Overload resolution, which method is called - java

Lets suppose I have a ComponentBase class, who is child of ObjectContextDecorator and grandchild of ObjectContext.
public class ComponentBase extends ObjectContextDecorator {
}
public class ObjectContextDecorator extends ObjectContext {
public void set(String objectTypePath, String characteristicName, Object value) {
//...
}
}
public class ObjectContext {
public void set(String characteristicName, Object value, boolean forced) {
//...
}
}
The set methods on ObjectContextDecorator and ObjectContext are very simillar. Consider this sample code:
ComponentBase base = new ComponentBase();
base.set(""OTM4E_EFFLEVEL"", ""IE1 / STD"", true);
Both methods' signatures fit the one being called correctly. I am not able to change the methods' signatures since it is not my code.
How does the compiler know which method I intended to call?
I know that on the IDE you can point out which method you are actually intending to call, but in this situation, I am using a class loader to load a class which has a method containing the sample code.

It's all explained in the JLS §15.2 Method Invocation Expressions. It tells you all about how the correct method to call is chosen. And note that this does not always succeed.
In your specific case, the two methods are overloads of each other, so §15.2.2 "Compile-Time Step 2: Determine Method Signature" applies - which overload to call is determined at compile time. This step is further split into 3 phases.
The first phase (§15.12.2.2) performs overload resolution without permitting boxing or unboxing conversion, or the use of variable arity method invocation. If no applicable method is found during this phase then processing continues to the second phase.
In the first phase, the compiler tries to find applicable methods without allowing boxing conversions. In your case, to call the overload that takes an Object, a boxing conversion is needed to convert the boolean true to the type Object, so that overload won't be chosen in the first phase.
If no method applicable by strict invocation is found, the search for applicable methods continues with phase 2 (§15.12.2.3).
Otherwise, the most specific method (§15.12.2.5) is chosen among the methods that are applicable by strict invocation.
Well, we have found exactly one method, so we will just choose that method. There is no ambiguity.

How does the compiler know which method I intended to call?
It checks for the arguments and determines which one is more specific following the rules described JLS §15.2
In your case, the call:
base.set("OTM4E_EFFLEVEL", "IE1 / STD", true)
the arguments are String,String, boolean
Which matches the first class (parameters names changed for brevity)
public class ObjectContext {
public void set(String s, Object o, boolean b){
//...
}
}
The second class is not invoked because the third parameter is an Object:
public class ObjectContextDecorator extends ObjectContext {
public void set(String s, String ss, Object thisOneRightHere) {
//...
}
}
and while the boolean value true can match if it is autoboxed still the first one is more specific. The rule that is applying here is:
The first phase (§15.12.2.2) performs overload resolution without permitting boxing or unboxing conversion
But, for instance, if you use the object wrapper Boolean in the signature:
public class ObjectContext {
public void set(String s, Object o, Boolean b){ //<-- third param changed from boolean to Boolean
//...
}
}
Then they will both match, and the compiler would let you know with the following message:
> A.java:25: error: reference to set is ambiguous
> base.set("OTM4E_EFFLEVEL", "IE1 / STD", true);
> ^ both method set(String,Object,Boolean) in ObjectContext and method set(String,String,Object) in ObjectContextDecorator match
But that's not the case in your example.

Related

Java compiler gets confused when passing overloaded method reference to an overloaded method

