How i can print thread status? - java

Task:
Sequentially override the state of the child stream and print to the console (possibly through an intermediate state): BLOCKED WAITING TERMINATED method Thread.sleep () not to use.
My code:
public class Test {
private static final Object M = new Object();
public static void main(String[] args) throws InterruptedException {
Thread t = new Thread() {
public void run() {
synchronized(M) {
try {
M.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
};
t.start();
synchronized(M) {
System.out.println(t.getState());
M.notify();
M.notifyAll();
}
System.out.println(t.getState());
System.out.println(t.getState());
t.join();
synchronized(M) {
M.notify();
M.notifyAll();
System.out.println(t.getState());
}
}
}
RESULT:
Question:
Pls help how to make it appear in the given sequence: BLOCKED WAITING TERMINATED

This is solution:
public class Test {
private static final Object M = new Object();
public static void main(String[] args) throws InterruptedException {
Thread t = new Thread() {
public void run() {
try {
synchronized(M) {
M.notifyAll(); // notify before you stay on wait
M.wait();
M.notifyAll();
M.wait();
M.notifyAll();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
};
synchronized(M) { // you need to lock M before start thread
t.start();
M.wait(); //wait and notifyAll need for make sure before thread t already get lock M and will blocked next time
M.notifyAll();
System.out.println(t.getState()); //BLOCKED
M.wait();
System.out.println(t.getState()); //WAITING
M.notifyAll();
}
t.join();
synchronized(M) {
M.notifyAll();
System.out.println(t.getState());
}
}
}

Related

Wait And Notify IllegalMonitorStateException Anonymous Class

According to How to use wait and notify in Java? I have to synchronized on the same object to call notify.
I have synchronized on the same haveCoffee object. Why I am getting IllegalMonitorStateException when I call the notify method ?
I am Sleeping
Exception in thread "Thread-1" java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at com.example.concurrent.basic.WaitAndNotify$2.run(WaitAndNotify.java:42)
in the following code:
public class WaitAndNotify {
public static void main(String[] args) {
Thread haveCoffee = new Thread() {
public void run() {
synchronized (this) {
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.print("I am awake and ready to have coffee");
}
}
};
Thread me = new Thread() {
public void run() {
synchronized (haveCoffee) {
try {
System.out.print("I am Sleeping");
Thread.sleep(4000);
notify();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
};
haveCoffee.start();
me.start();
}
}
On the first Thread, you call wait on an object while having its monitor (the object being this haveCoffee).
However, on the second thread, you call notify() on me, while having the monitor of haveCoffee.
This should work:
public class WaitAndNotify {
public static void main(String[] args) {
final Thread haveCoffee = new Thread() {
public void run() {
synchronized (this) {
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.print("I am awake and ready to have coffee");
}
}
};
Thread me = new Thread() {
public void run() {
synchronized (haveCoffee) {
try {
System.out.print("I am Sleeping");
Thread.sleep(4000);
haveCoffee.notify();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
};
haveCoffee.start();
me.start();
}
}
From oracle documentation page,
public class IllegalMonitorStateException
extends RuntimeException
Thrown to indicate that a thread has attempted to wait on an object's monitor or to notify other threads waiting on an object's monitor without owning the specified monitor.
Whenever you get this exception, just go through your code and check wait() and notify() calls and the object on which these calls have been invoked. You can easily figure out what went wrong.
EDIT:
wait() or notify() calls have to be invoked on object once you get monitor on that object.
You should be calling
haveCoffee.notify()
instead of just
notify().
If you invoke just notify() it calls the notify() method on the this object which is the second thread me where as you have synchronized on haveCoffee thread and that is the reason for exception you are seeing.
So the code in thread2 me should looks like:
synchronized (haveCoffee) {
try {
System.out.print("I am Sleeping");
Thread.sleep(4000);
haveCoffee.notify();
} catch (InterruptedException e) {
e.printStackTrace();
}
}

