small picture contained inside a bigger picture function doesn't work - java

I tried to code the naive solution for that, which tries to match a first index and then go deeper.
But I get true when I shouldn't and I cant find why.
this is my code (Java):
boolean contains(BufferedImage img, BufferedImage subImg, int[] coordinates){
boolean result = false;
int verticalLimit = img.getWidth() - subImg.getWidth();
int horizontalLimit =img.getHeight() - subImg.getHeight();
for (int i = 0; i <= horizontalLimit; i++) {
for (int j = 0; j <= verticalLimit; j++) {
if(img.getRGB(j, i) == subImg.getRGB(0, 0)){
result = true;
coordinates[0] = j; // stores the first indices for self use
coordinates[1] = i;
for (int k = i; k < subImg.getHeight() && result; k++) {
for (int l = j; l < subImg.getWidth() && result; l++) {
if(img.getRGB(l, k) != subImg.getRGB(l, k)){
result = false;
}
}
}
if(result) return result;
}
}
}
return result;
}

your search for the sub image is off. you jump way far into the sub image by indexing with k,l i've changed to 0 and using k,l as offsets from i,j. also use a labeled break from having to hold "found" state. if all of the pixels match it reaches the end of the loop and returns true otherwise it breaks and tries again until all possible locations are tried and returns false if none found.
static boolean contains(BufferedImage img, BufferedImage subImg, int[] coordinates) {
int verticalLimit = img.getWidth() - subImg.getWidth();
int horizontalLimit = img.getHeight() - subImg.getHeight();
for (int i = 0; i <= horizontalLimit; i++) {
for (int j = 0; j <= verticalLimit; j++) {
subSearch:
for (int k = 0; k < subImg.getHeight(); k++) {
for (int l = 0; l < subImg.getWidth(); l++) {
if (img.getRGB(l + j, k + i) != subImg.getRGB(l, k)) {
break subSearch;
}
}
if (k==subImg.getHeight()-1){
coordinates[0] = j;
coordinates[1] = i;
return true;
}
}
}
}
return false;
}

Related

Why is this DP algo slower than the brute forcea algo?