I'm encountering some weird behavior when passing overloaded method references to a method overloaded with a Function and Supplier variant:
public class OverloadedMethodReferenceToOverloadedMethod<X, Y> {
public void method(Function<X, ?> f) {}
public void method(Supplier<?> s) {}
public void methodFunction(Function<X, ?> f) {}
public void methodSupplier(Supplier<?> s) {}
class NonMatchingOverload {
public NonMatchingOverload() {}
public NonMatchingOverload(Y overload) {}
}
class MatchingOverload {
public MatchingOverload() {}
public MatchingOverload(X overload) {}
}
public void foo() {
// (1) This does not compile: the compiler complains about a mismatch in argument list length
methodFunction(Object::new);
// (2) This does not compile: the overload's parameter of Y does not match the Function's expected parameter X
methodFunction(NonMatchingOverload::new);
// (3) This compiles: the compiler correctly matches the overloaded constructor to Function
methodFunction(MatchingOverload::new);
// (4) These compile: we can pass the empty constructors as Suppliers
methodSupplier(Object::new);
methodSupplier(NonMatchingOverload::new);
methodSupplier(MatchingOverload::new);
// (5) This compiles: the compiler matches Object's only (empty) constructor to the overload with Supplier
method(Object::new);
// (6) This correctly does not compile: since both overloads match a constructor this is an ambiguous reference
method(MatchingOverload::new);
// (7) This (incorrectly?) does not compile: the compiler thinks this is simultaneously an 'ambiguous' and 'invalid constructor' reference...
// Ambiguous because it thinks both the Function and Supplier overload match (like the previous example)
// Invalid because it turns out it can't convert the non-empty constructor's parameter of Y to the expected Function parameter of X...
method(NonMatchingOverload::new);
// (8) These do compile: when explicitly typing the constructor reference as Supplier the compiler manages to match the correct overload
Supplier<NonMatchingOverload> sup = NonMatchingOverload::new;
method(sup);
method((Supplier<NonMatchingOverload>) NonMatchingOverload::new);
}
}
Statement #7 is where both the compiler and myself get confused: how can a reference be ambiguous if one of the two options turns out invalid? Am I doing something crazy, or is the compiler just not smart enough to figure out that only one valid option remains?
The behavior of the compiler for statement #2 is also strange to me, I would have expected the compiler to dismiss the overload with the parameter and complain about argument list length again. Could this have the same root cause as the strange behavior for #7?
Please note that this behavior is the same (but less concisely demonstrated) with regular method references, non-inner classes and without the use of generic X and Y types or the wildcards for Function.
(Bonus question: can anyone come up with a better name for a test class like this?)

Forcing most specific method [duplicate]

