, for each element in the unsorted array A, it binary searches into the section of B that has been built so far (From left to right), shifts all elements to the right of the location in B it choose one right and inserts the element in. So you are building up an at-all-times sorted array in B until it is the full size of B and contains everything in A.
Two things:
One, the binary search should be able to take an int startOfArray and an int endOfArray, and it will only binary search between those two points. This allows you to make it consider only the part of array B that is actually the sorted array.
Two, before inserting, you must move all elements one to the right before inserting into the gap you've made.
I realize this is old, but the answer to the question is that, perhaps a little unintuitively, "Middleindex - 1" will not be your insertion index in all cases.
If you run through a few cases on paper the problem should become apparent.
I have an extension method that solves this problem. To apply it to your situation, you would iterate through the existing list, inserting into an empty starting list.
public static void BinaryInsert<TItem, TKey>(this IList<TItem> list, TItem item, Func<TItem, TKey> sortfFunc)
where TKey : IComparable
{
if (list == null)
throw new ArgumentNullException("list");
int min = 0;
int max = list.Count - 1;
int index = 0;
TKey insertKey = sortfFunc(item);
while (min <= max)
{
index = (max + min) >> 1;
TItem value = list[index];
TKey compKey = sortfFunc(value);
int result = compKey.CompareTo(insertKey);
if (result == 0)
break;
if (result > 0)
max = index - 1;
else
min = index + 1;
}
if (index <= 0)
index = 0;
else if (index >= list.Count)
index = list.Count;
else
if (sortfFunc(list[index]).CompareTo(insertKey) < 0)
++index;
list.Insert(index, item);
}
Dude, I think you have some serious problem with your code. Unfortunately, you are missing the fruit (logic) of this algorithm. Your divine goal here is to get the index first, insertion is a cake walk, but index needs some sweat. Please don't see this algorithm unless you gave your best and desperate for it. Never give up, you already know the logic, your goal is to find it in you. Please let me know for any mistakes, discrepancies etc. Happy coding!!
public class Insertion {
private int[] a;
int n;
int c;
public Insertion()
{
a = new int[10];
n=0;
}
int find(int key)
{
int lowerbound = 0;
int upperbound = n-1;
while(true)
{
c = (lowerbound + upperbound)/2;
if(n==0)
return 0;
if(lowerbound>=upperbound)
{
if(a[c]<key)
return c++;
else
return c;
}
if(a[c]>key && a[c-1]<key)
return c;
else if (a[c]<key && a[c+1]>key)
return c++;
else
{
if(a[c]>key)
upperbound = c-1;
else
lowerbound = c+1;
}
}
}
void insert(int key)
{
find(key);
for(int k=n;k>c;k--)
{
a[k]=a[k-1];
}
a[c]=key;
n++;
}
void display()
{
for(int i=0;i<10;i++)
{
System.out.println(a[i]);
}
}
public static void main(String[] args)
{
Insertion i=new Insertion();
i.insert(56);
i.insert(1);
i.insert(78);
i.insert(3);
i.insert(4);
i.insert(200);
i.insert(6);
i.insert(7);
i.insert(1000);
i.insert(9);
i.display();
}
}

Categories

Resources