I am working on implementing the longest palindromic substring problem and I followed the approach with DP and extra O(N^2) (yes I know there is an even more efficient algorithm but I am not interested in that in this post).
My implementation which basically uses the recurrence:
P(i, j) = P(i + 1, j - 1) ^ s[i] == s[j]
builds the relevant table but the run time is much slower than expected.
It does give the correct output if I run it in my IDE after several seconds (15+) but it is rejected by any online judge as too slow. I am not sure where the issue is since I am using memorization. So there is not recomputation of the same cases.
The strings that are starting to show that the algorithm has a performance issue are over 900 chars long.
Update
I am updating the question to add full source code and test case
Dynamic Programming approach O(N^2) time and O(N^2) space (not accepted and too slow)
public static String longestPalindromeDP(String s) {
Map<List<Integer>, Boolean> cache = new HashMap<>();
for(int i = 0; i < s.length(); i++) {
for(int j = 0; j < s.length(); j++) {
populateTable(s, i, j, cache);
}
}
int start = 0;
int end = 0;
for(int i = 0; i < s.length(); i++) {
for(int j = 0; j < s.length(); j++) {
if(cache.get(Arrays.asList(i, j))) {
if(Math.abs(start - end) < Math.abs(i - j)) {
start = i;
end = j;
}
}
}
}
return s.substring(start, end + 1);
}
private static boolean populateTable(String s, int i, int j, Map<List<Integer>, Boolean> cache) {
if(i == j) {
cache.put(Arrays.asList(i, j), true);
return true;
}
if(Math.abs(i - j) == 1) {
cache.put(Arrays.asList(i, j), s.charAt(i) == s.charAt(j));
return s.charAt(i) == s.charAt(j);
}
if(cache.containsKey(Arrays.asList(i, j))) {
return cache.get(Arrays.asList(i, j));
}
boolean res = populateTable(s, i + 1, j - 1, cache) && s.charAt(i) == s.charAt(j);
cache.put(Arrays.asList(i, j), res);
cache.put(Arrays.asList(j, i), res);
return res;
}
This is very slow in the populateTable but once it finishes the result is correct.
Brute force O(N^3) time and O(1) space: much faster and accepted
public static String longestPalindromeBruteForce(String s) {
if(s.length() == 1) {
return s;
}
String result = "";
for(int i = 0; i < s.length(); i++) {
for(int j = i + 1; j <= s.length(); j++) {
String tmp = s.substring(i, j);
if(isPalindrome(tmp)) {
if(tmp.length() > result.length()) {
result = tmp;
if(result.length() == s.length()) {
return result;
}
}
}
}
}
return result;
}
private static boolean isPalindrome(String s) {
for(int i = 0, j = s.length() - 1; i < j; i++, j--) {
if(s.charAt(i) != s.charAt(j)) {
return false;
}
}
return true;
}
Testing and input:
public static void main(String[] args) {