I'm experimenting with this code:
interface Callee {
public void foo(Object o);
public void foo(String s);
public void foo(Integer i);
}
class CalleeImpl implements Callee
public void foo(Object o) {
logger.debug("foo(Object o)");
}
public void foo(String s) {
logger.debug("foo(\"" + s + "\")");
}
public void foo(Integer i) {
logger.debug("foo(" + i + ")");
}
}
Callee callee = new CalleeImpl();
Object i = new Integer(12);
Object s = "foobar";
Object o = new Object();
callee.foo(i);
callee.foo(s);
callee.foo(o);
This prints foo(Object o) three times. I expect the method selection to take in consideration the real (not the declared) parameter type. Am I missing something? Is there a way to modify this code so that it'll print foo(12), foo("foobar") and foo(Object o)?
I expect the method selection to take
in consideration the real (not the
declared) parameter type. Am I missing
something?
Yes. Your expectation is wrong. In Java, dynamic method dispatch happens only for the object the method is called on, not for the parameter types of overloaded methods.
Citing the Java Language Specification:
When a method is invoked (§15.12), the
number of actual arguments (and any
explicit type arguments) and the
compile-time types of the arguments
are used, at compile time, to
determine the signature of the method
that will be invoked (§15.12.2). If
the method that is to be invoked is an
instance method, the actual method to
be invoked will be determined at run
time, using dynamic method lookup
(§15.12.4).
As mentioned before overloading resolution is performed at compile time.
Java Puzzlers has a nice example for that:
Puzzle 46: The Case of the Confusing Constructor
This puzzle presents you with two Confusing constructors. The main method invokes a constructor,
but which one? The program's output depends on the answer. What does the program print, or is it
even legal?
public class Confusing {
private Confusing(Object o) {
System.out.println("Object");
}
private Confusing(double[] dArray) {
System.out.println("double array");
}
public static void main(String[] args) {
new Confusing(null);
}
}
Solution 46: Case of the Confusing Constructor
...
Java's overload resolution process operates in two phases. The first phase selects all the methods or constructors that are accessible and applicable. The second phase selects the most specific of the methods or constructors selected in the first phase. One method or constructor is less specific than another if it can accept any parameters passed to the other [JLS 15.12.2.5].
In our program, both constructors are accessible and applicable. The constructor
Confusing(Object) accepts any parameter passed to Confusing(double[]), so
Confusing(Object) is less specific. (Every double array is an Object, but not every Object is a double array.) The most specific constructor is therefore Confusing(double[]), which explains the program's output.
This behavior makes sense if you pass a value of type double[]; it is counterintuitive if you pass null. The key to understanding this puzzle is that the test for which method or constructor is most specific does not use the actual parameters: the parameters appearing in the invocation.
They are used only to determine which overloadings are applicable. Once the compiler determines which overloadings are applicable and accessible, it selects the most specific overloading, using only the formal parameters: the parameters appearing in the declaration.
To invoke the Confusing(Object) constructor with a null parameter, write new
Confusing((Object)null). This ensures that only Confusing(Object) is applicable. More
generally, to force the compiler to select a specific overloading, cast actual parameters to the declared types of the formal parameters.
Ability to dispatch a call to a method based on types of arguments is called multiple dispatch. In Java this is done with Visitor pattern.
However, since you're dealing with Integers and Strings, you cannot easily incorporate this pattern (you just cannot modify these classes). Thus, a giant switch on object run-time will be your weapon of choice.
In Java the method to call (as in which method signature to use) is determined at compile time, so it goes with the compile time type.
The typical pattern for working around this is to check the object type in the method with the Object signature and delegate to the method with a cast.
public void foo(Object o) {
if (o instanceof String) foo((String) o);
if (o instanceof Integer) foo((Integer) o);
logger.debug("foo(Object o)");
}
If you have many types and this is unmanageable, then method overloading is probably not the right approach, rather the public method should just take Object and implement some kind of strategy pattern to delegate the appropriate handling per object type.
I had a similar issue with calling the right constructor of a class called "Parameter" that could take several basic Java types such as String, Integer, Boolean, Long, etc. Given an array of Objects, I want to convert them into an array of my Parameter objects by calling the most-specific constructor for each Object in the input array. I also wanted to define the constructor Parameter(Object o) that would throw an IllegalArgumentException. I of course found this method being invoked for every Object in my array.
The solution I used was to look up the constructor via reflection...
public Parameter[] convertObjectsToParameters(Object[] objArray) {
Parameter[] paramArray = new Parameter[objArray.length];
int i = 0;
for (Object obj : objArray) {
try {
Constructor<Parameter> cons = Parameter.class.getConstructor(obj.getClass());
paramArray[i++] = cons.newInstance(obj);
} catch (Exception e) {
throw new IllegalArgumentException("This method can't handle objects of type: " + obj.getClass(), e);
}
}
return paramArray;
}
No ugly instanceof, switch statements, or visitor pattern required! :)
Java looks at the reference type when trying to determine which method to call. If you want to force your code you choose the 'right' method, you can declare your fields as instances of the specific type:
Integeri = new Integer(12);
String s = "foobar";
Object o = new Object();
You could also cast your params as the type of the param:
callee.foo(i);
callee.foo((String)s);
callee.foo(((Integer)o);
If there is an exact match between the number and types of arguments specified in the method call and the method signature of an overloaded method then that is the method that will be invoked. You are using Object references, so java decides at compile time that for Object param, there is a method which accepts directly Object. So it called that method 3 times.

Using polymorphism instead of instanceof [duplicate]