Print odd and even using two threads in Java

I am trying to do it using two threads like below. Can someone point the obvious mistake I am doing here?
public class OddEven {
public static boolean available = false;
public static Queue<Integer> queue = new LinkedList<Integer>();
static Thread threadEven = new Thread() {
#Override
public void run() {
printEven();
}
public synchronized void printEven() {
while (!available) {
try {
wait();
Thread.sleep(2000);
} catch (InterruptedException e) {
}
}
System.out.println(queue.remove());
available = false;
notifyAll();
}
};
static Thread threadOdd = new Thread() {
#Override
public void run() {
printOdd();
}
public synchronized void printOdd () {
while (available) {
try {
wait();
Thread.sleep(2000);
} catch (InterruptedException e) {
}
}
System.out.println(queue.remove());
available = true;
notifyAll();
}
};
public static void main(String[] args) {
int n = 20;
for (int i = 1; i < n; i++) {
queue.add(i);
}
threadOdd.start();
threadEven.start();
try {
Thread.sleep(60000);
} catch (InterruptedException e) {
e.printStackTrace();
}
try {
threadOdd.join();
threadEven.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
But this program is only printing 1 and quitting. After printing 1 the available should be true and printEven should wake up, print and set available to false. I don't understand what is going wrong here? I saw other solutions but want to know why my solution is not working.
Putting synchronized on an instance method means that the thread calling that method has to acquire the lock on that instance; public void synchronized printOdd() is syntax sugar for
public void printOdd() {
synchronized(this) {
...
}
}
where this is different for each instance, since ThreadOdd and threadEven are two different objects and each one uses its own lock. The methods notifyAll and wait are called on the object that is being used as the lock. When one thread waits it never gets notified because the notification only applies to other threads waiting on the same lock as the notifying thread.

How to tell main thread that part of thread job is done

Is it true that notify works only after thread is finished? In code below I can't get notification until I comment while (true). How to tell main thread that part of thread job is done?
public class ThreadMain {
public Thread reader;
private class SerialReader implements Runnable {
public void run() {
while (true) {
try {
Thread.sleep(3000);
synchronized(this) {
System.out.println("notifying");
notify();
System.out.println("notifying done");
}
} catch (Exception e) {
System.out.println(e);
}
}
}
}
ThreadMain() {
reader = new Thread(new SerialReader());
}
public static void main(String [] args) {
ThreadMain d= new ThreadMain();
d.reader.start();
synchronized(d.reader) {
try {
d.reader.wait();
System.out.println("got notify");
} catch (Exception e) {
System.out.println(e);
}
}
}
}
You should try to avoid using wait and notify with the newer versions of Java, as they're difficult to get right. Try using something like a BlockingQueue instead
public class ThreadMain {
public final BlockingQueue<Boolean> queue = new LinkedBlockingQueue<>();
private class SerialReader implements Runnable {
public void run() {
while (true) {
try {
Thread.sleep(3000);
System.out.println("notifying");
queue.offer(Boolean.TRUE);
System.out.println("notifying done");
} catch (Exception e) {
System.out.println(e);
}
}
}
}
ThreadMain() {
reader = new Thread(new SerialReader());
}
public static void main(String [] args) {
ThreadMain d= new ThreadMain();
d.reader.start();
try {
d.queue.take(); // block until something is put in the queue
System.out.println("got notify");
} catch (Exception e) {
System.out.println(e);
}
}
}
If you want to be notified when the Thread t completes, call t.join() in the calling Thread. This will block until t has finished its Runnable.
As user oddparity noted in the comments, you are calling wait() and notify() on different objects. A possible fix for this would be to make your SerialReader extend Thread rather than implement Runnable and then assigning reader to be a new instance of the SerialReader directly. :
public class ThreadMain {
public Thread reader;
private class SerialReader extends Thread {
public void run() {
while (true) {
try {
Thread.sleep(3000);
synchronized(this) {
System.out.println("notifying");
notify();
System.out.println("notifying done");
}
} catch (Exception e) {
System.out.println(e);
}
}
}
}
ThreadMain() {
reader = new SerialReader();
}
public static void main(String [] args) {
ThreadMain d= new ThreadMain();
d.reader.start();
synchronized(d.reader) {
try {
d.reader.wait();
System.out.println("got notify");
} catch (Exception e) {
System.out.println(e);
}
}
}
}
If you want to use Runnable with wait()/notify() you can do it this way :
public class ThreadMain {
public Thread reader;
private class SerialReader implements Runnable {
public void run() {
Thread thisThread = Thread.currentThread();
while (true) {
try {
Thread.sleep(3000);
synchronized (thisThread) {
System.out.println("notifying");
thisThread.notify();
System.out.println("notifying done");
}
} catch (Exception e) {
System.out.println(e);
}
}
}
}
ThreadMain() {
reader = new Thread(new SerialReader());
}
public static void main(String[] args) {
ThreadMain d = new ThreadMain();
d.reader.start();
synchronized (d.reader) {
try {
d.reader.wait();
System.out.println("got notify");
} catch (Exception e) {
System.out.println(e);
}
}
}
}