final String string1 = "civilwartestingwhetherthatnaptionoranynartionsoconceivedandsodedicatedcanlongendureWeareqmetonagreatbattlefiemldoftzhatwarWehavecometodedicpateaportionofthatfieldasafinalrestingplaceforthosewhoheregavetheirlivesthatthatnationmightliveItisaltogetherfangandproperthatweshoulddothisButinalargersensewecannotdedicatewecannotconsecratewecannothallowthisgroundThebravelmenlivinganddeadwhostruggledherehaveconsecrateditfaraboveourpoorponwertoaddordetractTgheworldadswfilllittlenotlenorlongrememberwhatwesayherebutitcanneverforgetwhattheydidhereItisforusthelivingrathertobededicatedheretotheulnfinishedworkwhichtheywhofoughtherehavethusfarsonoblyadvancedItisratherforustobeherededicatedtothegreattdafskremainingbeforeusthatfromthesehonoreddeadwetakeincreaseddevotiontothatcauseforwhichtheygavethelastpfullmeasureofdevotionthatweherehighlyresolvethatthesedeadshallnothavediedinvainthatthisnationunsderGodshallhaveanewbirthoffreedomandthatgovernmentofthepeoplebythepeopleforthepeopleshallnotperishfromtheearth";
//final String string2 = "ibvjkmpyzsifuxcabqqpahjdeuzaybqsrsmbfplxycsafogotliyvhxjtkrbzqxlyfwujzhkdafhebvsdhkkdbhlhmaoxmbkqiwiusngkbdhlvxdyvnjrzvxmukvdfobzlmvnbnilnsyrgoygfdzjlymhprcpxsnxpcafctikxxybcusgjwmfklkffehbvlhvxfiddznwumxosomfbgxoruoqrhezgsgidgcfzbtdftjxeahriirqgxbhicoxavquhbkaomrroghdnfkknyigsluqebaqrtcwgmlnvmxoagisdmsokeznjsnwpxygjjptvyjjkbmkxvlivinmpnpxgmmorkasebngirckqcawgevljplkkgextudqaodwqmfljljhrujoerycoojwwgtklypicgkyaboqjfivbeqdlonxeidgxsyzugkntoevwfuxovazcyayvwbcqswzhytlmtmrtwpikgacnpkbwgfmpavzyjoxughwhvlsxsgttbcyrlkaarngeoaldsdtjncivhcfsaohmdhgbwkuemcembmlwbwquxfaiukoqvzmgoeppieztdacvwngbkcxknbytvztodbfnjhbtwpjlzuajnlzfmmujhcggpdcwdquutdiubgcvnxvgspmfumeqrofewynizvynavjzkbpkuxxvkjujectdyfwygnfsukvzflcuxxzvxzravzznpxttduajhbsyiywpqunnarabcroljwcbdydagachbobkcvudkoddldaucwruobfylfhyvjuynjrosxczgjwudpxaqwnboxgxybnngxxhibesiaxkicinikzzmonftqkcudlzfzutplbycejmkpxcygsafzkgudy";
long startTime = System.nanoTime();
String palindromic = longestPalindromeDP(string1);
long elapsed = TimeUnit.SECONDS.convert(System.nanoTime() - startTime, TimeUnit.NANOSECONDS);
System.out.println(elapsed);
System.out.println(palindromic);
}
The BruteForce finishes in 0 seconds.
The DynamicProgramming finishes in up to 9 seconds (depending on the machine)
What is the problem here?
I understand that there can be some optimization to improve the performance but how is it possible that the O(N^3) outperforms the O(N^2) since I use memoization?
Update
Update based on the answer of #CahidEnesKeleş
I replaced the List<Integer> as key with a custom object:
class IdxPair {
int i;
int j;
IdxPair(int i, int j) {
this.i = i;
this.j = j;
}
#Override
public boolean equals(Object o) {
if(o == null || !(o instanceof IdxPair)) return false;
if(this == o ) return true;
IdxPair other = (IdxPair) o;
return this.i == other.i && this.j == other.j;
}
#Override
public int hashCode() {
int h = 31;
h = 31 * i + 37;
h = (37 * h) + j;