I'm experimenting with this code:
interface Callee {
public void foo(Object o);
public void foo(String s);
public void foo(Integer i);
}
class CalleeImpl implements Callee
public void foo(Object o) {
logger.debug("foo(Object o)");
}
public void foo(String s) {
logger.debug("foo(\"" + s + "\")");
}
public void foo(Integer i) {
logger.debug("foo(" + i + ")");
}
}
Callee callee = new CalleeImpl();
Object i = new Integer(12);
Object s = "foobar";
Object o = new Object();
callee.foo(i);
callee.foo(s);
callee.foo(o);
This prints foo(Object o) three times. I expect the method selection to take in consideration the real (not the declared) parameter type. Am I missing something? Is there a way to modify this code so that it'll print foo(12), foo("foobar") and foo(Object o)?
I expect the method selection to take
in consideration the real (not the
declared) parameter type. Am I missing
something?
Yes. Your expectation is wrong. In Java, dynamic method dispatch happens only for the object the method is called on, not for the parameter types of overloaded methods.
Citing the Java Language Specification:
When a method is invoked (§15.12), the
number of actual arguments (and any
explicit type arguments) and the
compile-time types of the arguments
are used, at compile time, to
determine the signature of the method
that will be invoked (§15.12.2). If
the method that is to be invoked is an
instance method, the actual method to
be invoked will be determined at run
time, using dynamic method lookup
(§15.12.4).
As mentioned before overloading resolution is performed at compile time.
Java Puzzlers has a nice example for that:
Puzzle 46: The Case of the Confusing Constructor
This puzzle presents you with two Confusing constructors. The main method invokes a constructor,
but which one? The program's output depends on the answer. What does the program print, or is it
even legal?
public class Confusing {
private Confusing(Object o) {
System.out.println("Object");
}
private Confusing(double[] dArray) {
System.out.println("double array");
}
public static void main(String[] args) {
new Confusing(null);
}
}
Solution 46: Case of the Confusing Constructor
...
Java's overload resolution process operates in two phases. The first phase selects all the methods or constructors that are accessible and applicable. The second phase selects the most specific of the methods or constructors selected in the first phase. One method or constructor is less specific than another if it can accept any parameters passed to the other [JLS 15.12.2.5].
In our program, both constructors are accessible and applicable. The constructor
Confusing(Object) accepts any parameter passed to Confusing(double[]), so
Confusing(Object) is less specific. (Every double array is an Object, but not every Object is a double array.) The most specific constructor is therefore Confusing(double[]), which explains the program's output.
This behavior makes sense if you pass a value of type double[]; it is counterintuitive if you pass null. The key to understanding this puzzle is that the test for which method or constructor is most specific does not use the actual parameters: the parameters appearing in the invocation.
They are used only to determine which overloadings are applicable. Once the compiler determines which overloadings are applicable and accessible, it selects the most specific overloading, using only the formal parameters: the parameters appearing in the declaration.
To invoke the Confusing(Object) constructor with a null parameter, write new
Confusing((Object)null). This ensures that only Confusing(Object) is applicable. More
generally, to force the compiler to select a specific overloading, cast actual parameters to the declared types of the formal parameters.
Ability to dispatch a call to a method based on types of arguments is called multiple dispatch. In Java this is done with Visitor pattern.
However, since you're dealing with Integers and Strings, you cannot easily incorporate this pattern (you just cannot modify these classes). Thus, a giant switch on object run-time will be your weapon of choice.
In Java the method to call (as in which method signature to use) is determined at compile time, so it goes with the compile time type.
The typical pattern for working around this is to check the object type in the method with the Object signature and delegate to the method with a cast.
public void foo(Object o) {
if (o instanceof String) foo((String) o);
if (o instanceof Integer) foo((Integer) o);
logger.debug("foo(Object o)");
}
If you have many types and this is unmanageable, then method overloading is probably not the right approach, rather the public method should just take Object and implement some kind of strategy pattern to delegate the appropriate handling per object type.
I had a similar issue with calling the right constructor of a class called "Parameter" that could take several basic Java types such as String, Integer, Boolean, Long, etc. Given an array of Objects, I want to convert them into an array of my Parameter objects by calling the most-specific constructor for each Object in the input array. I also wanted to define the constructor Parameter(Object o) that would throw an IllegalArgumentException. I of course found this method being invoked for every Object in my array.
The solution I used was to look up the constructor via reflection...
public Parameter[] convertObjectsToParameters(Object[] objArray) {
Parameter[] paramArray = new Parameter[objArray.length];
int i = 0;
for (Object obj : objArray) {
try {
Constructor<Parameter> cons = Parameter.class.getConstructor(obj.getClass());
paramArray[i++] = cons.newInstance(obj);
} catch (Exception e) {
throw new IllegalArgumentException("This method can't handle objects of type: " + obj.getClass(), e);
}
}
return paramArray;
}
No ugly instanceof, switch statements, or visitor pattern required! :)
Java looks at the reference type when trying to determine which method to call. If you want to force your code you choose the 'right' method, you can declare your fields as instances of the specific type:
Integeri = new Integer(12);
String s = "foobar";
Object o = new Object();
You could also cast your params as the type of the param:
callee.foo(i);
callee.foo((String)s);
callee.foo(((Integer)o);
If there is an exact match between the number and types of arguments specified in the method call and the method signature of an overloaded method then that is the method that will be invoked. You are using Object references, so java decides at compile time that for Object param, there is a method which accepts directly Object. So it called that method 3 times.