Synchronize Is Blocking When I Try To CountDown

I followed the advice I found in this post using CountDownLatch and i'm running into a problem. I wrote up this test and ran it and my thread I created blocks when i try to synchronize on lock.
private CountDownLatch lock = new CountDownLatch(1);
#Test
public void testBlock() {
Runnable r = new Runnable() {
#Override
public void run() {
try
{
synchronized(this) {
this.wait(50);
}
}
catch (InterruptedException e)
{
e.printStackTrace();
throw (new RuntimeException(e));
}
releaseLock();
}
};
Thread t = new Thread(r);
t.setDaemon(true);
t.start();
waitOnCallback();
}
private void releaseLock() {
synchronized(lock) { // Thread t blocks here
lock.countDown();
}
}
private void waitOnCallback() {
synchronized(lock) {
try
{
lock.await();
}
catch (InterruptedException e)
{
throw new RuntimeException(e);
}
}
}
Why isn't this working?
A CountDownLatch is not an object on which you need to synchronize (i.e. remove the synchronized(lock) blocks). all thread-safety is handled internally to the object itself.

Wait until child threads completed : Java

Problem description : -
Step 1: Take input FILE_NAME from user at main thread.
Step 2: Perform 10 operations on that file (i.e count chars, count lines etc.. ), and all those 10 operations must be in septate threads. It means there must be 10 child threads.
Step 3: Main thread waits until all those child threads completed.
Step 4: Print result.
What I did :-
I did a sample code with 3 threads. I don't want file operation code from your side.
public class ThreadTest {
// This is object to synchronize on.
private static final Object waitObject = ThreadTest.class;
// Your boolean.
private static boolean boolValue = false;
public final Result result = new Result();
public static void main(String[] args) {
final ThreadTest mytest = new ThreadTest();
System.out.println("main started");
new Thread(new Runnable() {
public void run() {
System.out.println("Inside thread");
//Int initialiser
new Thread(new Runnable() {
public void run() {
System.out.println("Setting integer value");
mytest.result.setIntValue(346635);
System.out.println("Integer value seted");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}).start();
//String initialiser
new Thread(new Runnable() {
public void run() {
System.out.println("Setting string value");
mytest.result.setStringValue("Hello hi");
System.out.println("String value seted");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}).start();
//Boolean initialiser
new Thread(new Runnable() {
public void run() {
System.out.println("Setting boolean value");
mytest.result.setBoolValue(true);
System.out.println("Boolean value seted");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}).start();
System.out.println("Thread is finished");
//Notify to main thread
synchronized (ThreadTest.waitObject) {
ThreadTest.boolValue = true;
ThreadTest.waitObject.notifyAll();
}
}
}).start();
try {
synchronized (ThreadTest.waitObject) {
while (!ThreadTest.boolValue) {
ThreadTest.waitObject.wait();
}
}
} catch (InterruptedException ie) {
ie.printStackTrace();
}
System.out.println("main finished");
System.out.println("Result is : " + mytest.result.toString());
}
}
Problem :-
My above code is not giving correct answer. How can I do that?
Alternate solutions:
CountDownLatch class does the same. But I don't want to use that class.
I looked this similar solution and I want to use methods of Thread only.
You can do:
Thread t = new Thread() {
public void run() {
System.out.println("text");
// other complex code
}
};
t.start();
t.join();
This way you will wait until the thread finishes and just then continue. You can join multiple threads:
for (Thread thread : threads) {
thread.join();
}
I would recommend looking at the Executors framework first, and then look into the CompletionService.