return h;
}
}
Although a couple of test cases that previously failed, now pass it is still too slow overall and rejected by online judges.
I tried using c-like arrays instead of HashMap, here is the code:
public static String longestPalindromeDP(String s) {
int[][] cache = new int[s.length()][s.length()];
for (int i = 0; i < s.length(); i++) {
for (int j = 0; j < s.length(); j++) {
cache[i][j] = -1;
}
}
for(int i = 0; i < s.length(); i++) {
for(int j = 0; j < s.length(); j++) {
populateTable(s, i, j, cache);
}
}
int start = 0;
int end = 0;
for(int i = 0; i < s.length(); i++) {
for(int j = 0; j < s.length(); j++) {
if(cache[i][j] == 1) {
if(Math.abs(start - end) < Math.abs(i - j)) {
start = i;
end = j;
}
}
}
}
return s.substring(start, end + 1);
}
private static boolean populateTable(String s, int i, int j, int[][] cache) {
if(i == j) {
cache[i][j] = 1;
return true;
}
if(Math.abs(i - j) == 1) {
cache[i][j] = s.charAt(i) == s.charAt(j) ? 1 : 0;
return s.charAt(i) == s.charAt(j);
}
if (cache[i][j] != -1) {
return cache[i][j] == 1;
}
boolean res = populateTable(s, i + 1, j - 1, cache) && s.charAt(i) == s.charAt(j);
cache[i][j] = res ? 1 : 0;
cache[j][i] = res ? 1 : 0;
return res;
}
This code works faster than brute force approach. In my computer old dp finishes in ~5000 milliseconds, new dp finishes ~30 milliseconds, and bruteforce finishes in ~100 milliseconds.
Now that we know the reason for slowness, I conducted further experiments and measured the following codes' running time.
for (int i = 0; i < 1000; i++) {
for (int j = 0; j < 1000; j++) {
cache.put(Arrays.asList(i, j), true);
}
}
This code finishes in 2000 milliseconds. I further divided the expression to find exactly what is the source of slowness.
for (int i = 0; i < 1000; i++) {
for (int j = 0; j < 1000; j++) {
Arrays.asList(i, j);
}
}
This code finishes in 37 milliseconds.
Map<Integer, Boolean> cache = new HashMap<>();
for (int i = 0; i < 1000; i++) {
for (int j = 0; j < 1000; j++) {
cache.put(i*1000 + j, true);
}
}
This code finishes in 97 milliseconds.
Not Arrays.asList neither Map.put is slow. Maybe the hash function of the list is slow
for (int i = 0; i < 1000; i++) {
for (int j = 0; j < 1000; j++) {
Arrays.asList(i, j).hashCode();
}
}
This code finishes in 101 milliseconds.
No. This is fast as well. So maybe hash values collide most of the time. To test this, I put all hash codes inside a set and checked its size.
Set<Integer> hashSet = new HashSet<>();
for (int i = 0; i < 1000; i++) {
for (int j = 0; j < 1000; j++) {
hashSet.add(Arrays.asList(i, j).hashCode());
}
}
System.out.println(hashSet.size());
And it gave 31969. 31969 out of 1000000 is about %3,2. I think this is the source of the slowness. 1m item is too much for HashMap. It starts to move away from O(1) as more and more collisions occur.