Overloading or a normal method [duplicate]

This question already has answers here:
Is it possible to have different return types for a overloaded method?
(13 answers)
The relationship of overload and method return type in Java?
(4 answers)
Closed 6 years ago.
I am gonna put this question to have a clear idea about overloading Concept in java . As per my understanding while method resolution in overloading compiler will look for method signature that is it should have same method name and different argument types . But what if the return type is different ??
class Test{
public void m1(int i) {
System.out.println(" int arg");
}
public int m1(String s) {
System.out.println("String-arg");
return (5+10);
}
public static void main (String[] args) throws java.lang.Exception
{
Test t = new Test();
t.m1(5);
int i = t.m1("ani");
System.out.println(i);
}}
the above program is running perfectly . my doubt here is , the method m1() is it overloaded ?? it has different return type . someone please make it clear. Thanks in advance
In Java methods are identified by name and arguments' classes and amount. The return type doesn't identify the method. For this reason the following code would be illegal:
public void m1(String i) {
System.out.println(" int arg");
}
public int m1(String s) {
System.out.println("String-arg");
return (5+10);
}
If two methods of a class (whether both declared in the same class, or both inherited by a class, or one declared and one inherited) have the same name but signatures that are not override-equivalent, then the method name is said to be overloaded. (...) When a method is invoked (§15.12), the number of actual arguments (and any explicit type arguments) and the compile-time types of the arguments are used, at compile time, to determine the signature of the method that will be invoked (§15.12.2). If the method that is to be invoked is an instance method, the actual method to be invoked will be determined at run time, using dynamic method lookup (§15.12.4)
Summarizing, two methods with the same name can return different types, however it's not being taken into account when deciding which method to call. JVM first decides which method to call and later checks if the return type of that method can be assigned to the certain variable.
Example (try to avoid such constructions):
public int pingPong(int i) {
return i;
}
public String pingPong(String s) {
return s;
}
public boolean pingPong(boolean b) {
return b;
}
if we follow the Oracle definition then yes, it is a overloaded method
here the info (emphasis mine)
The Java programming language supports overloading methods, and Java
can distinguish between methods with different method signatures. This
means that methods within a class can have the same name if they have
different parameter lists (there are some qualifications to this that
will be discussed in the lesson titled "Interfaces and Inheritance").
the fact that the method return a value or not is IRRELEVANT for the overloading definition...
another thing is here why can a method somethimes return a value and sometimes no...
this will drive crazy the people using the code, but that is another question...

Using nested classes in overloaded methods in java [duplicate]