Then you can write something like this:
ExecutorService executor = Executors.newFixedThreadPool(maxThreadsToUse);
CompletionService completion = new ExecutorCompletionService(executor);
for (each sub task) {
completion.submit(new SomeTaskYouCreate())
}
// wait for all tasks to complete.
for (int i = 0; i < numberOfSubTasks; ++i) {
completion.take(); // will block until the next sub task has completed.
}
executor.shutdown();
In Java 8 a far better approach is to use parallelStream()
Note: it is far easier to see exactly what these background tasks are doing.
public static void main(String[] args) {
Stream.<Runnable>of(
() -> mytest.result.setIntValue(346635),
() -> mytest.result.setStringValue("Hello hi"),
() -> mytest.result.setBoolValue(true) )
.parallel()
.forEach(Runnable::run);
System.out.println("main finished");
System.out.println("Result is : " + mytest.result.toString());
}
I took out the debug information and the sleep as these don't alter the outcome.
You may want to choose CountDownLatch from java.util.concurrent. From JavaDocs:
A synchronization aid that allows one or more threads to wait until a
set of operations being performed in other threads completes.
Sample code:
import java.util.concurrent.CountDownLatch;
public class Test {
private final ChildThread[] children;
private final CountDownLatch latch;
public Test() {
this.children = new ChildThread[4];
this.latch = new CountDownLatch(children.length);
children[0] = new ChildThread(latch, "Task 1");
children[1] = new ChildThread(latch, "Task 2");
children[2] = new ChildThread(latch, "Task 3");
children[3] = new ChildThread(latch, "Task 4");
}
public void run() {
startChildThreads();
waitForChildThreadsToComplete();
}
private void startChildThreads() {
Thread[] threads = new Thread[children.length];
for (int i = 0; i < threads.length; i++) {
ChildThread child = children[i];
threads[i] = new Thread(child);
threads[i].start();
}
}
private void waitForChildThreadsToComplete() {
try {
latch.await();
System.out.println("All child threads have completed.");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
private class ChildThread implements Runnable {
private final String name;
private final CountDownLatch latch;
protected ChildThread(CountDownLatch latch, String name) {
this.latch = latch;
this.name = name;
}
#Override
public void run() {
try {
// Implementation
System.out.println(name + " has completed.");
} finally {
latch.countDown();
}
}
}
public static void main(String[] args) {
Test test = new Test();
test.run();
}
}
Output:
Task 1 has completed.
Task 4 has completed.
Task 3 has completed.
Task 2 has completed.
All child threads have completed.
There are many ways to approach this. Consider CountDownLatch:
import java.util.concurrent.CountDownLatch;
public class WorkerTest {
final int NUM_JOBS = 3;
final CountDownLatch countDownLatch = new CountDownLatch(NUM_JOBS);
final Object mutex = new Object();
int workData = 0;
public static void main(String[] args) throws Exception {
WorkerTest workerTest = new WorkerTest();
workerTest.go();
workerTest.awaitAndReportData();
}
private void go() {
for (int i = 0; i < NUM_JOBS; i++) {
final int fI = i;
Thread t = new Thread() {
public void run() {
synchronized(mutex) {
workData++;
}
try {
Thread.sleep(fI * 1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
countDownLatch.countDown();
}
};
t.start();
}
}
private void awaitAndReportData() throws InterruptedException {
countDownLatch.await();
synchronized(mutex) {
System.out.println("All workers done. workData=" + workData);
}
}
}
Check if all child threads are dead, every n seconds. Simple, yet effective method:
boolean allDead=false;
while(! allDead){
allDead=true;
for (int t = 0; t < threadCount; t++)
if(threads[t].isAlive()) allDead=false;
Thread.sleep(2000);
}

Categories

Resources