Java CARD Class compare method

int[] value = new int[5];
boolean result = true;
for(int i = 0; i < 5; i++) {
value[i] = cards[i].getValue();
}
for(int i = 0; i < 5; i++) {
for(int j = i;j < 5; j++) {
if(value[i] == value[j + 1]) {
result = false;
}
}
}
return result;
This code is essentially going to compare the values each card object has, and if two cards in the array have the same value return true. We have 5 cards in each hand and that is why the array length is 5. The getValue method returns an integer which is essentially the value of the card. I don't seem to know what I'm doing wrong to be getting errors on my method.
Your array access is incorrect when you use j + 1, that will be out of bounds when j is four (at the end of the length for value). And, I would prefer to use value.length instead of hardcoding. Something like
for (int i = 0; i < value.length - 1; i++) {
for (int j = i + 1; j < value.length; j++) {
if (value[i] == value[j]) {
result = false;
}
}
}
Additionally, as pointed out by Tom, in the comments; it is pointless to continue iteration when the result becomes false. You could simply return when it becomes false and avoid the result variable entirely. Like,
for (int i = 0; i < value.length - 1; i++) {
for (int j = i + 1; j < value.length; j++) {
if (value[i] == value[j]) {
return false;
}
}
}
return true;
Another option, in Java 8+, would be something like
return IntStream.of(value).allMatch(x -> value[0] == x);

How to make while loop work properly to correct given 2D array

I'm trying to write a method that will take a two-dimensional array as an input, and return a new 2D array in which all the zeroes are removed from the array.
Also, if there is an element in the first array that has a value equal to the length of the second array, then it should be removed and all elements in the second array will be subtracted by 1.
The above process should be repeated for the second array also.
This is what I've written for the code implementation so far, but the code gets stuck in a loop and I don't think it's doing what it's supposed to do.
Note: When ArrayUtils is called, the Apache Lang library is being used, and this is the 2D array I inputted:
[[0, 0, 2, 2, 3, 4], [0, 0, 2, 2, 3, 4]]
Code:
public static int[][] removeTrivialCases(int[][] startingSums) {
int[][] correctedSums = startingSums;
int counter = 0;
int numRows = correctedSums[0].length;
int numCols = correctedSums[1].length;
boolean zeroesExist = true;
boolean valueEqualsDimension = true;
boolean trivialCasesRemain = true;
while(trivialCasesRemain) {
for (int i = 0; i < correctedSums.length; i++) {
for (int j = 0; j < correctedSums[i].length; j++) {
if (correctedSums[i][j] == 0) {
trivialCasesRemain = true;
correctedSums[i] = ArrayUtils.removeElement(correctedSums[i], j);
}
for (int h = 0; h < correctedSums[i].length; h++) {
if (correctedSums[i][h] == 0) {
zeroesExist = true;
}
}
}
}
for (int i = 0; i < correctedSums[0].length; i++) {
if (correctedSums[0][i] == numCols) {
trivialCasesRemain = true;
correctedSums[0] = ArrayUtils.removeElement(correctedSums[0], i);
for (int j = 0; j < correctedSums[0].length; j++) {
correctedSums[0][j]--;
}
valueEqualsDimension = false;
for (int h = 0; h < correctedSums[0].length; h++) {
if (correctedSums[0][h] == numCols) {
valueEqualsDimension = true;
}
}
}
}
for (int i = 0; i < correctedSums[1].length; i++) {
if (correctedSums[1][i] == numRows) {
trivialCasesRemain = true;
correctedSums[1] = ArrayUtils.removeElement(correctedSums[1], i);
for (int j = 0; j < correctedSums[1].length; j++) {
correctedSums[1][j]--;
}
}
valueEqualsDimension = false;
for (int h = 0; h < correctedSums[1].length; i++) {
if (correctedSums[1][h] == numRows) {
valueEqualsDimension = true;
}
}
}
if (!zeroesExist || !valueEqualsDimension) {
trivialCasesRemain = false;
}
}
return correctedSums;
}
Regarding,
but the code gets stuck in a loop and I don't think it's doing what it's supposed to do.
Here:
for (int h = 0; h < correctedSums[1].length; i++) {
This loop will never end since h never changes within the loop. It should be:
for (int h = 0; h < correctedSums[1].length; h++) {
If you ran the code in a debugger, or used println's, you'd know what loop the code is stuck in, and this would allow you to inspect it immediately and correct it.