I'm experimenting with this code:
interface Callee {
public void foo(Object o);
public void foo(String s);
public void foo(Integer i);
}
class CalleeImpl implements Callee
public void foo(Object o) {
logger.debug("foo(Object o)");
}
public void foo(String s) {
logger.debug("foo(\"" + s + "\")");
}
public void foo(Integer i) {
logger.debug("foo(" + i + ")");
}
}
Callee callee = new CalleeImpl();
Object i = new Integer(12);
Object s = "foobar";
Object o = new Object();
callee.foo(i);
callee.foo(s);
callee.foo(o);
This prints foo(Object o) three times. I expect the method selection to take in consideration the real (not the declared) parameter type. Am I missing something? Is there a way to modify this code so that it'll print foo(12), foo("foobar") and foo(Object o)?
I expect the method selection to take
in consideration the real (not the
declared) parameter type. Am I missing
something?
Yes. Your expectation is wrong. In Java, dynamic method dispatch happens only for the object the method is called on, not for the parameter types of overloaded methods.
Citing the Java Language Specification:
When a method is invoked (§15.12), the
number of actual arguments (and any
explicit type arguments) and the
compile-time types of the arguments
are used, at compile time, to
determine the signature of the method
that will be invoked (§15.12.2). If
the method that is to be invoked is an
instance method, the actual method to
be invoked will be determined at run
time, using dynamic method lookup
(§15.12.4).
As mentioned before overloading resolution is performed at compile time.
Java Puzzlers has a nice example for that:
Puzzle 46: The Case of the Confusing Constructor
This puzzle presents you with two Confusing constructors. The main method invokes a constructor,
but which one? The program's output depends on the answer. What does the program print, or is it
even legal?
public class Confusing {
private Confusing(Object o) {
System.out.println("Object");
}
private Confusing(double[] dArray) {
System.out.println("double array");
}
public static void main(String[] args) {
new Confusing(null);
}
}
Solution 46: Case of the Confusing Constructor
...
Java's overload resolution process operates in two phases. The first phase selects all the methods or constructors that are accessible and applicable. The second phase selects the most specific of the methods or constructors selected in the first phase. One method or constructor is less specific than another if it can accept any parameters passed to the other [JLS 15.12.2.5].
In our program, both constructors are accessible and applicable. The constructor
Confusing(Object) accepts any parameter passed to Confusing(double[]), so
Confusing(Object) is less specific. (Every double array is an Object, but not every Object is a double array.) The most specific constructor is therefore Confusing(double[]), which explains the program's output.
This behavior makes sense if you pass a value of type double[]; it is counterintuitive if you pass null. The key to understanding this puzzle is that the test for which method or constructor is most specific does not use the actual parameters: the parameters appearing in the invocation.
They are used only to determine which overloadings are applicable. Once the compiler determines which overloadings are applicable and accessible, it selects the most specific overloading, using only the formal parameters: the parameters appearing in the declaration.
To invoke the Confusing(Object) constructor with a null parameter, write new
Confusing((Object)null). This ensures that only Confusing(Object) is applicable. More
generally, to force the compiler to select a specific overloading, cast actual parameters to the declared types of the formal parameters.
Ability to dispatch a call to a method based on types of arguments is called multiple dispatch. In Java this is done with Visitor pattern.
However, since you're dealing with Integers and Strings, you cannot easily incorporate this pattern (you just cannot modify these classes). Thus, a giant switch on object run-time will be your weapon of choice.
In Java the method to call (as in which method signature to use) is determined at compile time, so it goes with the compile time type.
The typical pattern for working around this is to check the object type in the method with the Object signature and delegate to the method with a cast.
public void foo(Object o) {
if (o instanceof String) foo((String) o);
if (o instanceof Integer) foo((Integer) o);
logger.debug("foo(Object o)");
}
If you have many types and this is unmanageable, then method overloading is probably not the right approach, rather the public method should just take Object and implement some kind of strategy pattern to delegate the appropriate handling per object type.
I had a similar issue with calling the right constructor of a class called "Parameter" that could take several basic Java types such as String, Integer, Boolean, Long, etc. Given an array of Objects, I want to convert them into an array of my Parameter objects by calling the most-specific constructor for each Object in the input array. I also wanted to define the constructor Parameter(Object o) that would throw an IllegalArgumentException. I of course found this method being invoked for every Object in my array.
The solution I used was to look up the constructor via reflection...
public Parameter[] convertObjectsToParameters(Object[] objArray) {
Parameter[] paramArray = new Parameter[objArray.length];
int i = 0;
for (Object obj : objArray) {
try {
Constructor<Parameter> cons = Parameter.class.getConstructor(obj.getClass());
paramArray[i++] = cons.newInstance(obj);
} catch (Exception e) {
throw new IllegalArgumentException("This method can't handle objects of type: " + obj.getClass(), e);
}
}
return paramArray;
}
No ugly instanceof, switch statements, or visitor pattern required! :)
Java looks at the reference type when trying to determine which method to call. If you want to force your code you choose the 'right' method, you can declare your fields as instances of the specific type:
Integeri = new Integer(12);
String s = "foobar";
Object o = new Object();
You could also cast your params as the type of the param:
callee.foo(i);
callee.foo((String)s);
callee.foo(((Integer)o);
If there is an exact match between the number and types of arguments specified in the method call and the method signature of an overloaded method then that is the method that will be invoked. You are using Object references, so java decides at compile time that for Object param, there is a method which accepts directly Object. So it called that method 3 times.

Categories

Resources