Searching for a sum in an array

I have a method which counts how many sums of 3 elements,which are equal to 0, does the array contains. I need help finding the way to stop counting the same triplets in the loop. For instance, 1 + 3 - 4 = 0, but also 3 - 4 +1 = 0.Here is the method:
private static int counter(int A[])
{
int sum;
int e = A.length;
int count = 0;
for (int i=0; i<e; i++)
{
for (int j=i+1; j<e; j++)
{
sum=A[i]+A[j];
if(binarySearch(A,sum))
{
count++;
}
}
}
return count;
edit: I have to use the Binary Search (the array is sorted).
Here is the binarySearch code:
private static boolean binarySearch(int A[],int y)
{
y=-y;
int max = A.length-1;
int min = 0;
int mid;
while (max>=min)
{
mid = (max+min)/2;
if (y==A[mid])
{
return true;
}
if (y<A[mid])
{
max=mid-1;
}
else
{
min=mid+1;
}
}
return false;
You can avoid counting different triplets by making one assumption that we need to look for the triplets (x,y,z) with x < y < z and A[x] + A[y] + A[z] == 0.
So what you need to do is to modify the binarySearch function to return the number of index that greater than y and has A[z] == -(A[x] + A[y])
private static int binarySearch(int A[],int y, int index)
{
y=-y;
int max = A.length-1;
int min = index + 1;
int mid;
int start = A.length;
int end = 0;
while (max>=min)
{
mid = (max+min)/2;
if (y==A[mid])
{
start = Math.min(start, mid);
max = mid - 1;
} else
if (y<A[mid])
{
max=mid-1;
}
else
{
min=mid+1;
}
}
int max = A.length - 1;
int min = index + 1;
while (max>=min)
{
mid = (max+min)/2;
if (y==A[mid])
{
end = Math.max(end, mid);
min= mid + 1;
} else if (y<A[mid])
{
max=mid-1;
}
else
{
min=mid+1;
}
}
if(start <= end)
return end - start + 1;
return 0;
}
So the new function binarySearch will return the total number of index that greater than index and has value equals to y.
So the rest of the job is to count the answer
private static int counter(int A[])
{
int sum;
int e = A.length;
int count = 0;
for (int i=0; i<e; i++)
{
for (int j=i+1; j<e; j++)
{
sum=A[i]+A[j];
count += binarySearch(A,sum, j);
}
}
return count;
}
Notice how I used two binary search to find the starting and the ending index of all values greater than y!
private static int counter(int A[]) {
int e = A.length;
int count = 0;
for (int i = 0; i < e; i++) {
for (int j = 1; (j < e - 1) && (i != j); j++) {
for (int k = 2; (k < e - 2) && (j != k); k++) {
if (A[i] + A[j] + A[k] == 0) {
count++;
}
}
}
}
return count;
}
private static int counter(int ints[]) {
int count = 0;
for (int i = 0; i < ints.length; i++) {
for (int j = 0; j < ints.length; j++) {
if (i == j) {
// cannot sum with itself.
continue;
}
for (int k = 0; k < ints.length; k++) {
if (k == j) {
// cannot sum with itself.
continue;
}
if ((ints[i] + ints[j] + ints[k]) == 0) {
count++;
}
}
}
}
return count;
}
To solve problem with binary search
Your code was almost correct. all you needed to do was just to replace
if (sum == binarySearch(A,sum)) {
with this
if (binarySearch(A,sum)) {
I am assuming that your binarySearch(A, sum) method will return true if it will found sum in A array else false
private static int counter(int A[]) {
int sum;
int e = A.length;
int count = 0;
for (int i=0; i<e; i++) {
for (int j=i+1; j<e; j++) {
sum=A[i]+A[j];
if (binarySearch(A,sum)) {
count++;
}
}
}
return count;
}
Here is my solution assuming the array is sorted and there are no repeated elements, I used the binary search function you provided. Could the input array contain repeated elements? Could you provide some test cases?
In order to not counting the same triplets in the loop, we should have a way of inspecting repeated elements, the main idea that I used here is to have a list of int[] arrays saving the sorted integers of {A[i],A[j],-sum}.Then in each iteration I compare new A[i] and A[j] to the records in the list, thus eliminating repeated ones.
private static int counter(int A[]){
int sum;
int e = A.length;
int count = 0;
List<int[]> elements = new ArrayList<>();
boolean mark = false;
for (int i=0; i<e; i++)
{
for (int j=i+1; j<e; j++)
{
sum=A[i]+A[j];
if (-sum == binarySearch(A,sum)){
int[] sort = {A[i],A[j],-sum};
if(-sum == A[i] || -sum == A[j]){
continue;
}else{
Arrays.sort(sort);
//System.out.println("sort" + sort[0] + " " + sort[1]+ " " + sort[2]);
for (int[] element : elements) {
if((element[0] == sort[0] && element[1] == sort[1]) && element[2] == sort[2])
mark = true;
}
if(mark){
mark = false;
continue;
}else{
count++;
elements.add(sort);
//System.out.println("Else sort" + sort[0] + " " + sort[1]);
}
}
}
}
}
return count;
}
you can use a assisted Array,stored the flag that indicate if the element is used;
Here is the code:
private static int counter(int A[])
{
int sum;
int e = A.length;
int count = 0;
// assisted flag array
List<Boolean> flagList = new ArrayList<Boolean>(e);
for (int k = 0; k < e; k++) {
flagList.add(k, false);// initialization
}
for (int i=0; i<e; i++)
{
for (int j=i+1; j<e; j++)
{
sum=A[i]+A[j];
// if element used, no count
if(binarySearch(A,sum)&& !flagList.get(i)&& !flagList.get(j))
{
count++;
flagList.set(i, true);
flagList.set(j, true);
}
}
}
return count;

Floyd-warshall algorithm

i'm currently working on a small towerdefense project in Java and i got stuck with the pathfinding.
I read a lot about A* dijkstra and such things but i decided that it is probably the best to use Floyd-Warshall for pathfinding (at least it seems to me as its solving the all pair shortest path problem).
Anyway i tried to implement it on my own but it doesn't exactly work as it should.
i used the code on wikipedia as a start http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
So here's my Code:
public class MyMap {
public class MyMapNode {
// list of neighbour nodes
public List<MyMapNode> neighbours;
// Currently no need for this :)
public int cellX, cellY;
// NodeIndex for pathreconstruction
public int index;
// this value is checked by units on map to decide wether path needs
// reconstruction
public boolean isFree = true;
public MyMapNode(int cellX, int cellY, int index) {
this.cellX = cellX;
this.cellY = cellY;
this.index = index;
neighbours = new ArrayList<MyMapNode>();
}
public void addNeighbour(MyMapNode neighbour) {
neighbours.add(neighbour);
}
public void removeNeighbour(MyMapNode neighbour) {
neighbours.remove(neighbour);
}
public boolean isNeighbour(MyMapNode node) {
return neighbours.contains(node);
}
}
//MapSize
public static final int CELLS_X = 10;
public static final int CELLS_Y = 10;
public MyMapNode[][] map;
public MyMap() {
//Fill Map with Nodes
map = new MyMapNode[CELLS_X][CELLS_Y];
for (int i = 0; i < CELLS_X; i++) {
for (int j = 0; j < CELLS_Y; j++) {
map[i][j] = new MyMapNode(i, j, j + i * CELLS_Y);
}
}
//-------------------------------------------------
initNeighbours();
recalculatePath();
}
public void initNeighbours() {
//init neighbourhood without diagonals
for (int i = 0; i < CELLS_X; i++) {
for (int j = 0; j < CELLS_Y; j++) {
int x, y;// untere Grenze
if (j == 0)
y = 0;
else
y = -1;
if (i == 0)
x = 0;
else
x = -1;
int v, w;// obere Grenze
if (j == CELLS_Y - 1)
w = 0;
else
w = 1;
if (i == CELLS_X - 1)
v = 0;
else
v = 1;
for (int h = x; h <= v; h++) {
if (h != 0)
map[i][j].addNeighbour(map[i + h][j]);
}
for (int g = y; g <= w; g++) {
if (g != 0)
map[i][j].addNeighbour(map[i][j + g]);
}
}
}
}
//AdjacencyMatrix
public int[][] path = new int[CELLS_X * CELLS_Y][CELLS_X * CELLS_Y];
//for pathreconstruction
public MyMapNode[][] next = new MyMapNode[CELLS_X * CELLS_Y][CELLS_X
* CELLS_Y];
public void initAdjacency() {
for (int i = 0; i < map.length; i++) {
for (int j = 0; j < map[0].length; j++) {
path[i][j] = 1000;
List<MyMapNode> tmp = map[i][j].neighbours;
for (MyMapNode m : tmp) {
path[m.index][map[i][j].index] = 1;
path[map[i][j].index][m.index] = 1;
}
}
}
}
public void floydWarshall() {
int n = CELLS_X * CELLS_Y;
for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (path[i][k] + path[k][j] < path[i][j]) {
path[i][j] = path[i][k] + path[k][j];
next[i][j] = getNodeWithIndex(k);
}
}
}
}
}
public void recalculatePath() {
initAdjacency();
floydWarshall();
}
public MyMapNode getNextWayPoint(MyMapNode i, MyMapNode j) {
if (path[i.index][j.index] >=1000)
return null;
MyMapNode intermediate = next[i.index][j.index];
if (intermediate == null)
return j; /* there is an edge from i to j, with no vertices between */
else
return getNextWayPoint(i, intermediate);
}
public MyMapNode getNodeWithIndex(int k) {
//for testing purpose,this can be done faster
for (int i = 0; i < map.length; i++) {
for (int j = 0; j < map[0].length; j++) {
if (map[i][j].index == k)
return map[i][j];
}
}
return null;
}
public void removeMapNode(MyMapNode m) {
//for testing purpose,this can be done faster
m.isFree = false;
for (int i = 0; i < map.length; i++) {
for (int j = 0; j < map[0].length; j++) {
if (map[i][j].neighbours.contains(m)) {
map[i][j].neighbours.remove(m);
}
}
}
}
}
the Floyd-Warshall algorithm is designed to work on a graph so i create one where every node knows its neighbours (which are the nodes it is connected to).
I actually don't now where it goes wrong but it somehow does.
but at least it looks like the initialization of the adjacency matrix works.
in the floydwarshall function i hoped to get the index of the next node in the next[][] but i only get null or 10/11;
So my question is what am i doing wrong or is my approach wrong at all?
i hope someone can help me.
if you need any further information please ask
p.S. sorry for my bad english ;)
I don't have Java available but it seems like your initAdjacency() function is flawed. path[][] is of dimension [CELL_X * CELLS_Y][CELLS_X * CELLS_Y] while you're iterating over the dimensions of map which are [CELL_X][CELL_Y] so you're not setting all the elements without edges to the default value of 1000 and they end up being 0.
Try adding
for (int i = 0; i < CELLS_X * CELLS_Y; i++)
for (int j = 0; j < CELLS_X * CELLS_Y; j++)
path[i][j] = 1000;
to the beginning of the initAdjacency() function, before your loop, to initialize it properly.
You may also want to do
for (int i = 0; i < CELLS_X * CELLS_Y) path[i][i] = 0;
after that just in case, I'm not sure this affects the algorithm.

Categories

Resources